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Abstract The purpose of this paper is to introduce a novel family of trans-
ferable utility games related to congested networks. We assume that players
are traffic coordinators, who explicitly route their deliveries in the network.
The costs of the players are determined by the total latency of the deliveries,
which in turn can be calculated by the edge latency functions. Since the edge
latency functions assign a latency value to the total flow on the corresponding
edge, as cooperating players redesign their routing in order to minimize their
overall cost, outsiders will be affected as well. This gives rise to externalities
therefore the resulting game is described in partition function form. We show
that cooperation may imply both negative and positive externalities in the de-
fined game. We assume that coalitions may determine their routing according
to different predictive strategies. We show that the increasing order of predic-
tive strategies may converge to a Nash equilibrium, although convergence is
not guaranteed, even if a unique Nash equilibrium exists. Furthermore we an-
alyze the superadditivity and stability properties of the game, and show that
subadditivity may arise and the recursive core may be empty if the latency
functions are not monotone or not continuous.
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1 Introduction

Problems concerning congested networks originate traditionally from the field
of engineering (Altman et al, 2006). Probably this is the reason why non-
cooperative approach is more wide-spread among the researchers of the sub-
ject!. The first general model is due to Wardrop (1952), where the network is
represented by a graph, while routing tasks are assigned to a subset of nodes
and latency functions are defined on the edges. Furthermore it is assumed that
the traffic can be divided into infinitesimally small parts which therefore can
be represented as flows in the graph. The objective of these infinitesimally
small pieces or individuals is to minimize the experienced latency.

Many equilibrium notions were introduced to analyze such congested net-
works (for a comprehensive study see Roughgarden (2005, 2006)). Most of the
literature focuses on Nash equilibria and a related concept the so-called Price
of Anarchy (Feldmann et al, 2003). In a congested network Nash equilibrium
(NE) is reached when no individual can obtain a lower latency by unilaterally
changing his route. In general, such a NE need not be unique. The Price of
Anarchy is the ratio between the social cost of the worst Nash equilibrium and
the overall optimum solution. The notion was introduced by Koutsoupias and
Papadimitriou (2009) and quickly became popular as it successfully captures
the possible suboptimality of NE-points. To resolve such situations Stackelberg
routing was introduced (Korilis et al, 1997) in which model a certain ratio of
all users are obeying to a central authority whose objective is to drive the
traffic toward an equilibrium point with lower social cost. In particular there
are two types of players a so-called leader and followers. The goal is to find a
strategy for the leader that forces the followers to react in a way that mini-
mizes the total latency in the system. For more on this topic see Karakostas
and Kolliopoulos (2009).

A possible logical extension of the above model is to consider more than one
leader. In other words there are a few distinguished players that altogether are
responsible for the whole traffic in the network. The original Wardrop model
is inherently non-cooperative, while a setup where all the players are "leaders"
is essentially cooperative. The objective of each player is to route his traffic
with minimal cost. Sharing information and cooperation with other agents
may result in cost savings, and more efficient utilization of network capacities.
Depending on the employed strategy of the agents many possible cooperative
games can arise. OQur aim is to introduce and analyze these wide variety of
transferable utility (TU) games. Since the formation of a coalition may affect
other players costs via the implied flow and the resulting edge load changes in
the network, externalities may arise, thus the underlying games are given in
partition function form.

The values of the coalitions are defined as the improvement compared to
the reference case, when no cooperation appears. As some coalitions form,

L Although the cooperative (non-TU) approach is also often used in the case of wireless
communication networks Khandani et al (2007)



Traffic Routing Oligopoly 3

routing paths may alter due to the joint optimization process, which may in
turn affect the costs of other players via the modified edge latencies. Since
such externalities may happen the game is given in partition function form
(Thrall and Lucas, 1963).

A scenario where multiple navigation systems are routing their clients on
the same traffic network represents a possible application of the defined game
theoretic model framework. Novel telecommunication systems can be consid-
ered as an other potential application field of the proposed approach (Altman
et al, 2006; Khandani et al, 2005, 2007; Devroye et al, 2008)

The structure of the paper is as follows. In section 2 we introduce the
notation used, define the partition function form cooperative game on the
routing network and summarize the considered routing strategies. The main
results are discussed in section 3, where we show that the sequence of iterative
predictive strategies of increasing order may converge to routing configuration,
which is a Nash equilibrium (NE), but this convergence is not always necessary
even if a unique NE exists. Furthermore we analyze the superadditivity and
stability properties of the game, and via the recursive core concept we show
that overall cooperation may not be always beneficial for the players.

2 Materials and methods

In this section we define delivery games and introduce the traffic routing and
game theoretic framework that is needed to analyze such games. We made an
effort to keep the notational traditions of both fields. To make it more legible
we employ the standard that the upper index always refers to some player or
a coalition and in case of flows the lower index is always some edge or a path.

First let us recall some basic notions of cooperative games. A cooperative
game with transferable utility or simply a TU-game is an ordered pair (N, v)
consisting of the player set N = {1,2,...,n} and a characteristic function
v: 2NV — R with v()) = 0. The value v(S9) is regarded as the worth of coalition
S. The members of S can achieve this value by cooperating regardless of how
players outside the coalition react. In a partition function form (PFF) game
v(S) depends also on the partition to where S belongs (Thrall and Lucas,
1963). Let IT(NN) denote the set of partitions of N. An embedded coalition is a
pair (S, ), where S € 2V \ {0}, and 7 € II(N) is such that S € 7. We denote
by €(N) the set of embedded coalitions on N. Then a partition function form
game is a pair (N, V) where V : €(N) — R. For a more thorough? definition
see (Grabisch and Funaki, 2012).

2 The literature often uses a simplified formalization, namely V : 7 — (2 — R) where
the partition function assigns a characteristic functions (vx) to each partition © € II(N).
This notation is more intuitive, but misleading a little bit as vx is not a proper charac-
teristic function, since vx(T) is not defined for T' ¢ . For sake of convenience as well as
clarity throughout the paper we will regard V' as a mapping from partitions to characteristic
functions.
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For S € 7, the worth of V' (S, 7) denotes the amount that the players in S
can guarantee themselves by cooperating, when the coalition S is embedded
in the partition 7.

According to the transferable utility assumption, cooperating players may
redistribute the wealth gained by cooperation among themselves. The redistri-
bution is formalized via the concept of payoffs. We call the pair w = (z,7) an
outcome, where 7 € II(N) is a partition and = = (x',...,2") € RY is a payoff
vector satisfying feasibility; ,.q 2" = V(S,n) for all S € 7. Let us denote
the the set of outcomes in (N, V) by 2(N,V). Next we define the concepts,
which will be required for the definition of the PFF delivery game.

2.1 The Network and routing

The game takes place on a network I"; which is a pair (G, 1), represented by a
directed graph G(W, E), described by the set of vertices and edges respectively,
and a set of edge latency functions | = {l.|e € E'}. The deliveries of the players
are represented as flows in G. Latency functions describe how the latency of a
certain edge depends on its actual resulting flow. It is commonly accepted to
make some constrains on the latency function, such as non-negativity, differ-
entiability and non-decreasingness. We will only assume non-negativity thus
le: RZO — Rzo.

A delivery task 7 = (r,s,t) € Ry x W x W of a player is described by a
quantity and two nodes (a source and sink respectively). To each player j € N
k7 delivery tasks are assigned 77 = UF {(r? s/ ))}. The set of all distinct

175177

paths from sf to tf is denoted by P;. Distinct paths do not have to be disjoint

in general, in other words, they may have common edges. We denote the

flow of player j on path P by f4. Then PJ </ U¥ 7 and P & Ujen (PY).

Therefore P contains all the possible routes between sources and sinks. Players
have to distribute their traffic on the available paths for each delivery task.

Formally, we say that f7 = Upepi)f 7, is a feasible solution for player j iff
Spepi [p =1 forall i € {1,2,...,k7}. Regarding cooperating players, the

flow of a coalition S is denoted by f° def jesf?, and it is feasible if f7 is

feasible for every 7 € S. The set of feasible solutions is denoted by F.

2.2 Routing strategies

Players and coalitions may route their delivery on the available paths accord-
ing to different possible strategies. These are shortly described below, and
demonstrated in section 3. The expression 'routing strategy’ is interpreted in
a wide sense, including information and beliefs about other players. The zero
order strategy assumes that the players have no information about each other
while in other cases the delivery tasks are common knowledge. The strategies
presented here are pure in the sense that players may route their deliveries
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distributed among multiple different paths in the same time but they do it
with probability 1. Furthermore we assume that cooperating players are al-
ways aware of each other’s routing tasks and determine their routing by joint
design. We denote a specific routing strategy by o and the set of all possible
pure routing strategies by Y.

2.2.1 Evaluation of costs and expected costs

We will use the following notation. The flow of player j on edge e is composed
of the different path flows, which include the edge: f/ = 3" pcp).ccp /P, While
the flow of coalition S on edge e is f = > jes f (regarding the total flow of
edge e, for convenience sake instead of f¥ we write shortly f.).

The load of edge e with respect to agent j is the traffic that goes through the
edge not counting fJ. We denote this by A, formally \/ = Zk# fF=fo—fi.
Similarly \J = Y, 7us [ = fo — [2. The expected load of edge e with
respect to coalition S is the flow that goes through e not counting £~ according
to the current knowledge of S (which depends on the coalition structure and
o). We denote this by Xes

The expected cost of a coalition S is

cmP(8) = LM+ 1) fL. (1)

eckE

Note that the value of (1) depends on the routing strategy the players use
and the partition m embedding S. The resulting cost of the coalition S is

c(S) =Y le(fe)- 17 (2)

eclk

where f. is determined by computing argmin s c**?(S) for every S € 7. In
other words each coalition in a given partition has an estimate of how much
traffic will appear on certain edges of the network (A\J) and then determines
its routing by minimizing its (expected) cost based on this knowledge. As we
will see later the actual cost ¢(S) induced this way can be quite different than
the expected cost. The value of Xf in (1) is determined by the applied strategy
as follows.

2.2.2 Zero order strategy

This "dummy" strategy assumes that all coalitions neglect the activity of
others, and route their deliveries in a way, which is optimal when no other
traffic appears on the network. This strategy assumes that non-cooperating
players/coalitions have no information of each others routing tasks. In other
words Xf = 0 for each edge e € E and for each coalition S € 2.
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2.2.8 First order predictive (FOPS) and n-th order predictive (nOPS) strategy

We define the first order predictive strategy as follows. Every coalition expects
the remaining coalitions to route their deliveries according to the zero order
strategy, and minimizes his routing costs according to this. This strategy as-
sumes that the coalitions are aware of the other participants delivery contracts.
Formally, let us denote the resulting flow of edge e in the zero order routing
- when every coalition applies zero order strategy - by fe(oo). In this case
AN(o1) = foloo) — £5(00). In the second order predictive strategy (SOPS) all
coalitions assume that the remaining ones will route their delivery according
to the FOPS etc.

2.3 Definition of the PFF form delivery game

Next we define the delivery game, and show how the value of a certain coalition
S embedded in a partition 7w can be calculated.

Definition 1 A delivery game D = (N, I, A, o) is a 4-tuple consisting of a
player set N, a network I', a set of delivery tasks A = U;7/ and a routing
strategy o.

The characteristic functions are defined then as follows. The value of a
coalition S in a partition 7 is

vo,m(8) =Y .0 (j) = e,m(S) (3)
JjeSs
where 70 is the reference, all singleton partition. In other words, the value of
a coalition in a certain partition is the difference between the total routing
cost of its participants and the overall cost of its members in the all singleton
partition. We will see that the players do not always benefit by forming a
coalition, hence v can be negative.
Finally the partition function related to the delivery game D is the function
Vp () that assigns to each partition = € II(N) the characteristic function
v, (). To simplify the notation, we omit the lower index (p .y in the case
of the cost, expected cost and characteristic functions from now on.

2.3.1 Routing under Nash equilibrium

Having defined the game, we can expand our list of possible strategies with
another one. Let A be an algorithm that computes a NE for a given routing
problem (N, I, A). Furthermore let o(A) be the routing strategy that routes
the delivery tasks as in the NE computed by A. Then D(N, I, A,0(A)) is a
delivery game. The equilibrium strategy of coalition S is denoted by sf( Ay
Note that the strategy of S is naturally equivalent to the set of flows of g‘,
namely f°.
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3 Results

In this section we demonstrate the various possibly arising properties of the
defined game on various networks and examples.

3.1 Basic properties of predictive strategies

The predictive technique is an elemental way to strategically approach a game
theoretical problem. The most difficult part is to guess the depth of reasoning
of the other players. A fair assumption is that the players think that they go
at least one step further than the others. Here we only analyzed the case when
the depth of reasoning is the same for all players and coalitions, and every
actor thinks that the other players take one step less in the reasoning process.
Now we state a straightforward but important result.

Theorem 1 Let D be a delivery game, m = {S1,Sa,..., Sk} a partition of N
and let s,, = (5 (0n), f%2(0n) ..., 5 (0,)) denote the n-th order predictive
strategy. If so,,., = S5, then ss,, = S5, for all m > n furthermore the resulting
routing will be a Nash equilibrium.

Proof: A routing strategy § = (fsl,f52, cee fS’“) isa NE if for all S e =

argmin ¢(p ) (S) = argmin Y (A + £7) - f5 = f°.
fS€eF fSeF . ch

where A = ETeﬂ',T;ﬁS 1.

If the n-th and the n+1-th order predictive strategies coincide, it means
that f9(o,) = f%(0,41) for all S € 7, thus the expected and actual load of
any edge e is the same. Formally

Mon)= > o= > fFon) =2 (ons2).

Ten,T#S Ten,T#S

It follows that s, = s,, for all m > n. By the definition of the expected
cost

F(onsn) = avgmin 7, (5) = argmin ) 1 (ons) + f2)f7 =
€ €F ek

=argmin ) le( Y fLlon)+f0)- [ =

I9€F B TerT#S

zargminZle( Z fHone) + £2) - f5.

IS€F cE  TerT#S

for all S € 7, hence it is indeed a NE.
We can obtain a useful corollary of Theorem 1 by reinterpreting the players
strategy. We can think of f° as a |P| dimensional vector. The coordinates of
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f° corresponds to the flows of the distinct paths between the sources and
sinks. In this way it is meaningful to speak about the pointwise convergence
of f5.

Corollary 1 Let D be a delivery game with continuous latency functions. If
lim, o0 S0, = (f51, f52, ..., f5%) = 5 where f5 € R” fori=1,2,... k then
5 is a NE.

In other words if the flows of increasing order predictive strategies are
convergent, they converge to a NE point.

3.2 Externalities and the convergence of nOPS to NE

Let us consider network 1 depicted in Fig. 1. We take into account 3 players in
order to be able to demonstrate the appearing externalities in the game. In this
simple example all players have one delivery task, and the nodes corresponding
to the sinks and sources are disjoint.

3 X ©)
1 1

6 X (3)
1 0.5+x 1

3 (6)

Fig. 1 The basic structure of the network 1, and the possible routing alternatives of the
players. The numbers with and without parentheses quantify sinks and sources respectively.
Player 2 can route his delivery of 6 units via two ways (the distribution among the two
optional paths is described by 1), while player 3 can route his delivery of 6 units via three
ways (the distribution among the three optional paths is described by z2 and z3)

Let us suppose the following delivery tasks: 7! = (3,a,d), 72 = (6,b, f),
7 = (3,¢,e). Player one has no choice (|P!| = 1), player 2 has two possible
options (|P?| = 2), and thus has one decision variable x;, which describes the
proportion regarding the distribution of his delivery among the two available
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paths. Player 3 has 3 available paths (|P3| = 3), thus he has two decision
variables (z2 and x3).

The detailed calculations of this example can be found in Appendix A. The
resulting partition function in the case of zero order strategy is summarized
in Table 1.

partition (7) | values of coalitions (v(S))
{11{2},{3} 0,0,0
{1,2},{3} 2.625, -0.75
{1,3},{2} 1.8437, 0.1875
{1},{2,3} 0.75, 7.125
{1,2,3} 12.375

Table 1 The resulting partition function of network 1 in the case zero order strategy.

Table 1 clearly demonstrates the emergence of both positive and negative
externalities in the case of zero order strategy. As coalitions {1} and {2} merge,
it implies a negative externality on player 3, while in contrast the merging of
coalitions {1} and {3} or {2} and {3} is beneficial for the player not included
in the cooperation (player 2 and 1 respectively).

3.2.1 The convergence of nOPS to Nash equilibrium

After the calculation of the FOPS, we are able to analyze the higher order
strategies in the case of various coalition structures. Tables 2 and 3 summarize,
how the resulting routing variables, and cost of the coalitions change, while
consecutively applying higher order strategies.

Partition 1,213 {12103 {1,312
Strategy x1 ) T3 T1 x9 T3 x1 o T3
Zero order 3.5 1.5 1.25 4.25 1.5 1.25 4 1.63 | 1.38
1 (FOPS) 4 2.5 0.5 4.75 2.5 0.5 4 2.5 0.5
2 4.13 | 2.63 | 0.38 4.86 | 2.81 | 0.19 4.13 | 2.63 | 0.38
3 4.16 | 2.66 | 0.34 4.95 | 2.84 | 0.16 4.16 | 2.66 | 0.34
4 4.16 | 2.66 | 0.34 4.96 | 2.86 | 0.14 4.16 | 2.66 | 0.34
5 4.17 | 2.67 | 0.33 4.97 | 2.87 | 0.13 4.17 | 2.67 | 0.33
6 4.17 | 2.67 | 0.33 497 | 2.87 | 0.13 4.17 | 2.67 | 0.33
7 4.17 | 2.67 | 0.33 4.97 | 2.87 | 0.13 4.17 | 2.67 | 0.33
8 4.17 | 2.67 | 0.33 497 | 2.87 | 0.13 4.17 | 2.67 | 0.33

Table 2 The evolution of routing variables [z1,z2,z3] of network 1 towards NEs as the
order of strategies increased.

Let us note that the resulting NE coincides in the case of the all-singleton
partiton and {1,3}{2}.

As we can see in tables 2 and 3, all coalition structures reach the Nash
equilibrium with the accuracy of € = 1072 in the 5th iteration.
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Partition {1}, {2}, {3} {1,2},{3} {1,3},{2}
Strategy c1 (&) c3 C{1,2} c3 C{1,3} c2
Zero order 17.25 42 12.62 56.63 13.38 28.03 | 41.81

1 (FOPS) 15 38 10.25 51.5 10.63 25.25 38
2 14.63 | 37.45 | 10.27 49.93 10.45 24.9 37.45
3 14.53 | 37.32 | 10.27 49.78 10.46 24.8 37.32
4 14.51 | 37.29 | 10.28 49.68 10.46 24.79 | 37.29
5 14.5 37.28 | 10.28 49.67 | 10.46 24.78 | 37.28
6 14.5 37.28 | 10.28 49.67 | 10.46 24.78 | 37.28
7 14.5 37.28 | 10.28 49.67 | 10.46 24.78 | 37.28
8 14.5 37.28 | 10.28 49.67 | 10.46 24.78 | 37.28

Table 3 The evolution of resulting costs of the coalitions in network 1 towards NEs as the
order of strategies increased.

The partition {1}, {2, 3} is not of interest, because player 1 has no decision
variables, in this case all nOPS with n>1 will be the same as the FOPS. The
routing in the case of the grand coalition is the same in all cases (consider e.g.
7 = {1,2,3}) assuming zero order strategy.

As we sill see in section 3.3, the FOPS, SOPS, nOPS sequence of strategies
is not necessary convergent. Furthermore, as we will show, a NE may exist in
a game with divergent nOPS.

3.3 Divergent nOPS

In this section we demonstrate on the widely used Pigou network (Pigou, 1920)
that the sequence of the increasing order strategies is not necessary convergent
even if a unique NE exists in the game.

3.3.1 Routing under Nash equilibrium on Pigou’s graph

Let I'p be the well-known example of Pigou i.e. a graph with two parallel edges
(u and w) connecting two nodes (s and t). On the so called upper edge u the
latency is constant 1, on the lower edge w the latency is proportional to the
traffic (see Fig. 2). Furthermore let N = {1,2,...,n} be the set of players with
delivery tasks 77 = (17, s,t) i.e. player j has to route 7/ amount of traffic from
s to t. Let A be an algorithm that computes a Nash equilibrium in I'p and let
o(A) be the corresponding routing strategy. Therefore D(I'p, N, A,0(A)) is a
well defined delivery game.
Note, that the latency cost of player j is

) =7 = Fl+ - fuo =17 4 (N, = 1) - f+ ()2

As 77 is constant c(j) is uniquely determined by how much the players
route on the lower edge. Note that o(A) = (fL, f2,...,f?) is a NE point if

y Jwo

no player j € N can obtain smaller latency cost by altering his strategy.
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Fig. 2 Network 2: Pigou’s graph.

Theorem 2 Ifr’ > n+-1 for any player j € N, where n = |N| then there is a

unique Nash equilibrium point in D(I'p, N, A, o(A)), namely where f,, = kLH

and f, = k%q for any S € 7, where k = |r|.

Proof: It is enough to prove for the singleton partition. For other partitions
the theorem follows from the fact that each coalition can be considered as a
separate player and if r/ > %H for all j € N then r® = Zjes ri > %H for
all S e .

Suppose players follow the same strategy. Then each player j € N routes
rJ — 2 amount of traffic on the upper and x amount on the lower edge. This is a
Nash equilibrium point if for any real number § € R, such that 0 < 2 +6§ < 77,
if player j routes 6 amount of traffic in a different way, his individual cost is
increasing. Formally

=+ 8+ @+8)n-x+0) > —x+ (2)(n-2).
We can rewrite the above condition as follows.
2 +6-x-(n+1)—35>0
Which yields

1—14] << 1+ |9]
n+1 = T n+1
for any real number §. We can conclude that x = n+r1 is a Nash equlibrium
strategy for any number of player n.
Now we prove that this is a unique NE point. First suppose that f,, < nL-l-l
In particular let f, = -5 — €1. Then there exists j such that fi= n+r1 B

. .. def .
where ¢5 along with €; are some positive real numbers. Let m = min(e, €2).
Now increasing f2 by m decreases c(j).

= (fl+m)+ (fh+m) (fut+m) <1/ — L+ fl fu (4)

Which is equivalent to

(fi+m)- (fut+m—1)<fi - (fu—1)
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For instance if m = €9

(o)) () ()
n+1 2 n+1 “ “\n+1 2 n+1 “

1) Grave 1)< (o) (5 1)
n+1 n+1 aTe “\n+1 € n—+1 “

€9 <—TL'€2

n+1 n+1

0<e-e

+€1-€2+ €

Similar calculations shows that (4) also holds when m = ¢;. We leave the

proof of the case f,, > nL—i-l to the reader.

3.8.2 Routing under nOPS strategies on Pigou’s graph

Now we show that for any partition # € II(N) that consists of at least 3
coalition, we can set the delivery tasks in such way that the nOPS strategies
do not converge to the NE point in D(I'p, N, A, o(A)). It is clear from Theorem
2 that if 7 is fixed then for every S € m, the zero order strategy is

SS — f{g = Zjes Tj Zf ZjeS Tj < 1/2
0 S =1/2 otherwise.

If the number of players and the delivery tasks are such that A5 > 1 for
every S € m then FOPS of every coalition will be to route everything on the
upper edge. Then again the SOPS will be the same as the zero order strategy
and so on. Therefore nOPS does not necessarily converge as n goes to infinity,
even when there is a unique Nash equilibrium point in a given D.

3.4 Subadditivity

Intuitively one would expect that the delivery game is superadditive. When a
coalition is formed it gains extra information from the new members. The sum
A9+ f5 that determines the latency of the edge e seems to be more controllable
as S gets larger. However this impression turns out to be wrong. We show two
examples of the arising subadditive property for two different strategies.

3.4.1 An example of subadditivity in the case of zero order strategy

In this example we demonstrate the subadditivity property on a symmetric
three player example assuming zero order strategy. In this three player example
the cooperation of any two players implies negative consequences for them and
a positive externality for the third player. The explanation for the phenomena
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is that the routing corresponding to the expected minimum cost result in a
higher overall cost, implied by the other players’ activity.

Let us consider network 3 depicted in Fig. 3 and a delivery game with
1 =(2,a,t), 7> = (2,b,t) and 7% = (2, ¢, ).

@1
@i

Fig. 3 The basic structure of network 3.

BORE

Coalition structure {i},{j},{k}

Because of the symmetry, each player will route his delivery distributed equally
between the two available paths. This will result in 2 units of traffic on each
line, and a total cost of 8 of each player.

Coalition structure {i,j},{k}

It is easy to see that the cooperating players will route their total delivery
distributed equally among the 3 pathways available for them The resulting
routing e.g. in the case of the coalition structure {1,2}, {3} will be as depicted
in Fig. 4.

1/4'@\4/7/3

=

(] T ,;\\_»
ZB/Cm——/—'

@4N4/

7/3

1

Fig. 4 Routing in the case of coalition structure {1,2},{3}

The cost of the coalition {1,2} will be ¢({1,2}) = 16.88 which is 0.88 units
higher than their total cost in singleton configuration (v({i,j}) = —0.88). The
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cost of the third player will be ¢(3) = 2(1 + 2/3)? = 5.556 which implies
v({k}) =2.444

Grand coalition

In the case of the grand coalition, the resulting routing and routing costs will
be as the same as in the case of singleton coalitions, which means that these
two coalition configurations are the stable partitions of the game.

3.4.2 An Ezxample of subadditivity assuming Nash routing strategy

Let us consider three players with the same delivery task 7173 = (1,s,t) on
the Pigou network. It follows from Theorem 2 that for coalition structure
7 = {1}{2}{3} at the NE point every player routes = amount of traffic on
the lower edge. Therefore each player has % -1 —i—i . % = 0.9375 latency cost. For
coalition structures m = {i}{J, k} the Nash equilibrium strategies are different
as coalition {j, k} acts as one player. Therefore at the NE-point there flows %
traffic on the lower edge. The cost of coalition {i} is 2 -1+ 1 - Z = 0.88 while
{j,k} has 3 -1+ 1.2 = 1.88 cost. Since 1.88 > 2-0.9375 = 1.875, we can
see that the cooperation of players j and k is not beneficial for them, which is
an example of subadditivity. If the grand coalition is formed then there goes
3 traffic on the bottom road. The overall cost is 5 -1+ 4 - 3 = 2.75. Table 4
summarizes the above computation.

partition (mw) | cost of players (c(j)) | values of coalitions (v(S))
GL.05{k; | 0.9375, 0.9375, 0.9375 0,0,0
{i,ih{k} 1.8888, 0.8888 -0.0138, 0.0487
{ij.k} 2.75 0.0625

Table 4 Routing costs and coalitional values in the case of the Pigou example (network 2)
assuming Nash routing.

3.5 Stability

To analyze stability and determine a characteristic function for a certain strat-
egy we use the concept of the recursive core Koczy (2007, 2009), that allows
the remaining, residual players to freely react and form a core-stable partition
before the payoff of the deviating coalition is evaluated.

First we define the residual game over the set R C N. Let us recall that
IT(N) denotes the set of partitions of N. Assume R = N \ R have formed

7z € II(R). Then the residual game (R, V;_) is the PFF game over the player
set R with the partition function given by V;_(S,7r) = V(S,7r Umg).
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Definition 2 (Recursive core Koczy (2007)) For a single-player game the
recursive core is trivially defined. Now assume that the core RC(N, V') has been
defined for all games with |N| < k players. For an |N| player game an outcome
(x,m) is dominated if there exists a coalition @ forming partition 7’ and an
outcome (y, 7’ Umg) € 2(N,V), such that yo > zq and if RC(Q, V) # @
then (yg, mg) € RC(Q,Vy). The (recursive) core RC(N,V) of (N, V) is the
set of undominated outcomes.

Based on the concept of the Recursive Core, a minimal claim function
can be defined, which describes the minimal claim of each coalition in the
corresponding PFF game reduced to that coalition. This function, termed v™¢
in the following, may be applied in the same spirit as a characteristic function,
since it assigns a unique value to each coalition, which they can secure for
themselves if they deviated. The formal definition of v™*¢ is as follows.

Definition 3 Let us consider the residual game (S, V,,) over the player set
S defined by the partition function Vs (R, 7g) = V(R,m5US) where R € ng €
I1(S). Let us denote the Recursive Core of the residual game by RC(S, V).
The (pessimistic) minimal claim function v™¢ can be defined as

V(S = ming __«{2(N,V)|(z, P%) € RC(S,Vs)} if RC(S,Vs) # 0
ming __{2(N,V)} if RC(S,Vs)=10

where v"*¢(S) is the minimal claim of coalition S.

With the help of the minimal claim function, a characterization of the
Recursive Core can be given as follows.

Lemma 1 The Recursive Core RC(N,V) of the game (N,V) is a collection
of Pareto efficient outcomes (x, ) € (N, V), such that there is no coalition
S with v™¢(S) > >, cq @'

3.5.1 The stability of example 1

According to the concept of the recursive core, the minimal claim functions
regarding the strategies of various order can be determined. The minimal claim
functions in the case of zero order strategy and FOPS are summarized in Table
5.

The recursive core can be represented as a polytope in the payoff space.
As the order of predictive strategies increase, we may derive the recursive core
for each PFF game. Using this method, we get a sequence of recursive core-
polytopes, whose geometry may differ in general. We can depict the evolution
of the geometry of the recursive core as the order of the applied strategy
increases (see Fig. 5). The singleton reference case and so the coalitional values
and payoffs are different for each strategy. However as we increase the order
of the applied strategy the routing variables and the values of the partition
function converge to the NE and the geometry of the recursive core converge
to its final shape.
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Coalition | Value Coalition | Value
{1} 0.75 {1} -0.25
{2} 0.1875 {2} 0
{3} -0.75 {3} -0.375

{1,2} 2.625 {1,2} 1.5

{1,3} 1.8437 {1,3} 0

{2,3} 7.125 {2,3} 1.875
{1,2,3} | 12.375 {1,2,3} 4

Table 5 Minimal claim functions derived by the recursive core method of example 1 in the
case of zero order strategy and FOPS

Fig. 5 The projection of the recursive core in the case of various strategies to the plane
23=0. The equation z3 = v({1,2,3}) — z1 — 2 holds in every case. Let us remember that
the cost of the reference case (the all singleton coalitions) according to which the values of
the coalitions in different partitions are determined, is different in the case of each strategy
- that is the reason why the overall payoff tends to decrease.

3.5.2 Emptiness of the recursive core

In this subsection we show two examples, where the recursive core turns out
to be empty.

Non-monotone edge latency functions

In this section we demonstrate that the recursive core may be empty if we
assume a network with an edge with non-monotone latency function (depicted
in Fig.6), and routing tasks §' = (1,a,t), 62 = (1,b,t), 6° = (1,¢,t).

Since the network is symmetric, we may consider the {i}, {j}, {k} permu-
tation of players 1,2 and 3. Zero order strategy and the coalition structure
{i},{j},{k} will result in a symmetric configuration, in which each player will
route his delivery on the 0.5 latency edge. This results in a total cost of 0.5 of
each player.

In contrast, if we assume the coalition structure {i,j},{k}, then {i,j} will
route his traffic on the (z — 2)? edge at the cost of 0 ~ v({i,;j}) = 1, while



Traffic Routing Oligopoly 17

0.5

0
o (0
(X-2)" 3)
0

Fig. 6 Example network with non-monotone edge latency function and resulting routing
in the case of the grand coalition.

the third player is not affected (v(k) = 0). In the case of the grand coalition:
c({1,2,3}) = 0.4705 ~ v({1,2,3}) = 1.0295. It is easy to see that this results
in the emptiness of the recursive core.

Non-continuous edge latency functions

Consider the following example (see Fig.7)? where N = {1, 2, 3}, players follow
zero-order strategy and the delivery tasks are 71 = (1.4,a,t), 72 = (1.4,b,t)
and 73 = (1.4,¢,1).

& /O@\ 1

0,
ol S
0\0®—/ 1

Fig. 7 Example network with non-continuous edge latency function and resulting routing
in the case of the grand coalition.

In the case of singleton coalitions each player splits his traffic into two
equal parts and sends them on the two possible routes to t. In this way each
edge with non-zero latency function has a latency cost of 2 (as [1.4] = 2).
For partitions m = {4, j}{k}, player ¢ and j route on the jointly used edge 1
amount of traffic and send the rest on the other routes. As a result on the other
two edge the traffic is increased to 1.6 however this change does not affect the
latency cost of these two edges. Finally in the case of grand coalition it is not

3 [z] denotes the upper integer part of x.
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hard to see that the players can send only 1 amount of traffic with a latency
cost of 1 the rest has to be sent for a latency cost of 2. Therefore the total
cost is 7.4. Emptiness of the core follows from the fact that the cost saving of
any two person coalition is the same as the cost saving of the grand coalition
(see Table 6).

partition (7) | cost of players (c(j)) | values of coalitions (v(S))
{iL{i}.{k} 2.8,2.38, 2.8 0,0,0
{i,jh{k} 4.6, 2.8 1,0
{i,k} 7.4 1

Table 6 Emptiness of the core in a network with non-continuous edge latency function.

4 Conclusions and future work

In this article a new family of PFF form delivery games on routing networks
has been introduced. Various routing strategies have been analyzed, and it
has been shown that the sequence of predictive strategies of increasing order
may converge to a NE routing configuration, but it can be also divergent.
We have shown on the widely known Pigou network that NE routing may
exist in such games, where the nOPS is divergent. We provided examples of
subadditive scenarios in various cases, and thus have proven that the defined
game is not necessary superadditive. Furthermore we analyzed the stability
of the game, and the evolution of the geometry of stable payoff sets via the
recursive core concept. In addition we have shown that assuming non monotone
or non continuous latency functions the recursive core may be empty.

One straightforward open question is whether the recursive core may be
empty if we suppose continuous (strictly) monotone increasing latency func-
tions. An other open problem is how to provide necessary and sufficient con-
ditions for the sequence of iterative strategies to converge to a NE. We hope
that the approach of potential methods described in (Nisan et al, 2007) may
offer useful tools for the analysis of this problem.
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Appendix A

In this appendix the detailed calculations regarding network 1 depicted in
Fig. 1 assuming FOPS strategy can be found, to demonstrate the predictive
strategies.

Determination of routing paths according to the zero order strategy

To determine the routing under FOPS strategy, first we have to calculate the
resulting routing in the case of zero order strategy. In the case of singleton
coalitions, all players neglect the activity of other players, and determine their
routing variables (z) by minimizing

i (8) = D 1O+ 12) - 12
ecE

where Xeg =0 for all e € £ and for all S € 7. In this case resulting load and
latencies of the network will be as depicted in Fig. 8, and listed in Table 2.
The routing variables  uniquely determine the edge flows f7.

5.7
1 1

%}7 4.7
2 1

7

Fig. 8 Resulting routing loads, and edge latencies assuming zero order strategy and single-
ton coalitions.

The resulting total delivery costs of the coalitions (which are the players
themself in this case) can be calculated as:

c(l) =B+ (6—=x1)+ (83— z2 —3))3
c(2) = (z1 +x3)21 +2(6 —21)+ (6 —21+3 —22 — 23+ 3)(6 —21) + 6
c¢(3) = (0.5 + z2)z2 + (3 —x2) +2(83 — 2 — x3) + (z1 + x3)x3
+((B =2 —x3) + (6 — x1) + 3)(3 — 22 — x3) (5)
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In the above case the delivery costs will be ¢(1) = 17.25, ¢(2) = 42, ¢(3) =
12.625, as listed in Table 3. As it can be seen, the zero order strategy (not
surprisingly) significantly underestimates the routing costs.

Other coalition structures

In the case of other partitions, the calculations are similar. Each coalition opti-
mizes the routing variables corresponding to the participating players, taking
into account the resulting load the coalition puts on the network. The resulting
routing variables and costs are listed in tables 2 and 3.

Determination of routing paths according to the first order predictive strategy
(FOPS)

™= {1},{2}, {3}
The route planning of player 1 is still trivial (his expected cost is 8.25 in this
case).

Player 2 will assume that player 1 and player 3 will route their deliv-
ery according to the zero order strategy. This will result in the minimization
of the value of ¢(2) (see Eq. 5) assuming [z2 z3] = [1.5 1.25] (¢**P(2) =
0(2)|[m2 z3]=[1.5 1.25]) this 1mphes T = 4.

According to the zero order routing of players 1 and 2, the expected cost of
player 3 will be ¢**?(3) = ¢(3)|4,=3.5, which is minimal at [z2 z3] = [2.5 0.5].

In this case the delivery costs will be as follows. ¢(1) = 15, ¢(2) = 38, and
¢(3) = 10.25. As it can be seen when compared to the zero order strategy, in
the case of singleton coalitions the FOPS in this case has reduced the total
cost of all players.

m={1,2},{3}

The expected cost of the coalition {1,2} is
c“P({1,2}) = c(1) + 2|2y ws)=1.5 1.25]

which is minimal at ;1 = 4.75. The routing of player 3 will be as before. The
routing costs will be ¢(1) = 12.75, ¢(2) = 38.75 and ¢(3) = 10.625. Thus the
benefit of the cooperation for coalition {1,2} is 1.5, while the value of player
3 is -0.375 in this partition.

™= {1,3},{2}

In this case, player 1 and player 3 can not improve their routing, the resulting
will be the same as in the singleton case. The expected cost of the coali-
tion {1,3} is ¢**P({1,3}) = ¢(1) + ¢(3)|4,=3.5 which is minimal at [r2 3] =
[2.5 0.5]. ¢(1) = 15, ¢(2) = 38, and ¢(3) = 10.25.

™= {1},{2,3}

The expected cost of the coalition {2,3} is ¢**?({2,3}) = ¢(2) + ¢(3) which
is minimal at [z1 x2 3] = [4.25 3 0]. ¢(1) = 14.25, ¢(2) = 35.875, and
¢(3) = 10.5. This implies a benefit of 1.875 to the coalition {2, 3}.
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= {1,2,3}
The resulting routing in the case of the grand coalition is the same as under the
zero order strategy. This implies here the benefit of 4 for the grand coalition.
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