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2 Dávid Csersik, Balázs Sziklai1 IntrodutionProblems onerning ongested networks originate traditionally from the �eldof engineering (Altman et al, 2006). Probably this is the reason why non-ooperative approah is more wide-spread among the researhers of the sub-jet1. The �rst general model is due to Wardrop (1952), where the network isrepresented by a graph, while routing tasks are assigned to a subset of nodesand lateny funtions are de�ned on the edges. Furthermore it is assumed thatthe tra� an be divided into in�nitesimally small parts whih therefore anbe represented as �ows in the graph. The objetive of these in�nitesimallysmall piees or individuals is to minimize the experiened lateny.Many equilibrium notions were introdued to analyze suh ongested net-works (for a omprehensive study see Roughgarden (2005, 2006)). Most of theliterature fouses on Nash equilibria and a related onept the so-alled Prieof Anarhy (Feldmann et al, 2003). In a ongested network Nash equilibrium(NE) is reahed when no individual an obtain a lower lateny by unilaterallyhanging his route. In general, suh a NE need not be unique. The Prie ofAnarhy is the ratio between the soial ost of the worst Nash equilibrium andthe overall optimum solution. The notion was introdued by Koutsoupias andPapadimitriou (2009) and quikly beame popular as it suessfully apturesthe possible suboptimality of NE-points. To resolve suh situations Stakelbergrouting was introdued (Korilis et al, 1997) in whih model a ertain ratio ofall users are obeying to a entral authority whose objetive is to drive thetra� toward an equilibrium point with lower soial ost. In partiular thereare two types of players a so-alled leader and followers. The goal is to �nd astrategy for the leader that fores the followers to reat in a way that mini-mizes the total lateny in the system. For more on this topi see Karakostasand Kolliopoulos (2009).A possible logial extension of the above model is to onsider more than oneleader. In other words there are a few distinguished players that altogether areresponsible for the whole tra� in the network. The original Wardrop modelis inherently non-ooperative, while a setup where all the players are "leaders"is essentially ooperative. The objetive of eah player is to route his tra�with minimal ost. Sharing information and ooperation with other agentsmay result in ost savings, and more e�ient utilization of network apaities.Depending on the employed strategy of the agents many possible ooperativegames an arise. Our aim is to introdue and analyze these wide variety oftransferable utility (TU) games. Sine the formation of a oalition may a�etother players osts via the implied �ow and the resulting edge load hanges inthe network, externalities may arise, thus the underlying games are given inpartition funtion form.The values of the oalitions are de�ned as the improvement ompared tothe referene ase, when no ooperation appears. As some oalitions form,1 Although the ooperative (non-TU) approah is also often used in the ase of wirelessommuniation networks Khandani et al (2007)



Tra� Routing Oligopoly 3routing paths may alter due to the joint optimization proess, whih may inturn a�et the osts of other players via the modi�ed edge latenies. Sinesuh externalities may happen the game is given in partition funtion form(Thrall and Luas, 1963).A senario where multiple navigation systems are routing their lients onthe same tra� network represents a possible appliation of the de�ned gametheoreti model framework. Novel teleommuniation systems an be onsid-ered as an other potential appliation �eld of the proposed approah (Altmanet al, 2006; Khandani et al, 2005, 2007; Devroye et al, 2008)The struture of the paper is as follows. In setion 2 we introdue thenotation used, de�ne the partition funtion form ooperative game on therouting network and summarize the onsidered routing strategies. The mainresults are disussed in setion 3, where we show that the sequene of iterativepreditive strategies of inreasing order may onverge to routing on�guration,whih is a Nash equilibrium (NE), but this onvergene is not always neessaryeven if a unique NE exists. Furthermore we analyze the superadditivity andstability properties of the game, and via the reursive ore onept we showthat overall ooperation may not be always bene�ial for the players.2 Materials and methodsIn this setion we de�ne delivery games and introdue the tra� routing andgame theoreti framework that is needed to analyze suh games. We made ane�ort to keep the notational traditions of both �elds. To make it more legiblewe employ the standard that the upper index always refers to some player ora oalition and in ase of �ows the lower index is always some edge or a path.First let us reall some basi notions of ooperative games. A ooperativegame with transferable utility or simply a TU-game is an ordered pair (N, v)onsisting of the player set N = {1, 2, . . . , n} and a harateristi funtion
v : 2N → R with v(∅) = 0. The value v(S) is regarded as the worth of oalition
S. The members of S an ahieve this value by ooperating regardless of howplayers outside the oalition reat. In a partition funtion form (PFF) game
v(S) depends also on the partition to where S belongs (Thrall and Luas,1963). Let Π(N) denote the set of partitions of N . An embedded oalition is apair (S, π), where S ∈ 2N \ {∅}, and π ∈ Π(N) is suh that S ∈ π. We denoteby C(N) the set of embedded oalitions on N . Then a partition funtion formgame is a pair (N, V ) where V : C(N) → R. For a more thorough2 de�nitionsee (Grabish and Funaki, 2012).2 The literature often uses a simpli�ed formalization, namely V : π → (2N → R) wherethe partition funtion assigns a harateristi funtions (vπ) to eah partition π ∈ Π(N).This notation is more intuitive, but misleading a little bit as vπ is not a proper hara-teristi funtion, sine vπ(T ) is not de�ned for T 6∈ π. For sake of onveniene as well aslarity throughout the paper we will regard V as a mapping from partitions to harateristifuntions.



4 Dávid Csersik, Balázs SziklaiFor S ∈ π, the worth of V (S, π) denotes the amount that the players in San guarantee themselves by ooperating, when the oalition S is embeddedin the partition π.Aording to the transferable utility assumption, ooperating players mayredistribute the wealth gained by ooperation among themselves. The redistri-bution is formalized via the onept of payo�s. We all the pair ω = (x, π) anoutome, where π ∈ Π(N) is a partition and x = (x1, . . . , xn) ∈ RN is a payo�vetor satisfying feasibility; ∑i∈S xi = V (S, π) for all S ∈ π. Let us denotethe the set of outomes in (N, V ) by Ω(N, V ). Next we de�ne the onepts,whih will be required for the de�nition of the PFF delivery game.2.1 The Network and routingThe game takes plae on a network Γ , whih is a pair (G, l), represented by adireted graphG(W,E), desribed by the set of verties and edges respetively,and a set of edge lateny funtions l = {le|e ∈ E}. The deliveries of the playersare represented as �ows in G. Lateny funtions desribe how the lateny of aertain edge depends on its atual resulting �ow. It is ommonly aepted tomake some onstrains on the lateny funtion, suh as non-negativity, di�er-entiability and non-dereasingness. We will only assume non-negativity thus
le : R≥0 → R≥0.A delivery task τ = (r, s, t) ∈ R+ ×W ×W of a player is desribed by aquantity and two nodes (a soure and sink respetively). To eah player j ∈ N

kj delivery tasks are assigned τ j = ∪kj

i=1{(r
j
i , s

j
i , t

j
i )}. The set of all distintpaths from sji to tji is denoted by Pj

i . Distint paths do not have to be disjointin general, in other words, they may have ommon edges. We denote the�ow of player j on path P by f j
P . Then Pj def

= ∪kj

i=1P
j
i and P

def
= ∪j∈N

(
Pj

).Therefore P ontains all the possible routes between soures and sinks. Playershave to distribute their tra� on the available paths for eah delivery task.Formally, we say that f j def
= ∪(P∈Pj)f

j
P is a feasible solution for player j i�∑

P∈P
j
i
f j
P = rji for all i ∈ {1, 2, . . . , kj}. Regarding ooperating players, the�ow of a oalition S is denoted by fS def

= ∪j∈Sf
j , and it is feasible if f j isfeasible for every j ∈ S. The set of feasible solutions is denoted by F.2.2 Routing strategiesPlayers and oalitions may route their delivery on the available paths aord-ing to di�erent possible strategies. These are shortly desribed below, anddemonstrated in setion 3. The expression 'routing strategy' is interpreted ina wide sense, inluding information and beliefs about other players. The zeroorder strategy assumes that the players have no information about eah otherwhile in other ases the delivery tasks are ommon knowledge. The strategiespresented here are pure in the sense that players may route their deliveries



Tra� Routing Oligopoly 5distributed among multiple di�erent paths in the same time but they do itwith probability 1. Furthermore we assume that ooperating players are al-ways aware of eah other's routing tasks and determine their routing by jointdesign. We denote a spei� routing strategy by σ and the set of all possiblepure routing strategies by Σ.2.2.1 Evaluation of osts and expeted ostsWe will use the following notation. The �ow of player j on edge e is omposedof the di�erent path �ows, whih inlude the edge: f j
e =

∑
P∈Pj :e∈P fP , whilethe �ow of oalition S on edge e is fS

e =
∑

j∈S f j
e (regarding the total �ow ofedge e, for onveniene sake instead of fN

e we write shortly fe).The load of edge e with respet to agent j is the tra� that goes through theedge not ounting f j
e . We denote this by λj

e, formally λj
e =

∑
k 6=j f

k
e = fe−f j

e .Similarly λS
e =

∑
T∈π,T 6=S fT

e = fe − fS
e . The expeted load of edge e withrespet to oalition S is the �ow that goes through e not ounting fS

e aordingto the urrent knowledge of S (whih depends on the oalition struture and
σ). We denote this by λ̂S

e .The expeted ost of a oalition S is
cexp(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
e . (1)Note that the value of (1) depends on the routing strategy the players useand the partition π embedding S. The resulting ost of the oalition S is

c(S) =
∑

e∈E

le(fe) · f
S
e (2)where fe is determined by omputing argminfS∈F

cexp(S) for every S ∈ π. Inother words eah oalition in a given partition has an estimate of how muhtra� will appear on ertain edges of the network (λ̂S
e ) and then determinesits routing by minimizing its (expeted) ost based on this knowledge. As wewill see later the atual ost c(S) indued this way an be quite di�erent thanthe expeted ost. The value of λ̂S

e in (1) is determined by the applied strategyas follows.2.2.2 Zero order strategyThis "dummy" strategy assumes that all oalitions neglet the ativity ofothers, and route their deliveries in a way, whih is optimal when no othertra� appears on the network. This strategy assumes that non-ooperatingplayers/oalitions have no information of eah others routing tasks. In otherwords λ̂S
e = 0 for eah edge e ∈ E and for eah oalition S ∈ 2N .



6 Dávid Csersik, Balázs Sziklai2.2.3 First order preditive (FOPS) and n-th order preditive (nOPS) strategyWe de�ne the �rst order preditive strategy as follows. Every oalition expetsthe remaining oalitions to route their deliveries aording to the zero orderstrategy, and minimizes his routing osts aording to this. This strategy as-sumes that the oalitions are aware of the other partiipants delivery ontrats.Formally, let us denote the resulting �ow of edge e in the zero order routing- when every oalition applies zero order strategy - by fe(σ0). In this ase
λ̂S
e (σ1) = fe(σ0)− fS

e (σ0). In the seond order preditive strategy (SOPS) alloalitions assume that the remaining ones will route their delivery aordingto the FOPS et.2.3 De�nition of the PFF form delivery gameNext we de�ne the delivery game, and show how the value of a ertain oalition
S embedded in a partition π an be alulated.De�nition 1 A delivery game D = (N,Γ,∆, σ) is a 4-tuple onsisting of aplayer set N , a network Γ , a set of delivery tasks ∆ = ∪jτ

j and a routingstrategy σ.The harateristi funtions are de�ned then as follows. The value of aoalition S in a partition π is
v(D,π)(S) =

∑

j∈S

c(D,π0)(j)− c(D,π)(S) (3)where π0 is the referene, all singleton partition. In other words, the value ofa oalition in a ertain partition is the di�erene between the total routingost of its partiipants and the overall ost of its members in the all singletonpartition. We will see that the players do not always bene�t by forming aoalition, hene v an be negative.Finally the partition funtion related to the delivery game D is the funtion
VD(π) that assigns to eah partition π ∈ Π(N) the harateristi funtion
v(D,π)(S). To simplify the notation, we omit the lower index (D,π) in the aseof the ost, expeted ost and harateristi funtions from now on.2.3.1 Routing under Nash equilibriumHaving de�ned the game, we an expand our list of possible strategies withanother one. Let A be an algorithm that omputes a NE for a given routingproblem (N,Γ,∆). Furthermore let σ(A) be the routing strategy that routesthe delivery tasks as in the NE omputed by A. Then D(N,Γ,∆, σ(A)) is adelivery game. The equilibrium strategy of oalition S is denoted by sS

σ(A).Note that the strategy of S is naturally equivalent to the set of �ows of S,namely fS .



Tra� Routing Oligopoly 73 ResultsIn this setion we demonstrate the various possibly arising properties of thede�ned game on various networks and examples.3.1 Basi properties of preditive strategiesThe preditive tehnique is an elemental way to strategially approah a gametheoretial problem. The most di�ult part is to guess the depth of reasoningof the other players. A fair assumption is that the players think that they goat least one step further than the others. Here we only analyzed the ase whenthe depth of reasoning is the same for all players and oalitions, and everyator thinks that the other players take one step less in the reasoning proess.Now we state a straightforward but important result.Theorem 1 Let D be a delivery game, π = {S1, S2, . . . , Sk} a partition of Nand let sσn
= (fS1(σn), f

S2(σn) . . . , f
Sk(σn)) denote the n-th order preditivestrategy. If sσn+1

= sσn
then sσm

= sσn
for all m > n furthermore the resultingrouting will be a Nash equilibrium.Proof: A routing strategy s̃ = (f̃S1 , f̃S2, . . . , f̃Sk) is a NE if for all S ∈ π
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fS∈F

c(D,π)(S) = argmin
fS∈F

∑

e∈E

le(λ̃
S
e + fS

e ) · f
S
e = f̃S .where λ̃S

e =
∑

T∈π,T 6=S f̃T
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e (σn+1) + fS

e ) · f
S
e .for all S ∈ π, hene it is indeed a NE.We an obtain a useful orollary of Theorem 1 by reinterpreting the playersstrategy. We an think of fS as a |P| dimensional vetor. The oordinates of



8 Dávid Csersik, Balázs Sziklai
fS orresponds to the �ows of the distint paths between the soures andsinks. In this way it is meaningful to speak about the pointwise onvergeneof fS.Corollary 1 Let D be a delivery game with ontinuous lateny funtions. If
limn→∞ sσn

= (f̃S1 , f̃S2 , . . . , f̃Sk) = s̃ where f̃Si ∈ RP for i = 1, 2, . . . , k then
s̃ is a NE.In other words if the �ows of inreasing order preditive strategies areonvergent, they onverge to a NE point.3.2 Externalities and the onvergene of nOPS to NELet us onsider network 1 depited in Fig. 1. We take into aount 3 players inorder to be able to demonstrate the appearing externalities in the game. In thissimple example all players have one delivery task, and the nodes orrespondingto the sinks and soures are disjoint.
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Fig. 1 The basi struture of the network 1, and the possible routing alternatives of theplayers. The numbers with and without parentheses quantify sinks and soures respetively.Player 2 an route his delivery of 6 units via two ways (the distribution among the twooptional paths is desribed by x1), while player 3 an route his delivery of 6 units via threeways (the distribution among the three optional paths is desribed by x2 and x3)Let us suppose the following delivery tasks: τ1 = (3, a, d), τ2 = (6, b, f),
τ3 = (3, c, e). Player one has no hoie (|P1| = 1), player 2 has two possibleoptions (|P2| = 2), and thus has one deision variable x1, whih desribes theproportion regarding the distribution of his delivery among the two available



Tra� Routing Oligopoly 9paths. Player 3 has 3 available paths (|P3| = 3), thus he has two deisionvariables (x2 and x3).The detailed alulations of this example an be found in Appendix A. Theresulting partition funtion in the ase of zero order strategy is summarizedin Table 1. partition (π) values of oalitions (v(S)){1},{2},{3} 0,0,0{1,2},{3} 2.625, -0.75{1,3},{2} 1.8437, 0.1875{1},{2,3} 0.75, 7.125{1,2,3} 12.375Table 1 The resulting partition funtion of network 1 in the ase zero order strategy.Table 1 learly demonstrates the emergene of both positive and negativeexternalities in the ase of zero order strategy. As oalitions {1} and {2}merge,it implies a negative externality on player 3, while in ontrast the merging ofoalitions {1} and {3} or {2} and {3} is bene�ial for the player not inludedin the ooperation (player 2 and 1 respetively).3.2.1 The onvergene of nOPS to Nash equilibriumAfter the alulation of the FOPS, we are able to analyze the higher orderstrategies in the ase of various oalition strutures. Tables 2 and 3 summarize,how the resulting routing variables, and ost of the oalitions hange, whileonseutively applying higher order strategies.Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345678
x1 x2 x33.5 1.5 1.254 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.334.17 2.67 0.334.17 2.67 0.334.17 2.67 0.33

x1 x2 x34.25 1.5 1.254.75 2.5 0.54.86 2.81 0.194.95 2.84 0.164.96 2.86 0.144.97 2.87 0.134.97 2.87 0.134.97 2.87 0.134.97 2.87 0.13
x1 x2 x34 1.63 1.384 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.334.17 2.67 0.334.17 2.67 0.334.17 2.67 0.33Table 2 The evolution of routing variables [x1, x2, x3] of network 1 towards NEs as theorder of strategies inreased.Let us note that the resulting NE oinides in the ase of the all-singletonpartiton and {1, 3}{2}.As we an see in tables 2 and 3, all oalition strutures reah the Nashequilibrium with the auray of ε = 10−2 in the 5th iteration.



10 Dávid Csersik, Balázs SziklaiPartition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345678
c1 c2 c317.25 42 12.6215 38 10.2514.63 37.45 10.2714.53 37.32 10.2714.51 37.29 10.2814.5 37.28 10.2814.5 37.28 10.2814.5 37.28 10.2814.5 37.28 10.28

c{1,2} c356.63 13.3851.5 10.6349.93 10.4549.78 10.4649.68 10.4649.67 10.4649.67 10.4649.67 10.4649.67 10.46
c{1,3} c228.03 41.8125.25 3824.9 37.4524.8 37.3224.79 37.2924.78 37.2824.78 37.2824.78 37.2824.78 37.28Table 3 The evolution of resulting osts of the oalitions in network 1 towards NEs as theorder of strategies inreased.The partition {1}, {2, 3} is not of interest, beause player 1 has no deisionvariables, in this ase all nOPS with n>1 will be the same as the FOPS. Therouting in the ase of the grand oalition is the same in all ases (onsider e.g.

π = {1, 2, 3}) assuming zero order strategy.As we sill see in setion 3.3, the FOPS, SOPS, nOPS sequene of strategiesis not neessary onvergent. Furthermore, as we will show, a NE may exist ina game with divergent nOPS.3.3 Divergent nOPSIn this setion we demonstrate on the widely used Pigou network (Pigou, 1920)that the sequene of the inreasing order strategies is not neessary onvergenteven if a unique NE exists in the game.3.3.1 Routing under Nash equilibrium on Pigou's graphLet ΓP be the well-known example of Pigou i.e. a graph with two parallel edges(u and w) onneting two nodes (s and t). On the so alled upper edge u thelateny is onstant 1, on the lower edge w the lateny is proportional to thetra� (see Fig. 2). Furthermore let N = {1, 2, . . . , n} be the set of players withdelivery tasks τ j = (rj , s, t) i.e. player j has to route rj amount of tra� from
s to t. Let A be an algorithm that omputes a Nash equilibrium in ΓP and let
σ(A) be the orresponding routing strategy. Therefore D(ΓP , N,∆, σ(A)) is awell de�ned delivery game.Note, that the lateny ost of player j is

c(j) = rj − f j
w + f j

w · fw = rj + (λj
w − 1) · f j

w + (f j
w)

2As rj is onstant c(j) is uniquely determined by how muh the playersroute on the lower edge. Note that σ(A) = (f1
w, f

2
w, . . . , f

n
w) is a NE point ifno player j ∈ N an obtain smaller lateny ost by altering his strategy.
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s t

1

xFig. 2 Network 2: Pigou's graph.Theorem 2 If rj ≥ 1
n+1 for any player j ∈ N , where n = |N | then there is aunique Nash equilibrium point in D(ΓP , N,∆, σ(A)), namely where fw = k

k+1and fS
w = 1

k+1 for any S ∈ π, where k = |π|.Proof: It is enough to prove for the singleton partition. For other partitionsthe theorem follows from the fat that eah oalition an be onsidered as aseparate player and if rj ≥ 1
n+1 for all j ∈ N then rS =

∑
j∈S rj ≥ 1

n+1 forall S ∈ π.Suppose players follow the same strategy. Then eah player j ∈ N routes
rj−x amount of tra� on the upper and x amount on the lower edge. This is aNash equilibrium point if for any real number δ ∈ R, suh that 0 ≤ x+ δ ≤ rj ,if player j routes δ amount of tra� in a di�erent way, his individual ost isinreasing. Formally

rj − (x+ δ) + (x+ δ)(n · x+ δ) ≥ rj − x+ (x)(n · x).We an rewrite the above ondition as follows.
δ2 + δ · x · (n+ 1)− δ ≥ 0Whih yields

1− |δ|

n+ 1
≤ x ≤

1 + |δ|

n+ 1for any real number δ. We an onlude that x = 1
n+1 is a Nash equlibriumstrategy for any number of player n.Now we prove that this is a unique NE point. First suppose that fw < n

n+1 .In partiular let fw = n
n+1 − ǫ1. Then there exists j suh that f j

w = 1
n+1 − ǫ2where ǫ2 along with ǫ1 are some positive real numbers. Let m def

= min(ǫ1, ǫ2).Now inreasing f j
w by m dereases c(j).

rj − (f j
w +m) + (f j

w +m) · (fw +m) ≤ rj − f j
w + f j

w · fw (4)Whih is equivalent to
(f j

w +m) · (fw +m− 1) ≤ f j
w · (fw − 1).



12 Dávid Csersik, Balázs SziklaiFor instane if m = ǫ2

( 1

n+ 1
− ǫ2 +m

)
·
( n

n+ 1
− ǫ1 +m− 1

)
≤

( 1

n+ 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

( 1

n+ 1

)
·
( n

n+ 1
− ǫ1 + ǫ2 − 1

)
≤

( 1

n+ 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

ǫ2
n+ 1

≤
−n · ǫ2
n+ 1

+ ǫ1 · ǫ2 + ǫ2

0 ≤ ǫ1 · ǫ2Similar alulations shows that (4) also holds when m = ǫ1. We leave theproof of the ase fw > n
n+1 to the reader.3.3.2 Routing under nOPS strategies on Pigou's graphNow we show that for any partition π ∈ Π(N) that onsists of at least 3oalition, we an set the delivery tasks in suh way that the nOPS strategiesdo not onverge to the NE point inD(ΓP , N,∆, σ(A)). It is lear from Theorem2 that if π is �xed then for every S ∈ π, the zero order strategy is

sS0 =

{
fS
w =

∑
j∈S rj if

∑
j∈S rj < 1/2

fS
w = 1/2 otherwise.If the number of players and the delivery tasks are suh that λS

w ≥ 1 forevery S ∈ π then FOPS of every oalition will be to route everything on theupper edge. Then again the SOPS will be the same as the zero order strategyand so on. Therefore nOPS does not neessarily onverge as n goes to in�nity,even when there is a unique Nash equilibrium point in a given D.3.4 SubadditivityIntuitively one would expet that the delivery game is superadditive. When aoalition is formed it gains extra information from the new members. The sum
λ̂S
e +fS

e that determines the lateny of the edge e seems to be more ontrollableas S gets larger. However this impression turns out to be wrong. We show twoexamples of the arising subadditive property for two di�erent strategies.3.4.1 An example of subadditivity in the ase of zero order strategyIn this example we demonstrate the subadditivity property on a symmetrithree player example assuming zero order strategy. In this three player examplethe ooperation of any two players implies negative onsequenes for them anda positive externality for the third player. The explanation for the phenomena



Tra� Routing Oligopoly 13is that the routing orresponding to the expeted minimum ost result in ahigher overall ost, implied by the other players' ativity.Let us onsider network 3 depited in Fig. 3 and a delivery game with
τ1 = (2, a, t), τ2 = (2, b, t) and τ3 = (2, c, t).

b

t

x2

x2

a

c

f

d

e x2

o

o

o

oo

o

Fig. 3 The basi struture of network 3.Coalition struture {i},{j},{k}Beause of the symmetry, eah player will route his delivery distributed equallybetween the two available paths. This will result in 2 units of tra� on eahline, and a total ost of 8 of eah player.Coalition struture {i,j},{k}It is easy to see that the ooperating players will route their total deliverydistributed equally among the 3 pathways available for them The resultingrouting e.g. in the ase of the oalition struture {1, 2}, {3} will be as depitedin Fig. 4.
b
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7/3

7/3
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f

d

e 4/3
2/3

4/3

2/3

4/31

1 4/3

4/3

2/3

2/3

1

1Fig. 4 Routing in the ase of oalition struture {1,2},{3}The ost of the oalition {1, 2} will be c({1, 2}) = 16.88 whih is 0.88 unitshigher than their total ost in singleton on�guration (v({i, j}) = −0.88). The



14 Dávid Csersik, Balázs Sziklaiost of the third player will be c(3) = 2(1 + 2/3)2 = 5.556 whih implies
v({k}) = 2.444Grand oalitionIn the ase of the grand oalition, the resulting routing and routing osts willbe as the same as in the ase of singleton oalitions, whih means that thesetwo oalition on�gurations are the stable partitions of the game.3.4.2 An Example of subadditivity assuming Nash routing strategyLet us onsider three players with the same delivery task τ1−3 = (1, s, t) onthe Pigou network. It follows from Theorem 2 that for oalition struture
π0 = {1}{2}{3} at the NE point every player routes 1

4 amount of tra� onthe lower edge. Therefore eah player has 3
4 ·1+

1
4 ·

3
4 = 0.9375 lateny ost. Foroalition strutures π = {i}{j, k} the Nash equilibrium strategies are di�erentas oalition {j, k} ats as one player. Therefore at the NE-point there �ows 2

3tra� on the lower edge. The ost of oalition {i} is 2
3 · 1 + 1

3 · 2
3 = 0.88̇ while

{j, k} has 5
3 · 1 + 1

3 · 2
3 = 1.88̇ ost. Sine 1.88̇ > 2 · 0.9375 = 1.875, we ansee that the ooperation of players j and k is not bene�ial for them, whih isan example of subadditivity. If the grand oalition is formed then there goes

1
2 tra� on the bottom road. The overall ost is 5

2 · 1 + 1
2 · 1

2 = 2.75. Table 4summarizes the above omputation.partition (π) ost of players (c(j)) values of oalitions (v(S)){i},{j},{k} 0.9375, 0.9375, 0.9375 0,0,0{i,j},{k} 1.8888̇, 0.8888̇ -0.0138, 0.0487{i,j,k} 2.75 0.0625Table 4 Routing osts and oalitional values in the ase of the Pigou example (network 2)assuming Nash routing.
3.5 StabilityTo analyze stability and determine a harateristi funtion for a ertain strat-egy we use the onept of the reursive ore Kózy (2007, 2009), that allowsthe remaining, residual players to freely reat and form a ore-stable partitionbefore the payo� of the deviating oalition is evaluated.First we de�ne the residual game over the set R ( N . Let us reall that
Π(N) denotes the set of partitions of N . Assume R = N \ R have formed
πR ∈ Π(R). Then the residual game (R, Vπ

R
) is the PFF game over the playerset R with the partition funtion given by Vπ

R
(S, πR) = V (S, πR ∪ πR).



Tra� Routing Oligopoly 15De�nition 2 (Reursive ore Kózy (2007)) For a single-player game thereursive ore is trivially de�ned. Now assume that the oreRC(N, V ) has beende�ned for all games with |N | < k players. For an |N | player game an outome
(x, π) is dominated if there exists a oalition Q forming partition π′ and anoutome (y, π′ ∪ πQ) ∈ Ω(N, V ), suh that yQ > xQ and if RC(Q, Vπ′) 6= ∅then (yQ, πQ) ∈ RC(Q, Vπ′). The (reursive) ore RC(N, V ) of (N, V ) is theset of undominated outomes.Based on the onept of the Reursive Core, a minimal laim funtionan be de�ned, whih desribes the minimal laim of eah oalition in theorresponding PFF game redued to that oalition. This funtion, termed vmcin the following, may be applied in the same spirit as a harateristi funtion,sine it assigns a unique value to eah oalition, whih they an seure forthemselves if they deviated. The formal de�nition of vmc is as follows.De�nition 3 Let us onsider the residual game (S̄, VπS

) over the player set
S de�ned by the partition funtion VS(R, πS) = V (R, πS ∪S) where R ∈ πS ∈
Π(S). Let us denote the Reursive Core of the residual game by RC (S̄, VS).The (pessimisti) minimal laim funtion vmc an be de�ned as
vmc(S) =

{
min∑

i∈S
xi{Ω(N, V )|(x, PS) ∈ RC(S̄, VS)} if RC(S̄, VS) 6= ∅

min∑
i∈S

xi{Ω(N, V )} if RC(S̄, VS) = ∅where vmc(S) is the minimal laim of oalition S.With the help of the minimal laim funtion, a haraterization of theReursive Core an be given as follows.Lemma 1 The Reursive Core RC(N, V ) of the game (N, V ) is a olletionof Pareto e�ient outomes (x, π) ∈ Ω(N, V ), suh that there is no oalition
S with vmc(S) >

∑
i∈S xi.3.5.1 The stability of example 1Aording to the onept of the reursive ore, the minimal laim funtionsregarding the strategies of various order an be determined. The minimal laimfuntions in the ase of zero order strategy and FOPS are summarized in Table5. The reursive ore an be represented as a polytope in the payo� spae.As the order of preditive strategies inrease, we may derive the reursive orefor eah PFF game. Using this method, we get a sequene of reursive ore-polytopes, whose geometry may di�er in general. We an depit the evolutionof the geometry of the reursive ore as the order of the applied strategyinreases (see Fig. 5). The singleton referene ase and so the oalitional valuesand payo�s are di�erent for eah strategy. However as we inrease the orderof the applied strategy the routing variables and the values of the partitionfuntion onverge to the NE and the geometry of the reursive ore onvergeto its �nal shape.



16 Dávid Csersik, Balázs SziklaiCoalition Value{1} 0.75{2} 0.1875{3} -0.75{1,2} 2.625{1,3} 1.8437{2,3} 7.125{1,2,3} 12.375
Coalition Value{1} -0.25{2} 0{3} -0.375{1,2} 1.5{1,3} 0{2,3} 1.875{1,2,3} 4Table 5 Minimal laim funtions derived by the reursive ore method of example 1 in thease of zero order strategy and FOPS

Fig. 5 The projetion of the reursive ore in the ase of various strategies to the plane
x3=0. The equation x3 = v({1, 2, 3}) − x1 − x2 holds in every ase. Let us remember thatthe ost of the referene ase (the all singleton oalitions) aording to whih the values ofthe oalitions in di�erent partitions are determined, is di�erent in the ase of eah strategy- that is the reason why the overall payo� tends to derease.3.5.2 Emptiness of the reursive oreIn this subsetion we show two examples, where the reursive ore turns outto be empty.Non-monotone edge lateny funtionsIn this setion we demonstrate that the reursive ore may be empty if weassume a network with an edge with non-monotone lateny funtion (depitedin Fig.6), and routing tasks δ1 = (1, a, t), δ2 = (1, b, t), δ3 = (1, c, t).Sine the network is symmetri, we may onsider the {i}, {j}, {k} permu-tation of players 1,2 and 3. Zero order strategy and the oalition struture{i},{j},{k} will result in a symmetri on�guration, in whih eah player willroute his delivery on the 0.5 lateny edge. This results in a total ost of 0.5 ofeah player.In ontrast, if we assume the oalition struture {i,j},{k}, then {i,j} willroute his tra� on the (x − 2)2 edge at the ost of 0  v({i, j}) = 1, while
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0.2949Fig. 6 Example network with non-monotone edge lateny funtion and resulting routingin the ase of the grand oalition.the third player is not a�eted (v(k) = 0). In the ase of the grand oalition:
c({1, 2, 3}) = 0.4705 v({1, 2, 3}) = 1.0295. It is easy to see that this resultsin the emptiness of the reursive ore.Non-ontinuous edge lateny funtionsConsider the following example (see Fig.7)3 whereN = {1, 2, 3}, players followzero-order strategy and the delivery tasks are τ1 = (1.4, a, t), τ2 = (1.4, b, t)and τ3 = (1.4, c, t).
Fig. 7 Example network with non-ontinuous edge lateny funtion and resulting routingin the ase of the grand oalition.In the ase of singleton oalitions eah player splits his tra� into twoequal parts and sends them on the two possible routes to t. In this way eahedge with non-zero lateny funtion has a lateny ost of 2 (as ⌈1.4⌉ = 2).For partitions π = {i, j}{k}, player i and j route on the jointly used edge 1amount of tra� and send the rest on the other routes. As a result on the othertwo edge the tra� is inreased to 1.6 however this hange does not a�et thelateny ost of these two edges. Finally in the ase of grand oalition it is not3 ⌈x⌉ denotes the upper integer part of x.



18 Dávid Csersik, Balázs Sziklaihard to see that the players an send only 1 amount of tra� with a latenyost of 1 the rest has to be sent for a lateny ost of 2. Therefore the totalost is 7.4. Emptiness of the ore follows from the fat that the ost saving ofany two person oalition is the same as the ost saving of the grand oalition(see Table 6).partition (π) ost of players (c(j)) values of oalitions (v(S)){i},{j},{k} 2.8, 2.8, 2.8 0,0,0{i,j},{k} 4.6, 2.8 1, 0{i,j,k} 7.4 1Table 6 Emptiness of the ore in a network with non-ontinuous edge lateny funtion.4 Conlusions and future workIn this artile a new family of PFF form delivery games on routing networkshas been introdued. Various routing strategies have been analyzed, and ithas been shown that the sequene of preditive strategies of inreasing ordermay onverge to a NE routing on�guration, but it an be also divergent.We have shown on the widely known Pigou network that NE routing mayexist in suh games, where the nOPS is divergent. We provided examples ofsubadditive senarios in various ases, and thus have proven that the de�nedgame is not neessary superadditive. Furthermore we analyzed the stabilityof the game, and the evolution of the geometry of stable payo� sets via thereursive ore onept. In addition we have shown that assuming non monotoneor non ontinuous lateny funtions the reursive ore may be empty.One straightforward open question is whether the reursive ore may beempty if we suppose ontinuous (stritly) monotone inreasing lateny fun-tions. An other open problem is how to provide neessary and su�ient on-ditions for the sequene of iterative strategies to onverge to a NE. We hopethat the approah of potential methods desribed in (Nisan et al, 2007) mayo�er useful tools for the analysis of this problem.5 AknowledgementThe authors aknowledge the ontribution of the members of the Game TheoryResearh Group, László Á. Kózy, Helga Habis and Péter Biró. The work hasbeen supported by the Hungarian Aademy of Sienes via grant LP-004/2010,by the Hungarian national found OTKA NF 104706, and by TÁMOP-4.2.1/B-11/2/KMR-2011-12-0002.The authors dediate this manusript to Gábor Holló.



Tra� Routing Oligopoly 19Appendix AIn this appendix the detailed alulations regarding network 1 depited inFig. 1 assuming FOPS strategy an be found, to demonstrate the preditivestrategies.Determination of routing paths aording to the zero order strategyTo determine the routing under FOPS strategy, �rst we have to alulate theresulting routing in the ase of zero order strategy. In the ase of singletonoalitions, all players neglet the ativity of other players, and determine theirrouting variables (x) by minimizing
cexp(D,π)(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
ewhere λ̂S

e = 0 for all e ∈ E and for all S ∈ π. In this ase resulting load andlatenies of the network will be as depited in Fig. 8, and listed in Table 2.The routing variables x uniquely determine the edge �ows fS
e .
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Fig. 8 Resulting routing loads, and edge latenies assuming zero order strategy and single-ton oalitions.The resulting total delivery osts of the oalitions (whih are the playersthemself in this ase) an be alulated as:
c(1) = (3 + (6− x1) + (3− x2 − x3))3

c(2) = (x1 + x3)x1 + 2(6 − x1) + (6 − x1 + 3− x2 − x3 + 3)(6 − x1) + 6

c(3) = (0.5 + x2)x2 + (3− x2) + 2(3 − x2 − x3) + (x1 + x3)x3

+((3 − x2 − x3) + (6− x1) + 3)(3 − x2 − x3) (5)



20 Dávid Csersik, Balázs SziklaiIn the above ase the delivery osts will be c(1) = 17.25, c(2) = 42, c(3) =
12.625, as listed in Table 3. As it an be seen, the zero order strategy (notsurprisingly) signi�antly underestimates the routing osts.Other oalition struturesIn the ase of other partitions, the alulations are similar. Eah oalition opti-mizes the routing variables orresponding to the partiipating players, takinginto aount the resulting load the oalition puts on the network. The resultingrouting variables and osts are listed in tables 2 and 3.Determination of routing paths aording to the �rst order preditive strategy(FOPS)
π = {1}, {2}, {3}The route planning of player 1 is still trivial (his expeted ost is 8.25 in thisase).Player 2 will assume that player 1 and player 3 will route their deliv-ery aording to the zero order strategy. This will result in the minimizationof the value of c(2) (see Eq. 5) assuming [x2 x3] = [1.5 1.25] (cexp(2) =
c(2)|[x2 x3]=[1.5 1.25]) this implies x1 = 4.Aording to the zero order routing of players 1 and 2, the expeted ost ofplayer 3 will be cexp(3) = c(3)|x1=3.5, whih is minimal at [x2 x3] = [2.5 0.5].In this ase the delivery osts will be as follows. c(1) = 15, c(2) = 38, and
c(3) = 10.25. As it an be seen when ompared to the zero order strategy, inthe ase of singleton oalitions the FOPS in this ase has redued the totalost of all players.
π = {1, 2},{3}The expeted ost of the oalition {1, 2} is

cexp({1, 2}) = c(1) + c(2)|[x2 x3]=[1.5 1.25]whih is minimal at x1 = 4.75. The routing of player 3 will be as before. Therouting osts will be c(1) = 12.75, c(2) = 38.75 and c(3) = 10.625. Thus thebene�t of the ooperation for oalition {1, 2} is 1.5, while the value of player
3 is -0.375 in this partition.
π = {1, 3},{2}In this ase, player 1 and player 3 an not improve their routing, the resultingwill be the same as in the singleton ase. The expeted ost of the oali-tion {1, 3} is cexp({1, 3}) = c(1) + c(3)|x1=3.5 whih is minimal at [x2 x3] =
[2.5 0.5]. c(1) = 15, c(2) = 38, and c(3) = 10.25.
π = {1},{2, 3}The expeted ost of the oalition {2, 3} is cexp({2, 3}) = c(2) + c(3) whihis minimal at [x1 x2 x3] = [4.25 3 0]. c(1) = 14.25, c(2) = 35.875, and
c(3) = 10.5. This implies a bene�t of 1.875 to the oalition {2, 3}.
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