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2 Dávid Cser
sik, Balázs Sziklai1 Introdu
tionProblems 
on
erning 
ongested networks originate traditionally from the �eldof engineering (Altman et al, 2006). Probably this is the reason why non-
ooperative approa
h is more wide-spread among the resear
hers of the sub-je
t1. The �rst general model is due to Wardrop (1952), where the network isrepresented by a graph, while routing tasks are assigned to a subset of nodesand laten
y fun
tions are de�ned on the edges. Furthermore it is assumed thatthe tra�
 
an be divided into in�nitesimally small parts whi
h therefore 
anbe represented as �ows in the graph. The obje
tive of these in�nitesimallysmall pie
es or individuals is to minimize the experien
ed laten
y.Many equilibrium notions were introdu
ed to analyze su
h 
ongested net-works (for a 
omprehensive study see Roughgarden (2005, 2006)). Most of theliterature fo
uses on Nash equilibria and a related 
on
ept the so-
alled Pri
eof Anar
hy (Feldmann et al, 2003). In a 
ongested network Nash equilibrium(NE) is rea
hed when no individual 
an obtain a lower laten
y by unilaterally
hanging his route. In general, su
h a NE need not be unique. The Pri
e ofAnar
hy is the ratio between the so
ial 
ost of the worst Nash equilibrium andthe overall optimum solution. The notion was introdu
ed by Koutsoupias andPapadimitriou (2009) and qui
kly be
ame popular as it su

essfully 
apturesthe possible suboptimality of NE-points. To resolve su
h situations Sta
kelbergrouting was introdu
ed (Korilis et al, 1997) in whi
h model a 
ertain ratio ofall users are obeying to a 
entral authority whose obje
tive is to drive thetra�
 toward an equilibrium point with lower so
ial 
ost. In parti
ular thereare two types of players a so-
alled leader and followers. The goal is to �nd astrategy for the leader that for
es the followers to rea
t in a way that mini-mizes the total laten
y in the system. For more on this topi
 see Karakostasand Kolliopoulos (2009).A possible logi
al extension of the above model is to 
onsider more than oneleader. In other words there are a few distinguished players that altogether areresponsible for the whole tra�
 in the network. The original Wardrop modelis inherently non-
ooperative, while a setup where all the players are "leaders"is essentially 
ooperative. The obje
tive of ea
h player is to route his tra�
with minimal 
ost. Sharing information and 
ooperation with other agentsmay result in 
ost savings, and more e�
ient utilization of network 
apa
ities.Depending on the employed strategy of the agents many possible 
ooperativegames 
an arise. Our aim is to introdu
e and analyze these wide variety oftransferable utility (TU) games. Sin
e the formation of a 
oalition may a�e
tother players 
osts via the implied �ow and the resulting edge load 
hanges inthe network, externalities may arise, thus the underlying games are given inpartition fun
tion form.The values of the 
oalitions are de�ned as the improvement 
ompared tothe referen
e 
ase, when no 
ooperation appears. As some 
oalitions form,1 Although the 
ooperative (non-TU) approa
h is also often used in the 
ase of wireless
ommuni
ation networks Khandani et al (2007)



Tra�
 Routing Oligopoly 3routing paths may alter due to the joint optimization pro
ess, whi
h may inturn a�e
t the 
osts of other players via the modi�ed edge laten
ies. Sin
esu
h externalities may happen the game is given in partition fun
tion form(Thrall and Lu
as, 1963).A s
enario where multiple navigation systems are routing their 
lients onthe same tra�
 network represents a possible appli
ation of the de�ned gametheoreti
 model framework. Novel tele
ommuni
ation systems 
an be 
onsid-ered as an other potential appli
ation �eld of the proposed approa
h (Altmanet al, 2006; Khandani et al, 2005, 2007; Devroye et al, 2008)The stru
ture of the paper is as follows. In se
tion 2 we introdu
e thenotation used, de�ne the partition fun
tion form 
ooperative game on therouting network and summarize the 
onsidered routing strategies. The mainresults are dis
ussed in se
tion 3, where we show that the sequen
e of iterativepredi
tive strategies of in
reasing order may 
onverge to routing 
on�guration,whi
h is a Nash equilibrium (NE), but this 
onvergen
e is not always ne
essaryeven if a unique NE exists. Furthermore we analyze the superadditivity andstability properties of the game, and via the re
ursive 
ore 
on
ept we showthat overall 
ooperation may not be always bene�
ial for the players.2 Materials and methodsIn this se
tion we de�ne delivery games and introdu
e the tra�
 routing andgame theoreti
 framework that is needed to analyze su
h games. We made ane�ort to keep the notational traditions of both �elds. To make it more legiblewe employ the standard that the upper index always refers to some player ora 
oalition and in 
ase of �ows the lower index is always some edge or a path.First let us re
all some basi
 notions of 
ooperative games. A 
ooperativegame with transferable utility or simply a TU-game is an ordered pair (N, v)
onsisting of the player set N = {1, 2, . . . , n} and a 
hara
teristi
 fun
tion
v : 2N → R with v(∅) = 0. The value v(S) is regarded as the worth of 
oalition
S. The members of S 
an a
hieve this value by 
ooperating regardless of howplayers outside the 
oalition rea
t. In a partition fun
tion form (PFF) game
v(S) depends also on the partition to where S belongs (Thrall and Lu
as,1963). Let Π(N) denote the set of partitions of N . An embedded 
oalition is apair (S, π), where S ∈ 2N \ {∅}, and π ∈ Π(N) is su
h that S ∈ π. We denoteby C(N) the set of embedded 
oalitions on N . Then a partition fun
tion formgame is a pair (N, V ) where V : C(N) → R. For a more thorough2 de�nitionsee (Grabis
h and Funaki, 2012).2 The literature often uses a simpli�ed formalization, namely V : π → (2N → R) wherethe partition fun
tion assigns a 
hara
teristi
 fun
tions (vπ) to ea
h partition π ∈ Π(N).This notation is more intuitive, but misleading a little bit as vπ is not a proper 
hara
-teristi
 fun
tion, sin
e vπ(T ) is not de�ned for T 6∈ π. For sake of 
onvenien
e as well as
larity throughout the paper we will regard V as a mapping from partitions to 
hara
teristi
fun
tions.



4 Dávid Cser
sik, Balázs SziklaiFor S ∈ π, the worth of V (S, π) denotes the amount that the players in S
an guarantee themselves by 
ooperating, when the 
oalition S is embeddedin the partition π.A

ording to the transferable utility assumption, 
ooperating players mayredistribute the wealth gained by 
ooperation among themselves. The redistri-bution is formalized via the 
on
ept of payo�s. We 
all the pair ω = (x, π) anout
ome, where π ∈ Π(N) is a partition and x = (x1, . . . , xn) ∈ RN is a payo�ve
tor satisfying feasibility; ∑i∈S xi = V (S, π) for all S ∈ π. Let us denotethe the set of out
omes in (N, V ) by Ω(N, V ). Next we de�ne the 
on
epts,whi
h will be required for the de�nition of the PFF delivery game.2.1 The Network and routingThe game takes pla
e on a network Γ , whi
h is a pair (G, l), represented by adire
ted graphG(W,E), des
ribed by the set of verti
es and edges respe
tively,and a set of edge laten
y fun
tions l = {le|e ∈ E}. The deliveries of the playersare represented as �ows in G. Laten
y fun
tions des
ribe how the laten
y of a
ertain edge depends on its a
tual resulting �ow. It is 
ommonly a

epted tomake some 
onstrains on the laten
y fun
tion, su
h as non-negativity, di�er-entiability and non-de
reasingness. We will only assume non-negativity thus
le : R≥0 → R≥0.A delivery task τ = (r, s, t) ∈ R+ ×W ×W of a player is des
ribed by aquantity and two nodes (a sour
e and sink respe
tively). To ea
h player j ∈ N

kj delivery tasks are assigned τ j = ∪kj

i=1{(r
j
i , s

j
i , t

j
i )}. The set of all distin
tpaths from sji to tji is denoted by Pj

i . Distin
t paths do not have to be disjointin general, in other words, they may have 
ommon edges. We denote the�ow of player j on path P by f j
P . Then Pj def

= ∪kj

i=1P
j
i and P

def
= ∪j∈N

(
Pj

).Therefore P 
ontains all the possible routes between sour
es and sinks. Playershave to distribute their tra�
 on the available paths for ea
h delivery task.Formally, we say that f j def
= ∪(P∈Pj)f

j
P is a feasible solution for player j i�∑

P∈P
j
i
f j
P = rji for all i ∈ {1, 2, . . . , kj}. Regarding 
ooperating players, the�ow of a 
oalition S is denoted by fS def

= ∪j∈Sf
j , and it is feasible if f j isfeasible for every j ∈ S. The set of feasible solutions is denoted by F.2.2 Routing strategiesPlayers and 
oalitions may route their delivery on the available paths a

ord-ing to di�erent possible strategies. These are shortly des
ribed below, anddemonstrated in se
tion 3. The expression 'routing strategy' is interpreted ina wide sense, in
luding information and beliefs about other players. The zeroorder strategy assumes that the players have no information about ea
h otherwhile in other 
ases the delivery tasks are 
ommon knowledge. The strategiespresented here are pure in the sense that players may route their deliveries



Tra�
 Routing Oligopoly 5distributed among multiple di�erent paths in the same time but they do itwith probability 1. Furthermore we assume that 
ooperating players are al-ways aware of ea
h other's routing tasks and determine their routing by jointdesign. We denote a spe
i�
 routing strategy by σ and the set of all possiblepure routing strategies by Σ.2.2.1 Evaluation of 
osts and expe
ted 
ostsWe will use the following notation. The �ow of player j on edge e is 
omposedof the di�erent path �ows, whi
h in
lude the edge: f j
e =

∑
P∈Pj :e∈P fP , whilethe �ow of 
oalition S on edge e is fS

e =
∑

j∈S f j
e (regarding the total �ow ofedge e, for 
onvenien
e sake instead of fN

e we write shortly fe).The load of edge e with respe
t to agent j is the tra�
 that goes through theedge not 
ounting f j
e . We denote this by λj

e, formally λj
e =

∑
k 6=j f

k
e = fe−f j

e .Similarly λS
e =

∑
T∈π,T 6=S fT

e = fe − fS
e . The expe
ted load of edge e withrespe
t to 
oalition S is the �ow that goes through e not 
ounting fS

e a

ordingto the 
urrent knowledge of S (whi
h depends on the 
oalition stru
ture and
σ). We denote this by λ̂S

e .The expe
ted 
ost of a 
oalition S is
cexp(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
e . (1)Note that the value of (1) depends on the routing strategy the players useand the partition π embedding S. The resulting 
ost of the 
oalition S is

c(S) =
∑

e∈E

le(fe) · f
S
e (2)where fe is determined by 
omputing argminfS∈F

cexp(S) for every S ∈ π. Inother words ea
h 
oalition in a given partition has an estimate of how mu
htra�
 will appear on 
ertain edges of the network (λ̂S
e ) and then determinesits routing by minimizing its (expe
ted) 
ost based on this knowledge. As wewill see later the a
tual 
ost c(S) indu
ed this way 
an be quite di�erent thanthe expe
ted 
ost. The value of λ̂S

e in (1) is determined by the applied strategyas follows.2.2.2 Zero order strategyThis "dummy" strategy assumes that all 
oalitions negle
t the a
tivity ofothers, and route their deliveries in a way, whi
h is optimal when no othertra�
 appears on the network. This strategy assumes that non-
ooperatingplayers/
oalitions have no information of ea
h others routing tasks. In otherwords λ̂S
e = 0 for ea
h edge e ∈ E and for ea
h 
oalition S ∈ 2N .



6 Dávid Cser
sik, Balázs Sziklai2.2.3 First order predi
tive (FOPS) and n-th order predi
tive (nOPS) strategyWe de�ne the �rst order predi
tive strategy as follows. Every 
oalition expe
tsthe remaining 
oalitions to route their deliveries a

ording to the zero orderstrategy, and minimizes his routing 
osts a

ording to this. This strategy as-sumes that the 
oalitions are aware of the other parti
ipants delivery 
ontra
ts.Formally, let us denote the resulting �ow of edge e in the zero order routing- when every 
oalition applies zero order strategy - by fe(σ0). In this 
ase
λ̂S
e (σ1) = fe(σ0)− fS

e (σ0). In the se
ond order predi
tive strategy (SOPS) all
oalitions assume that the remaining ones will route their delivery a

ordingto the FOPS et
.2.3 De�nition of the PFF form delivery gameNext we de�ne the delivery game, and show how the value of a 
ertain 
oalition
S embedded in a partition π 
an be 
al
ulated.De�nition 1 A delivery game D = (N,Γ,∆, σ) is a 4-tuple 
onsisting of aplayer set N , a network Γ , a set of delivery tasks ∆ = ∪jτ

j and a routingstrategy σ.The 
hara
teristi
 fun
tions are de�ned then as follows. The value of a
oalition S in a partition π is
v(D,π)(S) =

∑

j∈S

c(D,π0)(j)− c(D,π)(S) (3)where π0 is the referen
e, all singleton partition. In other words, the value ofa 
oalition in a 
ertain partition is the di�eren
e between the total routing
ost of its parti
ipants and the overall 
ost of its members in the all singletonpartition. We will see that the players do not always bene�t by forming a
oalition, hen
e v 
an be negative.Finally the partition fun
tion related to the delivery game D is the fun
tion
VD(π) that assigns to ea
h partition π ∈ Π(N) the 
hara
teristi
 fun
tion
v(D,π)(S). To simplify the notation, we omit the lower index (D,π) in the 
aseof the 
ost, expe
ted 
ost and 
hara
teristi
 fun
tions from now on.2.3.1 Routing under Nash equilibriumHaving de�ned the game, we 
an expand our list of possible strategies withanother one. Let A be an algorithm that 
omputes a NE for a given routingproblem (N,Γ,∆). Furthermore let σ(A) be the routing strategy that routesthe delivery tasks as in the NE 
omputed by A. Then D(N,Γ,∆, σ(A)) is adelivery game. The equilibrium strategy of 
oalition S is denoted by sS

σ(A).Note that the strategy of S is naturally equivalent to the set of �ows of S,namely fS .



Tra�
 Routing Oligopoly 73 ResultsIn this se
tion we demonstrate the various possibly arising properties of thede�ned game on various networks and examples.3.1 Basi
 properties of predi
tive strategiesThe predi
tive te
hnique is an elemental way to strategi
ally approa
h a gametheoreti
al problem. The most di�
ult part is to guess the depth of reasoningof the other players. A fair assumption is that the players think that they goat least one step further than the others. Here we only analyzed the 
ase whenthe depth of reasoning is the same for all players and 
oalitions, and everya
tor thinks that the other players take one step less in the reasoning pro
ess.Now we state a straightforward but important result.Theorem 1 Let D be a delivery game, π = {S1, S2, . . . , Sk} a partition of Nand let sσn
= (fS1(σn), f

S2(σn) . . . , f
Sk(σn)) denote the n-th order predi
tivestrategy. If sσn+1

= sσn
then sσm

= sσn
for all m > n furthermore the resultingrouting will be a Nash equilibrium.Proof: A routing strategy s̃ = (f̃S1 , f̃S2, . . . , f̃Sk) is a NE if for all S ∈ π

argmin
fS∈F

c(D,π)(S) = argmin
fS∈F

∑

e∈E

le(λ̃
S
e + fS

e ) · f
S
e = f̃S .where λ̃S

e =
∑

T∈π,T 6=S f̃T
e .If the n-th and the n+1-th order predi
tive strategies 
oin
ide, it meansthat fS(σn) = fS(σn+1) for all S ∈ π, thus the expe
ted and a
tual load ofany edge e is the same. Formally

λ̂S
e (σn+1) =

∑

T∈π,T 6=S

fT
e (σn) =

∑

T∈π,T 6=S

fT
e (σn+1) = λ̂S

e (σn+2).It follows that sσm
= sσn

for all m > n. By the de�nition of the expe
ted
ost
fS(σn+1) = argmin

fS∈F

cexpσn+1
(S) = argmin

fS∈F

∑

e∈E

le(λ̂
S
e (σn+1) + fS

e )f
S
e =

= argmin
fS∈F

∑

e∈E

le(
∑

T∈π,T 6=S

fT
e (σn) + fS

e ) · f
S
e =

= argmin
fS∈F

∑

e∈E

le(
∑

T∈π,T 6=S

fT
e (σn+1) + fS

e ) · f
S
e .for all S ∈ π, hen
e it is indeed a NE.We 
an obtain a useful 
orollary of Theorem 1 by reinterpreting the playersstrategy. We 
an think of fS as a |P| dimensional ve
tor. The 
oordinates of
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fS 
orresponds to the �ows of the distin
t paths between the sour
es andsinks. In this way it is meaningful to speak about the pointwise 
onvergen
eof fS.Corollary 1 Let D be a delivery game with 
ontinuous laten
y fun
tions. If
limn→∞ sσn

= (f̃S1 , f̃S2 , . . . , f̃Sk) = s̃ where f̃Si ∈ RP for i = 1, 2, . . . , k then
s̃ is a NE.In other words if the �ows of in
reasing order predi
tive strategies are
onvergent, they 
onverge to a NE point.3.2 Externalities and the 
onvergen
e of nOPS to NELet us 
onsider network 1 depi
ted in Fig. 1. We take into a

ount 3 players inorder to be able to demonstrate the appearing externalities in the game. In thissimple example all players have one delivery task, and the nodes 
orrespondingto the sinks and sour
es are disjoint.

a

b

1

d

1

e

0.5+x

c

x

1

f

1

3

6

 (3)

(3)

(6)

x

3

a

b

d

e

c f

x2

x3

3-x2-x3

6-x1

6

x1

Fig. 1 The basi
 stru
ture of the network 1, and the possible routing alternatives of theplayers. The numbers with and without parentheses quantify sinks and sour
es respe
tively.Player 2 
an route his delivery of 6 units via two ways (the distribution among the twooptional paths is des
ribed by x1), while player 3 
an route his delivery of 6 units via threeways (the distribution among the three optional paths is des
ribed by x2 and x3)Let us suppose the following delivery tasks: τ1 = (3, a, d), τ2 = (6, b, f),
τ3 = (3, c, e). Player one has no 
hoi
e (|P1| = 1), player 2 has two possibleoptions (|P2| = 2), and thus has one de
ision variable x1, whi
h des
ribes theproportion regarding the distribution of his delivery among the two available
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 Routing Oligopoly 9paths. Player 3 has 3 available paths (|P3| = 3), thus he has two de
isionvariables (x2 and x3).The detailed 
al
ulations of this example 
an be found in Appendix A. Theresulting partition fun
tion in the 
ase of zero order strategy is summarizedin Table 1. partition (π) values of 
oalitions (v(S)){1},{2},{3} 0,0,0{1,2},{3} 2.625, -0.75{1,3},{2} 1.8437, 0.1875{1},{2,3} 0.75, 7.125{1,2,3} 12.375Table 1 The resulting partition fun
tion of network 1 in the 
ase zero order strategy.Table 1 
learly demonstrates the emergen
e of both positive and negativeexternalities in the 
ase of zero order strategy. As 
oalitions {1} and {2}merge,it implies a negative externality on player 3, while in 
ontrast the merging of
oalitions {1} and {3} or {2} and {3} is bene�
ial for the player not in
ludedin the 
ooperation (player 2 and 1 respe
tively).3.2.1 The 
onvergen
e of nOPS to Nash equilibriumAfter the 
al
ulation of the FOPS, we are able to analyze the higher orderstrategies in the 
ase of various 
oalition stru
tures. Tables 2 and 3 summarize,how the resulting routing variables, and 
ost of the 
oalitions 
hange, while
onse
utively applying higher order strategies.Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345678
x1 x2 x33.5 1.5 1.254 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.334.17 2.67 0.334.17 2.67 0.334.17 2.67 0.33

x1 x2 x34.25 1.5 1.254.75 2.5 0.54.86 2.81 0.194.95 2.84 0.164.96 2.86 0.144.97 2.87 0.134.97 2.87 0.134.97 2.87 0.134.97 2.87 0.13
x1 x2 x34 1.63 1.384 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.334.17 2.67 0.334.17 2.67 0.334.17 2.67 0.33Table 2 The evolution of routing variables [x1, x2, x3] of network 1 towards NEs as theorder of strategies in
reased.Let us note that the resulting NE 
oin
ides in the 
ase of the all-singletonpartiton and {1, 3}{2}.As we 
an see in tables 2 and 3, all 
oalition stru
tures rea
h the Nashequilibrium with the a

ura
y of ε = 10−2 in the 5th iteration.



10 Dávid Cser
sik, Balázs SziklaiPartition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345678
c1 c2 c317.25 42 12.6215 38 10.2514.63 37.45 10.2714.53 37.32 10.2714.51 37.29 10.2814.5 37.28 10.2814.5 37.28 10.2814.5 37.28 10.2814.5 37.28 10.28

c{1,2} c356.63 13.3851.5 10.6349.93 10.4549.78 10.4649.68 10.4649.67 10.4649.67 10.4649.67 10.4649.67 10.46
c{1,3} c228.03 41.8125.25 3824.9 37.4524.8 37.3224.79 37.2924.78 37.2824.78 37.2824.78 37.2824.78 37.28Table 3 The evolution of resulting 
osts of the 
oalitions in network 1 towards NEs as theorder of strategies in
reased.The partition {1}, {2, 3} is not of interest, be
ause player 1 has no de
isionvariables, in this 
ase all nOPS with n>1 will be the same as the FOPS. Therouting in the 
ase of the grand 
oalition is the same in all 
ases (
onsider e.g.

π = {1, 2, 3}) assuming zero order strategy.As we sill see in se
tion 3.3, the FOPS, SOPS, nOPS sequen
e of strategiesis not ne
essary 
onvergent. Furthermore, as we will show, a NE may exist ina game with divergent nOPS.3.3 Divergent nOPSIn this se
tion we demonstrate on the widely used Pigou network (Pigou, 1920)that the sequen
e of the in
reasing order strategies is not ne
essary 
onvergenteven if a unique NE exists in the game.3.3.1 Routing under Nash equilibrium on Pigou's graphLet ΓP be the well-known example of Pigou i.e. a graph with two parallel edges(u and w) 
onne
ting two nodes (s and t). On the so 
alled upper edge u thelaten
y is 
onstant 1, on the lower edge w the laten
y is proportional to thetra�
 (see Fig. 2). Furthermore let N = {1, 2, . . . , n} be the set of players withdelivery tasks τ j = (rj , s, t) i.e. player j has to route rj amount of tra�
 from
s to t. Let A be an algorithm that 
omputes a Nash equilibrium in ΓP and let
σ(A) be the 
orresponding routing strategy. Therefore D(ΓP , N,∆, σ(A)) is awell de�ned delivery game.Note, that the laten
y 
ost of player j is

c(j) = rj − f j
w + f j

w · fw = rj + (λj
w − 1) · f j

w + (f j
w)

2As rj is 
onstant c(j) is uniquely determined by how mu
h the playersroute on the lower edge. Note that σ(A) = (f1
w, f

2
w, . . . , f

n
w) is a NE point ifno player j ∈ N 
an obtain smaller laten
y 
ost by altering his strategy.
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s t

1

xFig. 2 Network 2: Pigou's graph.Theorem 2 If rj ≥ 1
n+1 for any player j ∈ N , where n = |N | then there is aunique Nash equilibrium point in D(ΓP , N,∆, σ(A)), namely where fw = k

k+1and fS
w = 1

k+1 for any S ∈ π, where k = |π|.Proof: It is enough to prove for the singleton partition. For other partitionsthe theorem follows from the fa
t that ea
h 
oalition 
an be 
onsidered as aseparate player and if rj ≥ 1
n+1 for all j ∈ N then rS =

∑
j∈S rj ≥ 1

n+1 forall S ∈ π.Suppose players follow the same strategy. Then ea
h player j ∈ N routes
rj−x amount of tra�
 on the upper and x amount on the lower edge. This is aNash equilibrium point if for any real number δ ∈ R, su
h that 0 ≤ x+ δ ≤ rj ,if player j routes δ amount of tra�
 in a di�erent way, his individual 
ost isin
reasing. Formally

rj − (x+ δ) + (x+ δ)(n · x+ δ) ≥ rj − x+ (x)(n · x).We 
an rewrite the above 
ondition as follows.
δ2 + δ · x · (n+ 1)− δ ≥ 0Whi
h yields

1− |δ|

n+ 1
≤ x ≤

1 + |δ|

n+ 1for any real number δ. We 
an 
on
lude that x = 1
n+1 is a Nash equlibriumstrategy for any number of player n.Now we prove that this is a unique NE point. First suppose that fw < n

n+1 .In parti
ular let fw = n
n+1 − ǫ1. Then there exists j su
h that f j

w = 1
n+1 − ǫ2where ǫ2 along with ǫ1 are some positive real numbers. Let m def

= min(ǫ1, ǫ2).Now in
reasing f j
w by m de
reases c(j).

rj − (f j
w +m) + (f j

w +m) · (fw +m) ≤ rj − f j
w + f j

w · fw (4)Whi
h is equivalent to
(f j

w +m) · (fw +m− 1) ≤ f j
w · (fw − 1).
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sik, Balázs SziklaiFor instan
e if m = ǫ2

( 1

n+ 1
− ǫ2 +m

)
·
( n

n+ 1
− ǫ1 +m− 1

)
≤

( 1

n+ 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

( 1

n+ 1

)
·
( n

n+ 1
− ǫ1 + ǫ2 − 1

)
≤

( 1

n+ 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

ǫ2
n+ 1

≤
−n · ǫ2
n+ 1

+ ǫ1 · ǫ2 + ǫ2

0 ≤ ǫ1 · ǫ2Similar 
al
ulations shows that (4) also holds when m = ǫ1. We leave theproof of the 
ase fw > n
n+1 to the reader.3.3.2 Routing under nOPS strategies on Pigou's graphNow we show that for any partition π ∈ Π(N) that 
onsists of at least 3
oalition, we 
an set the delivery tasks in su
h way that the nOPS strategiesdo not 
onverge to the NE point inD(ΓP , N,∆, σ(A)). It is 
lear from Theorem2 that if π is �xed then for every S ∈ π, the zero order strategy is

sS0 =

{
fS
w =

∑
j∈S rj if

∑
j∈S rj < 1/2

fS
w = 1/2 otherwise.If the number of players and the delivery tasks are su
h that λS

w ≥ 1 forevery S ∈ π then FOPS of every 
oalition will be to route everything on theupper edge. Then again the SOPS will be the same as the zero order strategyand so on. Therefore nOPS does not ne
essarily 
onverge as n goes to in�nity,even when there is a unique Nash equilibrium point in a given D.3.4 SubadditivityIntuitively one would expe
t that the delivery game is superadditive. When a
oalition is formed it gains extra information from the new members. The sum
λ̂S
e +fS

e that determines the laten
y of the edge e seems to be more 
ontrollableas S gets larger. However this impression turns out to be wrong. We show twoexamples of the arising subadditive property for two di�erent strategies.3.4.1 An example of subadditivity in the 
ase of zero order strategyIn this example we demonstrate the subadditivity property on a symmetri
three player example assuming zero order strategy. In this three player examplethe 
ooperation of any two players implies negative 
onsequen
es for them anda positive externality for the third player. The explanation for the phenomena
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 Routing Oligopoly 13is that the routing 
orresponding to the expe
ted minimum 
ost result in ahigher overall 
ost, implied by the other players' a
tivity.Let us 
onsider network 3 depi
ted in Fig. 3 and a delivery game with
τ1 = (2, a, t), τ2 = (2, b, t) and τ3 = (2, c, t).

b

t

x2

x2

a

c

f

d

e x2

o

o

o

oo

o

Fig. 3 The basi
 stru
ture of network 3.Coalition stru
ture {i},{j},{k}Be
ause of the symmetry, ea
h player will route his delivery distributed equallybetween the two available paths. This will result in 2 units of tra�
 on ea
hline, and a total 
ost of 8 of ea
h player.Coalition stru
ture {i,j},{k}It is easy to see that the 
ooperating players will route their total deliverydistributed equally among the 3 pathways available for them The resultingrouting e.g. in the 
ase of the 
oalition stru
ture {1, 2}, {3} will be as depi
tedin Fig. 4.
b

t

7/3

7/3

a

c

f

d

e 4/3
2/3

4/3

2/3

4/31

1 4/3

4/3

2/3

2/3

1

1Fig. 4 Routing in the 
ase of 
oalition stru
ture {1,2},{3}The 
ost of the 
oalition {1, 2} will be c({1, 2}) = 16.88 whi
h is 0.88 unitshigher than their total 
ost in singleton 
on�guration (v({i, j}) = −0.88). The
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ost of the third player will be c(3) = 2(1 + 2/3)2 = 5.556 whi
h implies
v({k}) = 2.444Grand 
oalitionIn the 
ase of the grand 
oalition, the resulting routing and routing 
osts willbe as the same as in the 
ase of singleton 
oalitions, whi
h means that thesetwo 
oalition 
on�gurations are the stable partitions of the game.3.4.2 An Example of subadditivity assuming Nash routing strategyLet us 
onsider three players with the same delivery task τ1−3 = (1, s, t) onthe Pigou network. It follows from Theorem 2 that for 
oalition stru
ture
π0 = {1}{2}{3} at the NE point every player routes 1

4 amount of tra�
 onthe lower edge. Therefore ea
h player has 3
4 ·1+

1
4 ·

3
4 = 0.9375 laten
y 
ost. For
oalition stru
tures π = {i}{j, k} the Nash equilibrium strategies are di�erentas 
oalition {j, k} a
ts as one player. Therefore at the NE-point there �ows 2

3tra�
 on the lower edge. The 
ost of 
oalition {i} is 2
3 · 1 + 1

3 · 2
3 = 0.88̇ while

{j, k} has 5
3 · 1 + 1

3 · 2
3 = 1.88̇ 
ost. Sin
e 1.88̇ > 2 · 0.9375 = 1.875, we 
ansee that the 
ooperation of players j and k is not bene�
ial for them, whi
h isan example of subadditivity. If the grand 
oalition is formed then there goes

1
2 tra�
 on the bottom road. The overall 
ost is 5

2 · 1 + 1
2 · 1

2 = 2.75. Table 4summarizes the above 
omputation.partition (π) 
ost of players (c(j)) values of 
oalitions (v(S)){i},{j},{k} 0.9375, 0.9375, 0.9375 0,0,0{i,j},{k} 1.8888̇, 0.8888̇ -0.0138, 0.0487{i,j,k} 2.75 0.0625Table 4 Routing 
osts and 
oalitional values in the 
ase of the Pigou example (network 2)assuming Nash routing.
3.5 StabilityTo analyze stability and determine a 
hara
teristi
 fun
tion for a 
ertain strat-egy we use the 
on
ept of the re
ursive 
ore Kó
zy (2007, 2009), that allowsthe remaining, residual players to freely rea
t and form a 
ore-stable partitionbefore the payo� of the deviating 
oalition is evaluated.First we de�ne the residual game over the set R ( N . Let us re
all that
Π(N) denotes the set of partitions of N . Assume R = N \ R have formed
πR ∈ Π(R). Then the residual game (R, Vπ

R
) is the PFF game over the playerset R with the partition fun
tion given by Vπ

R
(S, πR) = V (S, πR ∪ πR).
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ursive 
ore Kó
zy (2007)) For a single-player game there
ursive 
ore is trivially de�ned. Now assume that the 
oreRC(N, V ) has beende�ned for all games with |N | < k players. For an |N | player game an out
ome
(x, π) is dominated if there exists a 
oalition Q forming partition π′ and anout
ome (y, π′ ∪ πQ) ∈ Ω(N, V ), su
h that yQ > xQ and if RC(Q, Vπ′) 6= ∅then (yQ, πQ) ∈ RC(Q, Vπ′). The (re
ursive) 
ore RC(N, V ) of (N, V ) is theset of undominated out
omes.Based on the 
on
ept of the Re
ursive Core, a minimal 
laim fun
tion
an be de�ned, whi
h des
ribes the minimal 
laim of ea
h 
oalition in the
orresponding PFF game redu
ed to that 
oalition. This fun
tion, termed vmcin the following, may be applied in the same spirit as a 
hara
teristi
 fun
tion,sin
e it assigns a unique value to ea
h 
oalition, whi
h they 
an se
ure forthemselves if they deviated. The formal de�nition of vmc is as follows.De�nition 3 Let us 
onsider the residual game (S̄, VπS

) over the player set
S de�ned by the partition fun
tion VS(R, πS) = V (R, πS ∪S) where R ∈ πS ∈
Π(S). Let us denote the Re
ursive Core of the residual game by RC (S̄, VS).The (pessimisti
) minimal 
laim fun
tion vmc 
an be de�ned as
vmc(S) =

{
min∑

i∈S
xi{Ω(N, V )|(x, PS) ∈ RC(S̄, VS)} if RC(S̄, VS) 6= ∅

min∑
i∈S

xi{Ω(N, V )} if RC(S̄, VS) = ∅where vmc(S) is the minimal 
laim of 
oalition S.With the help of the minimal 
laim fun
tion, a 
hara
terization of theRe
ursive Core 
an be given as follows.Lemma 1 The Re
ursive Core RC(N, V ) of the game (N, V ) is a 
olle
tionof Pareto e�
ient out
omes (x, π) ∈ Ω(N, V ), su
h that there is no 
oalition
S with vmc(S) >

∑
i∈S xi.3.5.1 The stability of example 1A

ording to the 
on
ept of the re
ursive 
ore, the minimal 
laim fun
tionsregarding the strategies of various order 
an be determined. The minimal 
laimfun
tions in the 
ase of zero order strategy and FOPS are summarized in Table5. The re
ursive 
ore 
an be represented as a polytope in the payo� spa
e.As the order of predi
tive strategies in
rease, we may derive the re
ursive 
orefor ea
h PFF game. Using this method, we get a sequen
e of re
ursive 
ore-polytopes, whose geometry may di�er in general. We 
an depi
t the evolutionof the geometry of the re
ursive 
ore as the order of the applied strategyin
reases (see Fig. 5). The singleton referen
e 
ase and so the 
oalitional valuesand payo�s are di�erent for ea
h strategy. However as we in
rease the orderof the applied strategy the routing variables and the values of the partitionfun
tion 
onverge to the NE and the geometry of the re
ursive 
ore 
onvergeto its �nal shape.
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sik, Balázs SziklaiCoalition Value{1} 0.75{2} 0.1875{3} -0.75{1,2} 2.625{1,3} 1.8437{2,3} 7.125{1,2,3} 12.375
Coalition Value{1} -0.25{2} 0{3} -0.375{1,2} 1.5{1,3} 0{2,3} 1.875{1,2,3} 4Table 5 Minimal 
laim fun
tions derived by the re
ursive 
ore method of example 1 in the
ase of zero order strategy and FOPS

Fig. 5 The proje
tion of the re
ursive 
ore in the 
ase of various strategies to the plane
x3=0. The equation x3 = v({1, 2, 3}) − x1 − x2 holds in every 
ase. Let us remember thatthe 
ost of the referen
e 
ase (the all singleton 
oalitions) a

ording to whi
h the values ofthe 
oalitions in di�erent partitions are determined, is di�erent in the 
ase of ea
h strategy- that is the reason why the overall payo� tends to de
rease.3.5.2 Emptiness of the re
ursive 
oreIn this subse
tion we show two examples, where the re
ursive 
ore turns outto be empty.Non-monotone edge laten
y fun
tionsIn this se
tion we demonstrate that the re
ursive 
ore may be empty if weassume a network with an edge with non-monotone laten
y fun
tion (depi
tedin Fig.6), and routing tasks δ1 = (1, a, t), δ2 = (1, b, t), δ3 = (1, c, t).Sin
e the network is symmetri
, we may 
onsider the {i}, {j}, {k} permu-tation of players 1,2 and 3. Zero order strategy and the 
oalition stru
ture{i},{j},{k} will result in a symmetri
 
on�guration, in whi
h ea
h player willroute his delivery on the 0.5 laten
y edge. This results in a total 
ost of 0.5 ofea
h player.In 
ontrast, if we assume the 
oalition stru
ture {i,j},{k}, then {i,j} willroute his tra�
 on the (x − 2)2 edge at the 
ost of 0  v({i, j}) = 1, while
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0.7051
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0.7051

0.2949Fig. 6 Example network with non-monotone edge laten
y fun
tion and resulting routingin the 
ase of the grand 
oalition.the third player is not a�e
ted (v(k) = 0). In the 
ase of the grand 
oalition:
c({1, 2, 3}) = 0.4705 v({1, 2, 3}) = 1.0295. It is easy to see that this resultsin the emptiness of the re
ursive 
ore.Non-
ontinuous edge laten
y fun
tionsConsider the following example (see Fig.7)3 whereN = {1, 2, 3}, players followzero-order strategy and the delivery tasks are τ1 = (1.4, a, t), τ2 = (1.4, b, t)and τ3 = (1.4, c, t).
Fig. 7 Example network with non-
ontinuous edge laten
y fun
tion and resulting routingin the 
ase of the grand 
oalition.In the 
ase of singleton 
oalitions ea
h player splits his tra�
 into twoequal parts and sends them on the two possible routes to t. In this way ea
hedge with non-zero laten
y fun
tion has a laten
y 
ost of 2 (as ⌈1.4⌉ = 2).For partitions π = {i, j}{k}, player i and j route on the jointly used edge 1amount of tra�
 and send the rest on the other routes. As a result on the othertwo edge the tra�
 is in
reased to 1.6 however this 
hange does not a�e
t thelaten
y 
ost of these two edges. Finally in the 
ase of grand 
oalition it is not3 ⌈x⌉ denotes the upper integer part of x.
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sik, Balázs Sziklaihard to see that the players 
an send only 1 amount of tra�
 with a laten
y
ost of 1 the rest has to be sent for a laten
y 
ost of 2. Therefore the total
ost is 7.4. Emptiness of the 
ore follows from the fa
t that the 
ost saving ofany two person 
oalition is the same as the 
ost saving of the grand 
oalition(see Table 6).partition (π) 
ost of players (c(j)) values of 
oalitions (v(S)){i},{j},{k} 2.8, 2.8, 2.8 0,0,0{i,j},{k} 4.6, 2.8 1, 0{i,j,k} 7.4 1Table 6 Emptiness of the 
ore in a network with non-
ontinuous edge laten
y fun
tion.4 Con
lusions and future workIn this arti
le a new family of PFF form delivery games on routing networkshas been introdu
ed. Various routing strategies have been analyzed, and ithas been shown that the sequen
e of predi
tive strategies of in
reasing ordermay 
onverge to a NE routing 
on�guration, but it 
an be also divergent.We have shown on the widely known Pigou network that NE routing mayexist in su
h games, where the nOPS is divergent. We provided examples ofsubadditive s
enarios in various 
ases, and thus have proven that the de�nedgame is not ne
essary superadditive. Furthermore we analyzed the stabilityof the game, and the evolution of the geometry of stable payo� sets via there
ursive 
ore 
on
ept. In addition we have shown that assuming non monotoneor non 
ontinuous laten
y fun
tions the re
ursive 
ore may be empty.One straightforward open question is whether the re
ursive 
ore may beempty if we suppose 
ontinuous (stri
tly) monotone in
reasing laten
y fun
-tions. An other open problem is how to provide ne
essary and su�
ient 
on-ditions for the sequen
e of iterative strategies to 
onverge to a NE. We hopethat the approa
h of potential methods des
ribed in (Nisan et al, 2007) mayo�er useful tools for the analysis of this problem.5 A
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 Routing Oligopoly 19Appendix AIn this appendix the detailed 
al
ulations regarding network 1 depi
ted inFig. 1 assuming FOPS strategy 
an be found, to demonstrate the predi
tivestrategies.Determination of routing paths a

ording to the zero order strategyTo determine the routing under FOPS strategy, �rst we have to 
al
ulate theresulting routing in the 
ase of zero order strategy. In the 
ase of singleton
oalitions, all players negle
t the a
tivity of other players, and determine theirrouting variables (x) by minimizing
cexp(D,π)(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
ewhere λ̂S

e = 0 for all e ∈ E and for all S ∈ π. In this 
ase resulting load andlaten
ies of the network will be as depi
ted in Fig. 8, and listed in Table 2.The routing variables x uniquely determine the edge �ows fS
e .
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2.5
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Fig. 8 Resulting routing loads, and edge laten
ies assuming zero order strategy and single-ton 
oalitions.The resulting total delivery 
osts of the 
oalitions (whi
h are the playersthemself in this 
ase) 
an be 
al
ulated as:
c(1) = (3 + (6− x1) + (3− x2 − x3))3

c(2) = (x1 + x3)x1 + 2(6 − x1) + (6 − x1 + 3− x2 − x3 + 3)(6 − x1) + 6

c(3) = (0.5 + x2)x2 + (3− x2) + 2(3 − x2 − x3) + (x1 + x3)x3

+((3 − x2 − x3) + (6− x1) + 3)(3 − x2 − x3) (5)
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sik, Balázs SziklaiIn the above 
ase the delivery 
osts will be c(1) = 17.25, c(2) = 42, c(3) =
12.625, as listed in Table 3. As it 
an be seen, the zero order strategy (notsurprisingly) signi�
antly underestimates the routing 
osts.Other 
oalition stru
turesIn the 
ase of other partitions, the 
al
ulations are similar. Ea
h 
oalition opti-mizes the routing variables 
orresponding to the parti
ipating players, takinginto a

ount the resulting load the 
oalition puts on the network. The resultingrouting variables and 
osts are listed in tables 2 and 3.Determination of routing paths a

ording to the �rst order predi
tive strategy(FOPS)
π = {1}, {2}, {3}The route planning of player 1 is still trivial (his expe
ted 
ost is 8.25 in this
ase).Player 2 will assume that player 1 and player 3 will route their deliv-ery a

ording to the zero order strategy. This will result in the minimizationof the value of c(2) (see Eq. 5) assuming [x2 x3] = [1.5 1.25] (cexp(2) =
c(2)|[x2 x3]=[1.5 1.25]) this implies x1 = 4.A

ording to the zero order routing of players 1 and 2, the expe
ted 
ost ofplayer 3 will be cexp(3) = c(3)|x1=3.5, whi
h is minimal at [x2 x3] = [2.5 0.5].In this 
ase the delivery 
osts will be as follows. c(1) = 15, c(2) = 38, and
c(3) = 10.25. As it 
an be seen when 
ompared to the zero order strategy, inthe 
ase of singleton 
oalitions the FOPS in this 
ase has redu
ed the total
ost of all players.
π = {1, 2},{3}The expe
ted 
ost of the 
oalition {1, 2} is

cexp({1, 2}) = c(1) + c(2)|[x2 x3]=[1.5 1.25]whi
h is minimal at x1 = 4.75. The routing of player 3 will be as before. Therouting 
osts will be c(1) = 12.75, c(2) = 38.75 and c(3) = 10.625. Thus thebene�t of the 
ooperation for 
oalition {1, 2} is 1.5, while the value of player
3 is -0.375 in this partition.
π = {1, 3},{2}In this 
ase, player 1 and player 3 
an not improve their routing, the resultingwill be the same as in the singleton 
ase. The expe
ted 
ost of the 
oali-tion {1, 3} is cexp({1, 3}) = c(1) + c(3)|x1=3.5 whi
h is minimal at [x2 x3] =
[2.5 0.5]. c(1) = 15, c(2) = 38, and c(3) = 10.25.
π = {1},{2, 3}The expe
ted 
ost of the 
oalition {2, 3} is cexp({2, 3}) = c(2) + c(3) whi
his minimal at [x1 x2 x3] = [4.25 3 0]. c(1) = 14.25, c(2) = 35.875, and
c(3) = 10.5. This implies a bene�t of 1.875 to the 
oalition {2, 3}.
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π = {1, 2, 3}The resulting routing in the 
ase of the grand 
oalition is the same as under thezero order strategy. This implies here the bene�t of 4 for the grand 
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