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Shield versus sword resource distribution in K-round
duels

Kjell Hausken, Gregory Levitin

Abstract The paper considers optimal resource distribution between offense and
defense in a duel. In each round of the duel two actors exchange attacks distributing
the offense resources equally across K rounds. The offense resources are expendable
(e.g. missiles), whereas the defense resources are not expendable (e.g. bunkers). The
outcomes of each round are determined by a contest success functions which depend
on the offensive and defensive resources. The game ends when at least one target is
destroyed or after K rounds. We show that when each actor maximizes its own sur-
vivability, then both actors allocate all their resources defensively. Conversely, when
each actor minimizes the survivability of the other actor, then both actors allocate all
their resources offensively. We then consider two cases of battle for a single target
in which one of the actors minimizes the survivability of its counterpart whereas the
counterpart maximizes its own survivability. It is shown that in these two cases the
minmax survivabilities of the two actors are the same, and the sum of their resource
fractions allocated to offense is equal to 1. However, their resource distributions are
different. In the symmetric situation when the actors are equally resourceful and the
two contest intensities are equal, then the actor that fights for the destruction of its
counterpart allocates more resources to offense. We demonstrate a methodology of
game analysis by illustrating how the resources, contest intensities and number of
rounds in the duels impact the survivabilities and resource distributions.

Keywords: survivability, duel, defense, attack, protection, contest intensity, 
game theory



List of symbols
r, R Actors’ resources
ρ Ratio r/R between actor 1’s and actor 2’s resources
x, X Offense-defense resource distribution parameters
K Number of consecutive attacks
s, S Target survivability (probability of survival in all K attacks)
v, V Success probability of each attack
pi , Pi Probability that the target is destroyed in the i-th attack
μ, m Contest intensities in attacks against the actors
θ(q|K ) Conditional survivability of target 2 in q rounds of a K-round duel
�(q|K ) Conditional survivability of target 1 in q rounds of a K-round duel

1 Introduction

We consider two actors who fight offensively and defensively (exchange attacks) with
each other over K rounds or until one target is destroyed. Each actor determines the
optimal balance between the offense and defense which depends on their resources,
the contest intensities, and the number of rounds of attack available. The optimal strat-
egy depends on whether each actor maximizes its own survivability, minimizes the
survivability of the other actor, or whether the actor maximizes its own survivability
while its counterpart minimizes this survivability.

Through history it has been important to distinguish between the offense and 
defense. For example, Clausewitz (1984/1832, Sec 6.1.2) argued for classical warfare 
for the “superiority of defense over attack”: “The defender enjoys optimum lines of 
communication and retreat, and can choose the place for battle.” The attacker is advan-
taged by surprise, but gets exposed by leaving fortresses and depots behind through 
extended operations. The defense gets improved by trench warfare and the machine gun 
(World War I), and by castles and fortresses with cannon fire from secure locations.1

Tanks and aviation (World War II) increased the attacker’s advantage. Attackers are 
more advantaged in the cyber era where defenders have to defend everywhere, while 
attackers can attack at many locations and at many points in time (Anderson 2001). 
Protective shields are examples of defensive measures, while swords exemplify offen-
sive measures. Law distinguishes between active and passive defense which depends 
on whether the person passively shields itself, or whether it actively exerts an action 
to prevent being harmed. In this paper we also allow the actor to be offensive.

In earlier research Azaiez and Bier (2007) consider the optimal resource allocation 
for security in reliability systems. They determine closed-form results for moderately 
general systems, assuming that the cost of an attack against any given component 
increases linearly in the amount of defensive investment in that component. Bier et al.

1 Hausken (2004) suggests that the superiority of the defense over the offense may be even larger for 
production facilities and produced goods than for Clausewitz’s mobile army.



(2005) and Bier and Abhichandani (2002) assume that the defender minimizes the 
success probability and expected damage of an attack. Bier et al. (2005) analyze the 
protection of series and parallel systems with components of different values. They 
specify optimal defenses against intentional threats to system reliability, focusing 
on the tradeoff between investment cost and security. The optimal defense 
allocation depends on the structure of the system, the cost-effectiveness of 
infrastructure protection investments, and the adversary’s goals and constraints. 
Levitin (2007) con-siders the optimal element separation and protection in complex 
multi-state series-parallel system and suggests an algorithm for determining the 
expected damage caused by a strategic attacker. Patterson and Apostolakis (2007) 
introduced importance measures for ranking the system elements in complex 
systems exposed to terrorist actions. Michaud and Apostolakis (2006) analyzed 
such measures of damage caused by the terror as impact on people, impact on 
environment, impact on public image etc.

Bier et al. (2007) assume that a defender allocates defense to a collection of loca-
tions while an attacker chooses a location to attack. They show that the defender 
allocates resources in a centralized, rather than decentralized, manner, that the opti-
mal allocation of resources can be non-monotonic in the value of the attacker’s outside 
option. Furthermore, the defender prefers its defense to be public rather than secret. 
Also, the defender sometimes leaves a location undefended and sometimes prefers a 
higher vulnerability at a particular location even if a lower risk could be achieved at 
zero cost. Dighe et al. (2009) consider secrecy in defensive allocations as a strategy for 
achieving more cost-effective attacker deterrence. Zhuang and Bier (2007) consider 
defender resource allocation for countering terrorism and natural disasters.

Attack is sometimes the best defense, but not always. This paper seeks to determine 
when it is optimal to stay on the defensive and await the blow, and when it is optimal 
to attack offensively. Each actor has a fixed resource which can be divided into two 
fractions allocated to defense and offense.

Section 2 presents the model. Section 3 analyzes the model. Section 4 concludes.

2 The model

Two actors participate in a duel in which they repeatedly attack each other. The total
number of consecutive attacks is K, unless one actor is destroyed in attack i and the
game ends. The actors have limited resources r and R. Each actor distributes its resource
among the defense (protection) and offense (attack). The distribution is determined
by the parameters x and X respectively: resources xr and XR are allocated to offense
and resources (1 − x)r and (1 − X)R are allocated to defense. x and X are the two
free choice variables. We denote the actor choosing x as actor 1 and the actor choosing
X as actor 2. We assume that for both actors the offense resources are expendable
(missiles) whereas the defense resources are not expendable (bunkers), which means
that the actors use the same protection during the series of K attacks. The offense
resources are distributed evenly across the K attacks, i.e. xr/K and X R/K for each
attack. Assuming equal offense resource distribution across the K attacks constitutes
a benchmark and is made for two reasons. The first is logistical. If the actor is a per-
son, its strength is limited. It cannot suddenly triple its strength in one round. Despite



becoming exhausted, the person may hold up well over the rounds. If the actor is an air 
force with a fixed number of airplanes, these can be equipped with only a finite number 
of missiles for each attack, before returning to base and redeploying for the subsequent 
attack. The second reason is analytical tractability. Assuming unequal offense resource 
distribution requires applying a different method of analysis.2 Each actor can observe 
the outcome of each attack and cease the attacks if the counterpart is destroyed.

In order to determine the vulnerability of an attacked target we use the common 
ratio form contest success function (Skaperdas 1996; Tullock 1980) w = T h/(T h + 
th), where w is the probability of target destruction, T is the attacker’s effort, t is the 
defender’s effort, ∂w/∂T > 0, ∂w/∂t < 0, and h ≥ 0 is a parameter for the contest 
intensity. When h = 0, t and T have equal impact on w regardless of their size which 
gives 50% vulnerability. When 0 < h < 1, there is a disproportional advantage of 
exerting less effort than one’s opponent. When h = 1, the efforts have proportional 
impact on the w. When h > 1, exerting more effort than one’s opponent gives a dispro-
portional advantage. Finally, h = ∞ gives a step function where “winner-takes-all”.

In our case we have attacks against two actors in each of the K duels. The con-
test intensities in these attacks can be different. We denote the contests intensities in
attacks against actors 1 and 2 as m and μ respectively. The success probability of actor
1 investing an offense xr/K in each attack against the defense (1 − X)R by actor 2 is

v = (xr/K )μ

(xr/K )μ + [(1 − X)R]μ
= 1

1 + [(1 − X)K/(xρ)]μ
. (1)

Analogously, the success probability of actor 2 investing an offense X R/K against
the defense (1 − x)r by actor 1 in each attack is

V = (X R/K )m

(X R/K )m + [(1 − x)r ]m = 1

1 + [(1 − x)ρK/X ]m , (2)

where ∂V/∂ X > 0, ∂V/∂ R > 0, ∂V/∂x > 0, ∂V/∂r < 0, and m ≥ 0 is the intensity
of the contest when actor 2 is offensive. The contest intensities can depend on target
locations and, therefore, are different for the two attacks.

In order to destroy the counterpart target in the j-th attack, each actor must survive
in all j −1 previous attacks. The target can be destroyed in the j-th attack only if it has
not been destroyed in any of the j − 1 previous attacks. Therefore the probabilities
that the counterpart target is destroyed in the j-th attack are

p j = v(1 − V ) j−1(1 − v) j−1, Pj = V (1 − V ) j−1(1 − v) j−1. (3)

2 Consider in this regard Azaiez and Bier’s (2007) work. They analyze the protection of n components, 
where each component may play the role of a round. They proved that the optimal defensive strategy was 
to strengthen the most attractive component (the most fragile in a series configuration) until all resources 
are depleted or this component becomes as attractive as the next one, and then strengthen simultaneously 
both “fragile” components until all resources are depleted or they become as attractive as the next one, and 
so on.



The probabilities of targets 1 and 2 destruction in K consecutive attacks are
∑K

j=1 Pj

and
∑K

j=1 p j respectively.
Since the success probability of any one of K attacks is the same, we obtain the

survivabilities S and s of targets 1 and 2 as

S = 1 −
K∑

j=1

Pj = 1 − V
K∑

j=1

(1 − V ) j−1(1 − v) j−1

= 1 − 1

1 + [(1 − x)ρK/X ]m

K−1∑

j=0

(
[(1 − x)ρK/X ]m

1 + [(1 − x)ρK/X ]m
[(1 − X)K/(xρ)]μ

1 + [(1 − X)K/(xρ)]μ

) j

=
[(1 − x)ρK/X ]m + (1 + [(1 − X)K/(xρ)]μ)1−K

(
[(1 − x)ρK/X ]m [(1 − X)K/(xρ)]μ

(
1 + [(1 − x)ρK/X ]m)

)K

1 + [(1 − x)ρK/X ]m + [(1 − X)K/(xρ)]μ

s = 1 −
K∑

j=1

p j = 1 − v

K∑

j=1

(1 − V ) j−1(1 − v) j−1

= 1 − 1

1 + [(1 − X)K/(xρ)]μ

K−1∑

j=0

(
[(1 − x)ρK/X ]m

1 + [(1 − x)ρK/X ]m
[(1 − X)K/(xρ)]μ

1 + [(1 − X)K/(xρ)]μ

) j

=
[(1−X)K/(xρ)]μ+(

1+[(1 − x)ρK/X ]m)1−K
(

[(1 − x)ρK/X ]m [(1−X)K/(xρ)]μ

(1+[(1−X)K/(xρ)]μ)

)K

1+[(1 − x)ρK/X ]m +[(1 − X)K/(xρ)]μ
,

(5)

where the sum is a geometric series. Observe that x, V, S correspond to actor 1 and
its object, whereas X, v, s correspond to actor 2 and its object.

The probability that a target survives at least q ≤ K rounds in a K-round duel 
follows from replacing K with q in the upper limit of the summation signs in (5). The 
conditional survivabilities �(q|K ) and θ(q |K ) of targets 1 and 2 are

�(q|K ) = 1 −
q∑

j=1

Pj

=
[(1−x)ρK/X ]m +(1 + [(1−X)K/(xρ)]μ)1−q

(
[(1−x)ρK/X ]m [(1−X)K/(xρ)]μ

(
1+[(1−x)ρK/X ]m)

)q

1+[(1−x)ρK/X ]m +[(1−X)K/(xρ)]μ

θ(q|K ) = 1 −
q∑

j=1

p j

=
[(1−X)K/(xρ)]μ+(

1+[(1−x)ρK/X ]m)1−q
(

[(1−x)ρK/X ]m [(1−X)K/(xρ)]μ

(1+[(1−X)K/(xρ)]μ)

)q

1 + [(1−x)ρK/X ]m + [(1−X)K/(xρ)]μ
,

(6)



3 Analyzing the model

We consider four cases. First, in Sect. 3.1 each actor maximizes its own survivability 
(self-interest situation). Second, in Sect. 3.2 each actor minimizes the survivability of 
the other actor (mutual aggression). In Appendix A actor 1 minimizes the survivability 
s while actor 2 maximizes its survivability s (battle for s). Conversely, in Appendix B 
actor 1 maximizes its survivability S while actor 2 minimizes actor 1’s survivability S 
(battle for S). In the battle for s and in the battle for S both actors focus exclusively on 
the survival of one of them, ignoring the survival of the other actor. Finally, Sect. 3.3 
compares Appendices A and B.

3.1 Maximizing s and S

Assume that each actor maximizes its own survivability. If actor 1 chooses x = 0 and 
actor 2 chooses X = 0, the target destruction probabilities in (3) a r e v = V = 
0 and the survivabilities in (5) a r e s = S = 1. No actor has an incentive to deviate 
unilaterally from this maximum survivability which thus constitutes an optimal 
solution where both actors are pacifistic. Both actors refrain from attack and focus 
exclusively on defense.

3.2 Minimizing S and s

Assume that each actor minimizes the survivability of the other actor. If actor 1 chooses 
x = 1 and actor 2 chooses X = 1, the target destruction probabilities in 
(3) a r e  v = V = 1 and the survivabilities in (5) a r e  s = S = 0. No actor has an 
incentive to deviate unilaterally from this minimum survivability which thus 
constitutes an optimal solution where both actors are maximally offensive. Both actors 
refrain from defense and focus exclusively on attack. See Appendix A for 
calculations of battle for s, and Appendix B for calculations of battle for S.

3.3 Comparing battle for s and battle for S solutions

We define X∗(opt s) as the optimal X in the battle for s, and X∗(opt S) as the optimal
X in the battle for S.

Proposition 1 When both actors focus exclusively on the survival of one of the actors,
maximizing it and minimizing it, respectively, ignoring the survivability of the other
actor, then the survivabilities of the two actors are the same, though their allocations
to offense and defense are different.

Proof Follows from the equivalence of (A3) and (B3) causing (A4), and the difference 
between (A6) and (B4).

Proposition 1 is interpreted as follows: when optimizing s, actor 2 chooses X∗ 

from (A6) and actor 1’s best response is x∗ = 1 − X∗, which gives (A4). When 



optimizing S, if actor 2 chooses X∗ from (A6), then actor 1 responds with some x∗ �= 
1 − X∗, which gives S larger than in (A4). Actor 2 can achieve lower S by choosing 
X∗ from (B4), and actor 1’s best response is x∗ = 1 − X∗, which gives (A4) again. 
That two different games and two different strategies cause the same survivabilities 
has to do with x∗ = 1 − X∗ and the symmetry of the two situations. Both actors have 
different focuses in the two situations, though in a manner causing the same 
survivabilities.

The linkage between (A6) and (B4) is as follows: if we replace m with μ, μ with 
m and ρ with 1/ρ, the situation becomes symmetrically opposite to the actors and, 
therefore, X∗(opt S) i n ( B4) is equal to x∗(opt s) = 1 − X∗(opt s) in (A6). After such 
replacement in (B4), summing (B4) and (1 gives X∗(opt s) + X∗(opt S) = 1.

Inserting m = μ and ρ = 1 i n t o ( A6) and (B4) (which corresponds to total 
symmetry in the duel) gives

X∗(opt s) = K μ

2K μ + 1
− K 1−μ(K μ)2K

(K μ + 1)2K − (K μ)2K
, (7)

X∗(opt S) = K μ + 1

2K μ + 1
+ K 1−μ(K μ)2K

(K μ + 1)2K − (K μ)2K
(8)

which sum to one. Equations (7) and (8) i m p l y

X∗(optS) − X∗(opts) = 1

2K μ + 1
+ 2K 1−μ(K μ)2K

(K μ + 1)2K − (K μ)2K
> 0. (9)

This means that in the symmetric situation the actor that fights for survival must 
always be less aggressive, by spending more resources on defense, than the actor that 
fights for destruction of its counterpart.3

Figure 1 plots X∗(opt s), X∗(opt S), s∗, and S∗ as functions of ρ for K = 5 and 
different m and μ. Observe that X∗(optS) is larger than X∗(opt s) which illustrates 
non-symmetric situations where the actor that fights for the destruction of its counter-
part is more aggressive than the actor that fights for its own survival. When both contest 
intensities are small the egalitarianism causes intermediate X∗(opt s) and X∗(opt S) 
which increase gradually as actor 1 becomes more resourceful (ρ increases) leading 
actor 2 to focus more on offense. When μ = 2, m = 0.5, the contest where actor 2 is 
defensive is most intensive, causing a U shaped X∗ when actor 2 battles defensively 
for low S. Actor 2 chooses high X∗ (low 1 − X∗) due to strength when ρ is low, and 
due to weakness when ρ is high. Actor 2 chooses low X∗ when battling offensively 
for high s, caused by the low m. Conversely, when m = 2, μ  = 0.5, the contest 
where actor 2 is offensive is most intensive, causing an inverse U shaped X∗ when 
actor 2 battles offensively for high s. Actor 2 chooses low X∗ due to strength when ρ 
is low, and due to weakness when ρ is high. Actor 2 chooses high X∗ (low 1 − X∗) 
when battling defensively for low S, caused by the low μ. Finally, when both contest

3 Numerical tests suggest that X∗(opt S) − X∗(opt s) > 0 for general m, μ and ρ, but we have not been
able to prove that.



Fig. 1 X∗(opt s), X∗(opt S), s∗, and S∗ as functions of ρ for K = 5 and different m and μ

intensities are high, X∗(opt s) is U shaped and X∗(opt S) is inverse U shaped, and
the survivabilities change more abruptly dependent on which actor enjoys resource
superiority.

Figure 2 plots X∗(opt s), X∗(opt S), s∗, and S∗ as functions of K for different ρ,  m 
and μ. When μ = 2, m = 0.5, X∗ (opt s) increases in K and X∗(opt S) decreases in K. 
When μ = 2, m = 0.5, as K increases, actor 2 enjoys higher survivability s while 
actor 1 suffers lower survivability S. The reason is that a higher K makes actor 1 less 
successful in each attack when μ is large as expressed with a lower (xr/K )μ in the 
numerator of (1) causing lower v. Conversely, when μ = 0.5, m = 2, as K increases, 
actor 1 enjoys higher survivability S while actor 2 suffers lower survivability 
s, u s i n g  the same reasoning with (X R /K )m in (2). When m = 2, μ  = 2, both 
actors enjoy higher survivabilities as K increases.

Figure 3 plots X∗(opt s), X∗(opt S), θ(q |K ) , and �(q |K ) as functions of q for 
different ρ,  m and μ when K = 5. In accordance with (A4) the conditional surviv-
abilities decrease in q reflecting the r isk of continued dueling. In some panels the



Fig. 2 X∗(opt s), X∗(opt S), s∗, and S∗ as functions of K for different ρ, m and μ

decrease is strong and in others it is barely visible. For example, for ρ = m = μ = 2 
the function �(q |K ) decreases from 0.99 for q = 1 t o0.963  for q = 5. For the 
more egalitarian contests m = μ = 0.5, the conditional survivabilities θ(q |K ) , and 
�(q |K ) are intermediate and their decreases in q are moderate. For these values of 
m and μ the inequality in (A5) where q = 1 becomes 1 ≥ ρ which benefits actor 2 in 
the left panel and actor 1 in the right panel. When m = 0.5 and μ = 2, the inequality 
in (A5) becomes 51.5 ≥ ρ2.5 which benefits actor 2 in both panels. Actor 2 benefits



Fig. 3 X∗(opt s), X∗(opt S), θ(q|K ), and �(q|K ) as functions of q for different ρ, m, μ and K = 5

especially in the left panel, enjoying the low ρ = 0.5, while actor 1’s �(q |K ) 
decreases rapidly in q. When m = 2 and μ = 0.5, the inequality in (A5) becomes 5
−1.5 ≥ ρ2.5 which benefits actor 1 in both panels. For the jointly intensive contests m 
= μ = 2, the inequality in (A5) becomes 1 ≥ ρ4 which benefits actor 2 in the left 
panel and actor 1 in the right panel. The survivability of the disadvantaged actor 
decreases rapidly in q because of the high contest intensities.



4 Conclusion

We consider K repeated duels in which two actors distribute their resources between
offense and defense. The offense resources are expendable (e.g. missiles) and are
distributed equally across K attacks, while the defense resources are not expendable
(e.g. bunkers). The outcomes of the two duels in each round are determined by a
contest success function which depends on the offensive and defensive resources. The
game ends when at least one target is destroyed or after K rounds.

We show that when each actor maximizes its own survivability, then both actors 
allocate all their resources defensively. Conversely, when each actor minimizes the 
survivability of its counterpart, then both actors allocate all their resources 
offensively. We then consider two cases of battle for a single target in which one of 
the actors minimizes the survivability of its counterpart whereas the counterpart 
maximizes its own survivability. In these two cases the two actors’ minmax 
survivabilities are the same, and the sum of their resource fractions allocated to 
offense equals 1. However, their allocations to offense and defense in the two cases 
are different. When the actors are equally resourceful and the two contest intensities 
are equal, then the actor that fights for the destruction of its counterpart always 
allocates more resources to offense. Analyzing the minmax solutions we 
demonstrate how the resources, contest intensities and number of attacks impact the 
survivabilities and allocations to offense and defense. It can be seen that the increase 
of the number of attacks in the duel K is favorable for the actor that has greater 
contest intensity when defending itself and lower contest intensity when attacking its 
counterpart.

Appendix A: Battle for s

When one actor chooses x to minimize s, and the other actor chooses X to maximize s,
we get the two FOCs

∂s

∂x
=

(((
K (1 − x)ρ

X

)m

+ 1

)−K ((
K − K X

xρ

)μ

+ 1

)−K−1
(

K

((
K (1 − x)ρ

X

)m)K

×
((

K − K X

xρ

)μ)K ((
K (1 − x)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

) (

mx

((
K − K X

xρ

)μ

+ 1

)

−(x − 1)μ

((
K (1 − x)ρ

X

)m

+ 1

))

+
((

K − K X

xρ

)μ

+ 1

)(
K − K X

xρ

)μ

×((mx + (x − 1)μ)

(
K (1 − x)ρ

X

)m

+ (x − 1)μ

) (((
K (1 − x)ρ

X

)m)K ((
K − K X

xρ

)μ)K

−
((

K (1 − x)ρ

X

)m

+ 1

)K ((
K − K X

xρ

)μ

+ 1

)K
))) / (

(x − 1)x

((
K (1 − x)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

)2
)

= 0



∂s

∂X
= −

(((
K (1 − x)ρ

X

)m

+ 1

)−K ((
K − K X

xρ

)μ

+ 1

)−K−1
(

K

((
K (1 − x)ρ

X

)m)K

×
((

K − K X

xρ

)μ)K ((
K (1−x)ρ

X

)m

+
(

K −K X

xρ

)μ

+1

) (

m(X −1)

((
K − K X

xρ

)μ

+1

)

−Xμ

((
K (1 − x)ρ

X

)m

+ 1

))

+
((

K − K X

xρ

)μ

+ 1

) (
K − K X

xρ

)μ

((m(X − 1) + Xμ)

×
(

K (1 − x)ρ

X

)m

+ Xμ

) (((
K (1 − x)ρ

X

)m)K ((
K − K X

xρ

)μ)K

−
((

K (1 − x)ρ

X

)m

+ 1

)K ((
K − K X

xρ

)μ

+ 1

)K
))) / (

(X −1)X

((

− K (x−1)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

)2
)

= 0 (A1)

which can be written as
((

K−K X
xρ

)μ + 1
) (

K−K X
xρ

)μ
(((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K −
((

K (1−x)ρ
X

)m + 1
)K ((

K−K X
xρ

)μ + 1
)K

)

K
((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K ((
K (1−x)ρ

X

)m +
(

K−K X
xρ

)μ + 1
)

=
mx

((
K−K X

xρ

)μ + 1
)

+ (1 − x)μ
((

K (1−x)ρ
X

)m + 1
)

((1 − x)μ − mx)
(

K (1−x)ρ
X

)m + (1 − x)μ

,

((
K−K X

xρ

)μ+1
) (

K−K X
xρ

)μ
(((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K−
((

K (1−x)ρ
X

)m +1
)K ((

K−K X
xρ

)μ+1
)K

)

K
((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K ((
K (1−x)ρ

X

)m +
(

K−K X
xρ

)μ+1
)

=
m(1 − X)

((
K−K X

xρ

)μ + 1
)

+ Xμ
((

K (1−x)ρ
X

)m + 1
)

(Xμ − m(1 − X))
(

K (1−x)ρ
X

)m + Xμ

(A2)

The two LHSs in (A2) are equal. Inspecting each term on the RHSs reveals that 
these are equal when x = 1 − X , which gives the optimal solution

x∗ = 1 − X∗ (A3)

which is inserted into (1), (2), (5), and (6) to yield

v∗ = 1

1 + [K/ρ]μ
, V ∗ = 1

1 + [ρK ]m ,

s∗ =
[K/ρ]μ + (1 + [ρK ]m)

(
[ρK ]m [K/ρ]μ

(1+[ρK ]m )(1+[K/ρ]μ)

)K

1 + [ρK ]m + [K/ρ]μ
,

S∗ =
[ρK ]m + (1 + [K/ρ]μ)

(
[K/ρ]μ[ρK ]m

(1+[K/ρ]μ)(1+[ρK ]m )

)K

1 + [ρK ]m + [K/ρ]μ
,

1 − s∗

1 − S∗ = v∗

V ∗ ,



θ(q |K ) =
[K/ρ]μ + (1 + [ρK ]m)

(
[ρK ]m [K/ρ]μ

(1+[ρK ]m )(1+[K/ρ]μ)

)q

1 + [ρK ]m + [K/ρ]μ
,

�(q |K ) =
[ρK ]m + (1 + [K/ρ]μ)

(
[K/ρ]μ[ρK ]m

(1+[K/ρ]μ)(1+[ρK ]m )

)q

(A4)1 + [ρK ]m + [K/ρ]μ

Since the ratio raised to q in (A4) is smaller than 1, it follows that ∂θ(q |K )/∂q < 0 

and ∂�(q |K )/∂q < 0 when q ≥ 1. Inserting q = 1 i n t o ( A4) g i v e s

θ(1 |K ) = [K/ρ]μ

1 + [K/ρ]μ
, �(1 |K ) = [ρK ]m

1 + [ρK ]m ,

(A5)θ(1 |K ) ≥ �(1 |K ) ⇔ K μ−m ≥ ρμ+m 

Solving (A2) when x = 1 − X gives

X∗ = mγ
(
αK βK (K (β + γ ) + αβ) − αβγ K δK

)

αγ (β(m + μ) + μ)
(
αK βK − γ K δK

)+KαK βK (α+β+1) (mγ − δμ)
,

(A6)

where α =
(

K
ρ

)μ

, β = (Kρ)m , γ = α + 1, δ = β + 1.

Appendix B: Battle for S

When one actor chooses x to maximize S, and the other actor chooses X to minimize S,
we get the two FOCs

∂S

∂x
=

(((
K (1 − x)ρ

X

)m

+ 1

)−K−1 ((
K − K X

xρ

)μ

+ 1

)−K
(

K

((
K (1 − x)ρ

X

)m)K

×
((

K − K X

xρ

)μ)K ((
K (1 − x)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

) (

mx

((
K − K X

xρ

)μ

+ 1

)

−(x − 1)μ

((
K (1 − x)ρ

X

)m

+ 1

))

−
(

K (1 − x)ρ

X

)m ((
K (1 − x)ρ

X

)m

+ 1

)

×
(

(mx + (x − 1)μ)

(
K − K X

xρ

)μ

+ mx

) (((
K (1 − x)ρ

X

)m)K ((
K − K X

xρ

)μ)K

−
((

K (1 − x)ρ

X

)m

+ 1

)K ((
K − K X

xρ

)μ

+ 1

)K
)))/(

(x − 1)x

((
K (1 − x)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

)2
)

= 0

∂S

∂X
=

(((
K (1 − x)ρ

X

)m

+ 1

)−K ((
K − K X

xρ

)μ

+ 1

)−K

×
⎛

⎜
⎝

K
((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K((
K (1−x)ρ

X

)m +
(

K−K X
xρ

)μ+1
)(

Xμ
((

K (1−x)ρ
X

)m+1
)
−m(X −1)

((
K−K X

xρ

)μ+1
))

(
K (1−x)ρ

X

)m+1



×
(

K (1 − x)ρ

X

)m (

(m(X − 1) + Xμ)

(
K − K X

xρ

)μ

+ m(X − 1)

)

×
⎛

⎜
⎝

((
K (1 − x)ρ

X

)m)K ((
K − K X

xρ

)μ)K

−
((

K (1 − x)ρ

X

)m

+ 1

)K

×
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K − K X

xρ

)μ

+ 1

)K
)

⎞

⎟
⎠

⎞

⎟
⎠

/(

(X − 1)X

((
K (1 − x)ρ

X

)m

+
(

K − K X

xρ

)μ

+ 1

)2
)

= 0 (B1)

which can be written as

(
K (1−x)ρ

X

)m (
1 +

(
K (1−x)ρ

X

)m) (((
K−K X

xρ

)μ)K ((
K (1−x)ρ

X

)m)K −
(
1+

(
K−K X

xρ

)μ)K (
1+

(
K (1−x)ρ

X

)m)K
)

K
((

K−K X
xρ

)μ)K ((
K (1−x)ρ

X

)m)K (
1 +

(
K−K X

xρ

)μ +
(

K (1−x)ρ
X

)m)

=
mx

(
1 +

(
K−K X

xρ

)μ)
+ (1 − x)μ

(
1 +

(
K (1−x)ρ

X

)m)

mx + (mx − (1 − x)μ)
(

K−K X
xρ

)μ ,

(
K (1−x)ρ

X

)m ((
K (1−x)ρ

X

)m +1
)(((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K−
((

K (1−x)ρ
X

)m +1
)K ((

K−K X
xρ

)μ+1
)K

)

K
((

K (1−x)ρ
X

)m)K ((
K−K X

xρ

)μ)K ((
K (1−x)ρ

X

)m +
(

K−K X
xρ

)μ + 1
)

=
m(1 − X)

((
K−K X

xρ

)μ + 1
)

+ Xμ
((

K (1−x)ρ
X

)m + 1
)

(m(1 − X) − Xμ)
(

K−K X
xρ

)μ + m(1 − X)
(B2)

The two LHSs in (B2) are equal. Inspecting each term on the RHSs reveals that 
these are equal when x = 1 − X, which gives the optimal solution

x∗ = 1 − X∗ (B3)

and hence v∗, V ∗, s∗, and S∗ are the same as in (A4). However, X∗ and x∗ are not the 
same.

Solving (B2) when x = 1 − X gives

X∗ = − mγ
(
αK βK (K (α + β + 1) − βδ) + βγ K δK+1

)

βδ (α(m + μ) + m)
(
αK βK − γ K δK

) − KαK βK (α + β + 1) (mγ − δμ)
,

(B4)

which is different from (A6).

http://www.cl.cam.ac.uk/~rja14/Papers/econ.pdf
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