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Abstract The combination of sources of evidence with reliability has been widely
studied within the framework of Dempster-Shafer theory (DST), which has been
employed as a major method for integrating multiple sources of evidence with
uncertainty. By the fact that sources of evidence may also be different in impor-
tance, for example in multi-attribute decision making (MADM), we propose the
importance discounting and combination method within the framework of DST to
combine sources of evidence with importance, which is composed of an importance
discounting operation and an extended Dempster’s rule of combination. Three ev-
idence combination axioms are proposed and explored to uncover the differences
between reliability and importance in evidence reasoning. Furthermore, a general
scheme is proposed for combination of sources of evidence with both reliability
and importance. An example of car performance evaluation is studied to show the
efficiency of the new general scheme.

Keywords Decision making · Evidence theory · Importance discounting
operation · Extended Dempster’s rule of combination

1 Introduction

In many real-life fusion problems, one has to deal with different sources of informa-
tion arising from human reports, artificial intelligent systems or physical sensors,
which are usually imprecise, uncertain, or incomplete. It’s essential to combine all
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the information in a way that one has a better understanding and assessment of
the complex problem under consideration for decision-making support. Dempster-
Shafer theory (DST) (Dempster 1967; Shafer 1976) or evidence theory, as a general
extension of Bayesian theory, is a common and efficient method employed to solve
the high-level fusion problems in expert reasoning (Shafer 1987; Yang et al 2006;
Ghasemi et al 2013), pattern recognition (Denœux 1995; Denœux and Masson
2012; Tabassian et al 2012), data mining (Anand et al 1996; Scotney and McClean
2003; Srinivasan et al 2005) and decision making (Beynon et al 2001; Davis and
Hall 2003; Xu 2012).

Within the framework of DST, the reliability of different sources is usually
considered in the evidence aggregation process due to the sources’ limitation to
provide totally accurate information (Hégarat-Mascle et al 1998; Milisavljević and
Bloch 2003). As for the combination problem of sources of evidence with reliability,
usually the classical Shafer’s discounting operation (Shafer 1976) is applied before
the classical Dempster’s rule of combination (Dempster 1967). However, in some
decision making problems, especially for MADM, different attributes should be
weighted in order to get more reasonable fusion results (Hwang and Yoon 1981).
While in some previous works (Yang and Sen 1994; Beynon et al 2000; Beynon
2005b), the weights of attributes are utilized according to Shafer’s discounting
operation, which makes no difference with the treatment of reliability. This kind
of management fails to follow the common sense rules (Yang and Xu 2002) that a
rational aggregation process needs to satisfy. Until recently, the importance notion
of one source of evidence is proposed to describe the weight of the corresponding
attribute (Tacnet et al 2009). The authors believe that the reliability and impor-
tance characterize the properties of a source of evidence in different aspects and
thus should be distinguished in the fusion process.

More recently, a method for combining sources of evidence with importance
has been established (Smarandache et al 2010) within the framework of Dezert-
Smarandache theory (DSmT), which extends DST by refuting the exclusivity con-
straint on the frame of discernment. However, it’s explored that the proposed
method has some problems as follows. Firstly, the combination rule developed in
DSmT to integrate the discounted sources of evidence is not associative and hence
will become quite computationally demanding as the number of sources of evidence
increases (Smarandache and Dezert 2006). More seriously, the utilized discounting
operation transfers all the remaining discounted mass to the empty set. We be-
lieve it is theoretically irrational as the empty set is already used to characterize
the conflicting information in their operation and the remaining discounted mass
essentially represents the indecisiveness rather than the conflicting information.

As discussed above, although distinct notion is presented for importance from
reliability, there is still no theoretically sound method to address the evidence
reasoning problem with importance in DST framework and the essential differ-
ences between reliability and importance is also unclear. Motivated by the above
consideration, in this paper, an importance discounting operation is defined that
commits the remaining discounted mass not to the empty set but a new set to
characterize the indecisiveness that needs to be jointly assigned with other new
importance discounted sources. Then, an extended Dempster’s rule of combina-
tion is developed to combine the importance discounted sources of evidence in
DST framework, which is both commutative and associative and thus has a rela-
tively low computing burden. Three evidence combination axioms (independence,
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consensus and completeness) are proposed and explored, which reveal essential
differences between reliability and importance and illustrate the proposed method
in more meaningful ways. Furthermore, a reliability-importance discounting and
combination method is developed, which provides a general scheme for combi-
nation of sources of evidence. Our new general scheme is illustrated via a car
performance evaluation example.

This paper is organized as follows. In Sect. 2, we firstly give a brief reminder
of the basic notions in DST, and then the reliability discounting and combination
method is revisited and analyzed. In Sect. 3, we propose the method for taking into
account the importance of sources of evidence in the combination process and then
three evidence combination axioms are proposed and explored in Sect. 4. Sect. 5
develops a general scheme for combination of sources of evidence with reliability
and importance, and then an example of car performance evaluation is examined
in Sect. 6. Finally, Sect. 7 presents some concluding remarks.

2 Reliability discounting and combination

The combination of sources of evidence with reliability has been widely studied
within the framework of DST. To facilitate later discussion, in this section, we
first briefly review the basic concepts of DST, and then present the concept of
reliability and its acquisition method. Finally, the classical reliability discounting
and combination method is revisited and analyzed.

2.1 Basic concepts in DST

To begin with, let us introduce some basic concepts in DST (Shafer 1976). In DST,
a problem domain is represented by a finite set Θ = {θ1, θ2, · · · , θn} of mutually
exclusive and exhaustive hypotheses called the frame of discernment. A basic belief
assignment (BBA) expressing the belief committed to the elements of 2Θ by a given
source of evidence is a mapping function m(·): 2Θ → [0, 1], such that

m(∅) = 0 and
∑

A∈2Θ
m(A) = 1,

where, 2Θ denotes the power set of Θ, consisting all the 2n subsets of Θ. Elements
A ∈ 2Θ having m(A) > 0 are called focal elements of the BBA m(·). A BBA m(A)
measures the degree of belief exactly assigned to a proposition A and represents
how strongly the proposition is supported by evidence. The belief assigned to all
the subsets of 2Θ is summed to unity and there is no belief left to the empty set.
The belief assigned to Θ, or m(Θ), is referred to as the degree of global ignorance.

Shafer also defines the belief and plausibility functions of A ∈ 2Θ as follows

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A̸=∅
m(B). (1)

Bel(A) represents the exact support to A and its subsets, and Pl(A) represents all
the possible support to A and its subsets. The interval [Bel(A),Pl(A)] can be seen
as the lower and upper bounds of support to A. The belief functions m(·), Bel(·)
and Pl(·) are in one-to-one correspondence.
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For decision-making support, the pignistic probability BetP(A) (Smets 2005) is
commonly used to approximate the unknown probability in [Bel(A),Pl(A)], given
by

BetP(A) =
∑

B⊆Θ
A∩B ̸=∅

|A ∩B|
|B| m(B), (2)

where, |X| stands for the cardinality of the element X.

2.2 Reliability and its acquisition

As in (Smarandache et al 2010), the definition of reliability for a source of evidence
in the context of DST is given as follows.

Definition 1 (reliability of a source of evidence) The reliability, as an objec-
tive property of a source of evidence, represents its capability to provide correct
measure or assessment of the considered problem.

Remark 1 The reliability of a source of evidence can be characterized by a relia-
bility factor α ∈ [0, 1], where α = 1 and α = 0 represents that the source is fully
reliable and totally unreliable, respectively. Besides, according to this definition,
the reliability of one source of evidence is determined only by itself and the re-
liability factors of different sources of evidence involved in the fusion process is
independent with each other.

The reliability of a source of evidence does exit in many fusion problems and
generally can be acquired in the following two ways:

– The reliability of a source of evidence is prior-known or can be determined
from some available properties (Haenni and Hartmann 2006). For example, it
may be constructed from the known measurement accuracy of the given sensor.
Sometimes, this reliability would be context-dependent (Mercier et al 2008).
For example, if a sensor more possibly does not perform well under bad weather
conditions, then the corresponding reliability of information from that sensor
will be expected to become smaller.

– The reliability of a source of evidence is approximately estimated from the
dissimilarity with the other sources of evidence (Deng et al 2004; Liu et al
2011). Generally, for any a source of evidence, its larger dissimilarity with
other sources measures the lower reliability.

2.3 Shafer’s discounting operation and Dempster’s rule of combination

The reliability of a source of evidence is generally considered according to Shafer’s
discounting method (Shafer 1976). Mathematically, Shafer’s discounting operation
(detonated as ⊗) for taking into account the reliability factor α ∈ [0, 1] of a given
source with a BBA m(·) and a frame Θ is defined by

α⊗m(A)
∆
= mα(A) =

{
αm(A), for A ∈ 2Θ and A ̸= Θ

αm(Θ) + (1− α), for A = Θ.
(3)
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As shown in Eq.(3), Shafer’s discounting method multiplies the masses of focal
elements by the reliability factor α, and transfers all the remaining discounted
mass 1−α to the global ignorance Θ. By the fact that αm(Θ)+(1−α) > αm(Θ)+
(1 − α)m(Θ) = m(Θ) in case of m(Θ) < 1 and α < 1, such discounting operation
almost always increases the global ignorance.

After the reliability discounting operation, Dempster’s rule of combination (the
orthogonal sum operation ⊕) is usually used to combine two discounted pieces of
evidence on the same frame Θ represented by two BBAs mα1

1 (·) and mα2
2 (·) to

generate a new BBA, denoted by mD
12(·)

mα1
1 ⊕mα2

2 (A)
∆
= mD

12(A) =


0, for A = ∅∑

B,C∈2Θ ;B∩C=A

m
α1
1 (B)m

α2
2 (C)

1−
∑

B,C∈2Θ ;B∩C=∅
m

α1
1 (B)m

α2
2 (C)

, for A ∈ 2ΘandA ̸= ∅.

(4)

As described in (Shafer 1976), Dempster’s rule of combination is both commu-
tative and associative.

3 Importance discounting and combination

The importance of a source plays significant role in the process of MADM and it
is quite different from the reliability of that source. Specifically, the importance
usually reflect the decision maker’s subjective preference to this kind of source
while the reliability is a objective property representing the source’s capability to
provide the correct measure or assessment and thus they should be addressed in
different ways. This section aims to study the fusion problem of sources of evidence
with importance in DST framework.

3.1 Importance and its acquisition

Distinct from the concept of reliability, as in (Smarandache et al 2010), the im-
portance of a source of evidence in the context of DST can be defined as follows.

Definition 2 (importance of a source of evidence) The importance, as a sub-
jective property of a source of evidence, represents the weight of that source which
reflects the decision maker’s subjective preference in the fusion process.

Remark 2 Different from the reliability defined in Sect. 2, the defined importance
belongs to a relative notion. In other words, the importance of one source is mean-
ingless without comparing with other sources. It can be characterized by an impor-
tance factor, denoted β ∈ [0, 1]. The decision maker will take β = 1 when he/she
wants to grant the maximum importance to the source in the fusion process, and
will take β = 0 if no importance at all is granted to this source.

The importance of a source of evidence (or the relative weight of the corre-
sponding attribute) can be determined in the following two ways:
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– In most cases, weights are selected based on preference information of attributes
given by the fusion system designers (FSDs) or the decision makers (DMs). The
commonly-used methods include direct rating method (Roberts and Goodwin
2002), ranking ordering method (Barron and Barrett 1996), and analytic hier-
archy process (AHP) method (Ishizaka and Lusti 2006; Dijkstra 2013), which
reflect the subjective intuition or the knowledge of FSDs or DMs.

– Sometimes the relative weight of the attribute will be determined from some
available properties with the respect to the importance of the attribute, for
example, the entropy of the decision matrix (Xu 2004).

3.2 Importance discounting operation

In this subsection, we propose a solution to consider the importance of sources of
evidence in DST framework. Our definition of importance discounting operation
draws inspiration from the weight addressing technique in ER algorithm for MAD-
M (Yang and Xu 2002; Xu et al 2006; Yang and Xu 2011). We define this operation
in the viewpoint of “importance”as the counterpart of Shafer’s discounting oper-
ation for reliability of sources of evidence. It commits the remaining discounted
mass to a new set Ω rather than the global ignorance set Θ as done by Shafer in
reliability discounting presented in Sect. 2.

Definition 3 (importance discounting operation) The importance discounting
operation (detonated as ⊙) of a source of evidence having the importance factor
β ∈ [0, 1] and associated BBA m(·) can be defined as

β ⊙m(A)
∆
= mβ(A) =

{
βm(A), for A ∈ 2Θ

1− β, for A = Ω
(5)

where, Ω is the power set of Θ, i.e. Ω = 2Θ.

Remark 3 In this new discounting operation, mβ(Ω) is not interpreted as the mass
committed to the conflicting information (as mα(Θ) in reliability discounting), nor
as the mass committed to some unknown elements (as m(∅) in Smets’ open-word
assumption (Smets 1990)), but only the the indecisiveness among the subset of 2Θ

that needs to be jointly assigned with other new importance discounted sources
of evidence. Further, the indecisiveness introduced in this paper is different from
the non-specificity also discussed in DST literature (Beynon 2005b). It is clear
that indecisiveness is defined with respect to different focal elements A ⊆ Θ (or
A ∈ Ω = 2Θ), while non-specificity is defined with respect to different hypotheses
θ ∈ Θ.

It is worth noting that, after the importance discounting operation, the original
BBA is extended with new belief assignment mβ(Ω). To facilitate later discussion,
we define this kind of extended BBA as follows.

Definition 4 (importance basic belief assignment) An importance basic belief

assignment (IBBA, for short) in DST framework is a function mβ(·) : 2Θ ∪ {Ω} ∆
=

2Θ
+

→ [0, 1], satisfying{
mβ(∅) = 0∑

A∈2Θ+ mβ(A) =
∑

A∈2Θ mβ(A) +mβ(Ω) = 1.
(6)
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An IBBA mβ(A) represents the importance discounted degree of belief assigned
to a proposition A and measures how strongly the proposition is supported by
evidence in the sense of the relative importance. The belief assigned to Ω, or
mβ(Ω), is referred to as the degree that is not assigned to any subset of 2Θ and
needs to be jointly assigned with other new IBBAs.

3.3 Extended Dempster’s rule of combination

After all the sources of evidence are discounted according to the importance dis-
counting operation defined in the above subsection, a combination rule is needed
to integrate all the discounted sources to get the fusion result. As new belief assign-
ment mβ(Ω) is introduced in IBBA, so the classical Dempster’s rule of combination
needs to be extended to combine different IBBAs.

Definition 5 (extended Dempster’s rule of combination) With two pieces of

evidence with importance factors β1 and β2 represented by two IBBAs mβ1

1 (·)
and mβ2

2 (·) defined on 2Θ
+

, the classical Dempster’s rule of combination can be
extended as

mβ1

1 ⊕mβ2

2 (A)
∆
= mED

12 (A) =


0, for A = ∅∑

B,C∈2Θ
+

;B∩C=A

m
β1
1 (B)m

β2
2 (C)

1−
∑

B,C∈2Θ
+

;B∩C=∅

m
β1
1 (B)m

β2
2 (C)

, for A ∈ 2Θ
+

andA ̸= ∅.

(7)

Similar with the Dempster’s rule of combination, the proposed extended Demp-
ster’s rule of combination is also based on the orthogonal sum operation ⊕, so the
extended Dempster’s rule of combination is also both commutative and associa-
tive. As a result, for multiple sources of evidence, the combination process can
proceed in a recursive way to avoid high computation burden.

Lemma 1 The combination result with the extended Dempster’s rule of combination is

an IBBA. In other words, for the combination result, mED(∅) = 0 and
∑

A∈2Θ+ mED(A) =
1.

Proof See Appendix A.

Since we usually need to work with normal BBA for decision-making sup-
port, after combining all the importance discounted IBBAs using the extended
Dempster’s rule of combination, the fusion result mED(·) will be normalized by
redistributing the mass of belief committed to the set Ω to the other focal elements
proportionally to their masses as follows

mnorm(A) =
mED(A)

1−mED(Ω)
, ∀A ∈ 2Θ. (8)
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4 Analysis of reliability and importance

In the previous section, the importance of a source of evidence is defined differently
from the reliability and then a method is proposed to combine sources of evidence
with importance. However, the necessity of distinguishing reliability and impor-
tance in the evidence combination process is still unclear. In this section, three
evidence combination axioms are proposed and explored to uncover the essential
differences between reliability and importance and thus lay theoretical foundation
for the proposed method.

Inclined to developing theoretically sound methods for dealing with MADM
problems under uncertainty, Yang and Xu (2002) proposed four self-evident rules,
with which a rational attribute aggregation process needs to satisfy. Inspired by
these ideas, here we refine and extend these rules within the framework of DST and
propose three evidence combination axioms as follows (Suppose mi(·) (i = 1, · · · , L)
are L basic sources of evidence’s BBAs on the same frame of discernment Θ and
m(·) is the fusion result).

Axiom 1 (independence) If no evidence assigns mass to one non-global ignorance

set or its supersets, then the combination result will not assign mass to the same set

either. Mathematically, ∀S ∈ 2Θ \ Θ, if ∀S+ ⊇ S, mi(S
+) = 0 for all i = 1, · · · , L,

then m(S) = 0.

Axiom 2 (consensus) If all evidence assigns full mass to one non-global ignorance

set, then the combination result will assign full mass to the same set too. Mathemati-

cally, ∀S ∈ 2Θ \Θ, if mi(S) = 1 for all i = 1, · · · , L, then m(S) = 1.

Axiom 3 (completeness) If all evidence assigns full mass to the subsets of one non-

global ignorance set, the combination result will also assign full mass to the subsets of

the same set. Mathematically, ∀S ∈ 2Θ\Θ, if
∑

S−⊆S mi(S
−) = 1 for all i = 1, · · · , L,

then
∑

S−⊆S m(S−) = 1.

Remark 4 In the three axioms defined above, the global ignorance set Ω is not taken
into consideration mainly because as a special set it may take other explanation
(e.g. conflicting information in reliability discounting) besides global ignorance. So,
the explanation ambiguity of set Ω will destroy the rationality of the three axioms.
Besides, the three axioms are extended from Yang’s self-evident rules (Yang and
Xu 2002), in which they also didn’t take into account the global ignorance set in
the attribute aggregation process.

In order to explain the three evidence combination axioms in a more compre-
hensible way, a simple MADM example is given below.

Example 1 (car performance evaluation). As in Fig.1, we consider the prob-
lem of evaluating the performance of three types of car (decision alternatives, DAs),
namely, A, B, and C. In the DST terminology used above, {A,B,C} is the frame
of discernment Θ. The overall performance of each type of car is evaluated based
on three major attributes: quality of engine, operation, and comfortableness. Now,
the three axioms can be explained from the aspect of MADM as follows.

– Suppose no attribute assigns belief to car A as the best car, then the attribute
aggregation result will not assign any belief to car A. (independence)
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Best Car

Engine Operation Comfortableness

A B C A B C A B C

Focus

Attributes

DAs

Fig. 1 A car performance evaluation example.

– Suppose all attributes assign full belief to car A as the best car, then the
attribute aggregation result will also assign full belief to car A. (consensus)

– Suppose all attributes assign full belief to car B or C as the best car, then
the attribute aggregation result will also assign full belief to car B or C.
(completeness)

The above axioms characterize three commonsense properties of the evidence
combination process. While, if the reliability of sources of evidence is considered,
some of them may not be satisfied as shown in the following theorem.

Theorem 1 The reliability discounting and combination method, displayed as Eqs.(3)-

(4), satisfies the independence axiom, but fails to satisfy the consensus and completeness

axioms.

Proof See Appendix B.

This theorem is straightforward if one has a deep understanding of the reliabil-
ity. Now, we consider the consensus axiom in Example 1. Suppose all attributes
assign full belief to car A as the best car, considering the decision maker is unfa-
miliar with the engine, wrong assessment may be provided (maybe car B has the
best engine performance in reality), and so the attribute aggregation result should
not assign full belief to car A as the best car.

Then, with different concept from reliability, it’s interesting to know whether
the importance discounting and combination method proposed in Sect. 3 satisfies
the three axioms. The following theorem presents the conclusion.

Theorem 2 The proposed importance discounting and combination method, displayed

as Eqs.(5),(7)-(8), satisfies the independence, consensus and completeness axioms.

Proof See Appendix C.

As illustrated in the above theorem, distinct from the reliability, the consensus
and completeness axioms are still preserved if the importance is considered in the
evidence combination process. Here, we also take the consensus axiom for example
to explain it in a reasonable way. Suppose all attributes assign full belief to car A
as the best car, as the importance is a subjective property of a source of evidence
and it does no matter with the source’s capability, so the importance discounting
only assign weights to each attributes rather than change their assessments, and
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thus it’s intuitively reasonable that the attribute aggregation result will also assign
full belief to car A.

In short, due to the fact that reliability and importance are distinct notions,
they should be managed in different ways and consequently the two discounting
and combination methods differ in properties. Furthermore, considering that relia-
bility and importance may coexist in some cases, a general scheme for combination
of sources of evidence will be developed in next section.

5 A general scheme for combination of sources of evidence

In this section, we would like to establish a general scheme for combination of
sources of evidence. Now, we examine the possibility to take into account both
the reliability factor α and the importance factor β of a given source of evidence
characterized by its BBA m(·). Apparently, it’s a natural way to discount the
original BBAm(·) by α with reliability discounting operation and then discount the
result mα(·) by β with importance discounting operation. This kind of realization
is given as follows.

Definition 6 (reliability-importance discounting operation) We define the reliability-
importance discounting operation of a source of evidence having the reliability
factor α ∈ [0, 1], the importance factor β ∈ [0, 1] and the associated BBA m(·) in
the frame of discernment Θ by

β ⊙ (α⊗m(A))
∆
= mα,β(A) =


αβm(A), for A ∈ 2Θ, A ̸= Θ

αβm(Θ) + (1− α)β, for A = Θ

1− β, for A = Ω.

(9)

where, Ω has the same meaning as in Definition 3.

As the result of reliability-importance discounting operation is an IBBA, so
the proposed extended Dempster’s rule of combination in Sect. 3 can be used to
combine multiple reliability-importance discounted IBBAs.

This kind of reliability-importance discounting and combination method pro-
vides a general scheme for combination of sources of evidence to take into account
both the reliability and importance. It can be seen that, when β = 1 (the source has
full importance), the reliability-importance discounting and combination method
simplifies to the reliability discounting and combination method presented in Sec-
t. 2; when α = 1 (the source has full reliability), the importance discounting and
combination method proposed in Sect. 3 is obtained; and when both α = 1 and
β = 1 (the source has both full importance and reliability), the original BBA
m(·) keeps unchanged and the classical Dempster’s rule of combination is used to
integrate the sources of evidence.

Remark 5 Because the reliability is considered in the evidence combination process,
it’s easy to know that the proposed general scheme also only satisfies the indepen-
dence axiom, and it doesn’t satisfy the consensus and completeness axioms except
that all the sources of evidence take full reliability (αi = 1, i = 1, · · · , L), in which
case the general scheme reduces to the importance discounting and combination
method.
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6 Case study

6.1 Problem presentation

Here we conduct a comprehensive study of the car performance evaluation problem
described in Example 1. For this MADM problem, as described in Sect. 3, the
relative importance of different attributes plays significant role in the process of
decision making. Besides, the knowledge level of decision maker (DM) may vary
in the three corresponding fields (i.e. Engine, Operation, and Comfortableness),
and so the reliability of different knowledge matrices provided by the DM should
also be considered in the decision process.

The DS/AHP framework (Beynon et al 2000; Beynon 2002) is used here to
conduct the analysis of the above MADM problem. Compared with standard ana-
lytic hierarchy process (AHP) method, the inclusion of DST allows for uncertainty
in the judgements. More details about this framework can be found in (Beynon
et al 2000). Within the DS/AHP framework, it is assumed that with respect to
each attribute the “uncertain”knowledge matrices for decision alternatives (DAs)
are given by the DM based on his/her knowledge as Table 1.

Table 1 Knowledge matrices for different attributes

Engine A B C Θ

A 1 0a 0 3
B 0 1 0 1/2
C 0 0 1 1
Θ 1/3 2 1 1

Operation A B C Θ

A 1 0 0 2
B 0 1 0 5
C 0 0 1 1
Θ 1/2 1/5 1 1

Comfortableness A B C Θ

A 1 0 0 1/2
B 0 1 0 1
C 0 0 1 2
Θ 2 1 1/2 1

a The zero’s appearing in the knowledge matrix indicate there is no necessity to compare
different individual DAs (e.g., A to B) directly; this assertion can be made indirectly through
knowledge of the favorability of A to Θ and B to Θ relatively.

6.2 Derivation of BBAs, reliability and importance factors

The derivation of BBAs is the basis for evidence combination in DST. Here, the
method in (Beynon et al 2000) is used to construct the BBAs from the above
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knowledge matrices. The normalized principal eigenvectors of the knowledge ma-
trices displayed in Table 1 are derived as the corresponding BBAs for the three
attributes engine, operation and comfortableness as follows.

m1(·) : m1(A) = 0.4814, m1(B) = 0.0802, m1(C) = 0.1605, m1(Θ) = 0.2779
m2(·) : m2(A) = 0.2055, m2(B) = 0.5138, m2(C) = 0.1028, m2(Θ) = 0.1780
m3(·) : m3(A) = 0.0956, m3(B) = 0.1911, m3(C) = 0.3823, m3(Θ) = 0.3310

The reliability factors will be estimated if the DM’s knowledge level in the
three corresponding fields is known. For example, if it is known prior that the
DM is familiar with engine, expert in operation but has a low sensitivity for the
comfortableness of a car, then the reliability factors for the above three BBAs can
be empirically set as α1 = 0.9, α2 = 1.0 and α3 = 0.5, respectively.

As for the importance factors, the AHP method mentioned in Sect. 3 is utilized
here. Suppose the DM believes that comfortableness is two times more important
than the quality of engine, three times more important than the quality of oper-
ation and the quality of engine is two times more important than the quality of
operation, then the preference matrix among the three attributes is displayed as


Engine Operation Comfortableness

Engine 1 2 1/2
Operation 1/2 1 1/3
Comfortableness 2 3 1

.

Its normalized principal eigenvector w = [0.30, 0.16, 0.54] can be used as the
corresponding importance factors.

6.3 Numerical results

In this numerical study, to make a comparison, the reliability discounting and
combination method (RDC, only consider the reliability), the importance dis-
counting and combination method (IDC, only consider the importance), and the
reliability-importance discounting and combination method (RIDC, consider both
the reliability and importance) are tested to integrate the BBAs with differen-
t reliability and importance factors derived in the previous subsection. For each
method, the BBAs for the three attributes are firstly discounted and then com-
bined to get the combination result. The final decision is then can be made based
on the combination result according to some decision criteria.

Table 2 Combination results with different methods(RDC, IDC, and RIDC)

m1 m2 m3 RDC IDC RIDC

{A} 0.4814 0.2055 0.0956 0.3354 0.2260 0.1905
{B} 0.0802 0.5138 0.1911 0.4046 0.2161 0.1674
{C} 0.1605 0.1028 0.3823 0.1618 0.2974 0.1740
Θ 0.2779 0.1780 0.3310 0.0982 0.2605 0.4681

Table 2 shows the combination results of the three pieces of evidence using
different methods (Eqs.(3)-(4) for RDC, Eqs.(5),(7)-(8) for IDC, Eqs.(9),(7)-(8) for
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RIDC, respectively). Usually, the DM is concerned with a single choice among the
three cars. The decision can be made using the maximum of pignistic probability
(BetP) criteria defined as Eq.(2) over the raw combination results obtained above.

Table 3 BetP criteria and decision results based on BetP

Cars Engine Operation Comfortableness RDC IDC RIDC

A 0.5740 0.2648 0.2059 0.3681 0.3128 0.3465
B 0.1729 0.5731 0.3015 0.4374 0.3030 0.3234
C 0.2531 0.1621 0.4926 0.1945 0.3842 0.3301

Decision A≻C≻B B≻A≻C C≻B≻A B≻A≻C C≻A≻B A≻C≻B

Table 3 shows the BetP criteria of the DAs (Rows 2-4) as well as the deci-
sion results based on these criteria (Row 5). For comparison, apart from the three
methods (RDC, IDC, and RIDC), the decision results based on each individual
attribute (Engine, Operation, and Comfortableness) are also given. It can be seen
that the decision results are different for the three methods mainly because dif-
ferent kinds of additional information are considered in the decision process. For
RDC method, the decision result is the same with that based on the Operation
attribute, since its corresponding knowledge matrix has the largest reliability. For
IDC method, the decision result about the best car is the same with that based
on the Comfortableness attribute, since the DM assigns the greatest importance
to this attribute. While, for RIDC method, the decision result is the same with
that based on the Engine attribute which behaves not bad both in reliability and
importance. It’s believed that the RIDC method gives the most reasonable deci-
sion result as both the reliability of the knowledge matrices and the importance
of attributes are considered.

7 Conclusions

Real-world fusion problems are complex in that they often involve multiple sources
of evidence with uncertainty. Further, different sources of evidence to be combined
may not have the same reliability or importance, while the two properties make
no difference in some previous works. In this paper, the concepts of reliability and
importance are clarified and the importance discounting and combination method
composed of an importance discounting operation and an extended Dempster’s
rule of combination is proposed within the framework of DST to integrate sources
of evidence with importance. We show some interesting axioms satisfied by the
new method, which further reveal the essential differences between reliability and
importance. A general scheme is developed to combine sources of evidence to take
into account both the importance and reliability. An example of car performance
evaluation is studied and the numerical results show the efficiency of the new
general scheme considering both the reliability of the knowledge matrices and the
importance of different attributes.



14 Lianmeng Jiao et al.

Noting that the importance of a source of evidence is still a new concept in DST
framework, the importance discounting and combination method proposed in this
paper is just one kind of realization. That is, other importance discounting and
combination methods in future works may also be reasonable if some axioms (such
as independence, consensus and completeness) reflecting the nature of importance
are satisfied.

In addition, this paper mainly focuses on the combination of sources of evidence
with reliability and importance encountered in general MADM problems. While, to
the more complicated group multi-attribute decision making (GMADM) problems
(Beynon 2005a), besides the attributes’ reliability and importance considered in
general MADM, a rational evidence aggregation process also needs to take into
account the importance of individuals in the group. In future work, we will extend
the reliability-importance discounting and combination method developed in this
paper to address the evidence aggregation problem in GMADM.

A Proof of Lemma 1

According to Definition 5, mED
12 (∅) = 0 is satisfied directly. Besides,

∑
A∈2Θ

+

mED
12 (A) =

∑
A∈2Θ

+
,A̸=∅

mED
12 (A) + mED

12 (∅) =
∑

A∈2Θ
+

,A̸=∅
mED

12 (A)

=

∑
A∈2Θ

+
,A ̸=∅

 ∑
B,C∈2Θ

+
;B∩C=A

m
β1
1 (B)m

β2
2 (C)


1−

∑
B,C∈2Θ

+
;B∩C=∅

m
β1
1 (B)m

β2
2 (C)

.

(10)

Because,

∑
A∈2Θ

+
,A̸=∅

 ∑
B,C∈2Θ

+
;B∩C=A

mβ1
1 (B)mβ2

2 (C)

+
∑

B,C∈2Θ
+

;B∩C=∅
mβ1

1 (B)mβ2
2 (C)

=
∑

A∈2Θ
+

 ∑
B,C∈2Θ

+
;B∩C=A

mβ1
1 (B)mβ2

2 (C)

 =
∑

B∈2Θ
+

mβ1
1 (B)

∑
C∈2Θ

+

mβ2
2 (C)


=

∑
B∈2Θ

+

mβ1
1 (B) = 1,

so, Eq.(10) equals 1. Therefore, the combination result mED
12 (·) with the extended Dempster’s

rule of combination is an IBBA.

B Proof of Theorem 1

Suppose mi(·) (i = 1, · · · , L) are L basic sources of evidence’s BBAs on the same frame of
discernment Θ with reliability factors αi ∈ [0, 1] (i = 1, · · · , L). Denote m(·) the integrated
BBA with the reliability discounting and combination method.

As for the independence axiom, ∀S ∈ 2Θ \ Θ, suppose ∀S+ ⊇ S, mi(S
+) = 0 for all

i = 1, · · · , L. Discount all the L BBAs with their corresponding reliability factors αi using
Shafer’s discounting operation displayed as Eq.(3), we can get the reliability discounted BBAs
assigned to S+

mi
αi (A) =

{
0, for A ∈ 2Θ, A ⊇ S,A ̸= Θ
1− αi, for A = Θ

for i = 1, · · · , L. (11)
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Then, the Dempster’s rule of combination displayed as Eq.(4) will be used to get the
integrated BBAs assigned to S

m(S) =
∑

Xi∈2Θ ;
L∩

i=1
Xi=S

L∏
i=1

m
αi
i (Xi)

/1−
∑

Xi∈2Θ ;
L∩

i=1
Xi=∅

L∏
i=1

m
αi
i (Xi)

. (12)

Since
L∩

i=1
Xi = S, so Xi ⊇ S. According to Eq.(11), if Xi ̸= Θ, m

αi
i (Xi) = 0 for all

i = 1, · · · , L. Because it’s impossible for all Xi to take Θ satisfying
L∩

i=1
Xi = S, so,

L∏
i=1

m
αi
i (Xi)

will equal 0 in any cases. Hence, m(S) in Eq.(12) equals 0. That is, the reliability discounting
and combination method satisfies the independence axiom.

As for the consensus axiom, ∀S ∈ 2Θ \ Θ, suppose mi(S) = 1 for all i = 1, · · · , L. Dis-
count all the L BBAs with their corresponding reliability factors αi using Shafer’s discounting
operation displayed as Eq.(3), we can get the reliability discounted BBAs

mi
αi (A) =

αi, for A = S
0, for A ∈ 2Θ, A ̸= S,A ̸= Θ for i = 1, · · · , L.
1− αi, for A = Θ

Then, the Dempster’s rule of combination displayed as Eq.(4) will be used to integrate the
reliability discounted BBAs

m(A) =


0, for A ∈ 2Θ, A ̸= S,A ̸= Θ
L∏

i=1
(1− αi), for A = Θ.

So,

m(S) = 1−
∑

A∈2Θ,A̸=S,A̸=Θ

m(A)−m(Θ) = 1−
L∏

i=1

(1− αi).

Thus, the reliability discounting and combination method only satisfies the consensus
axiom when at least one source of evidence takes full reliability (∃k ∈ {1, · · · , L}, αk = 1).

As for the completeness axiom, ∀S ∈ 2Θ \ Θ, suppose
∑

S−⊆S mi(S
−) = 1 for all i =

1, · · · , L. We can know that ∀S++ ⊃ S, mi(S
++) = 0. Discount all the L BBAs with their

corresponding reliability factors αi using Shafer’s discounting operation displayed as Eq.(3),
we can get the reliability discounted BBAs assigned to S++

mi
αi (A) =

{
0, for A ∈ 2Θ, A ⊃ S,A ̸= Θ
1− αi, for A = Θ

for i = 1, · · · , L. (13)

Then, the Dempster’s rule of combination displayed as Eq.(4) will be used to get the
integrated BBAs assigned to S++

m(S++) =
∑

Xi∈2Θ ;
L∩

i=1
Xi=S++

L∏
i=1

m
αi
i (Xi)

/1−
∑

Xi∈2Θ ;
L∩

i=1
Xi=∅

L∏
i=1

m
αi
i (Xi)

. (14)

Since
L∩

i=1
Xi = S++, so Xi ⊇ S++ ⊃ S. Now, we consider it for two cases. If S++ ̸= Θ,

according to Eq.(13), m
αi
i (Xi) = 0 for all i = 1, · · · , L. So, m(S++) in Eq.(14) equals 0. If

S++ = Θ, it’s easy to get m(S++) = m(Θ) =
L∏

i=1
(1− αi)

/
(1− k).
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So,∑
S−⊆S m(S−) = 1−

∑
S++⊃S m(S++) = 1−

∑
S++⊃S,S++ ̸=Θ m(S++)−m(Θ)

= 1−m(Θ) = 1−
L∏

i=1
(1− αi)

/
(1− k).

Therefore, the reliability discounting and combination method only satisfies the complete-
ness axiom when at least one source of evidence takes full reliability (∃k ∈ {1, · · · , L}, αk = 1).

C Proof of Theorem 2

Suppose mi(·) (i = 1, · · · , L) are L basic sources of evidence’s BBAs on the same frame of
discernment Θ with importance factors βi ∈ [0, 1] (i = 1, · · · , L). Denote m(·) the integrated
BBA with the proposed importance discounting and combination method.

As for the independence axiom, ∀S ∈ 2Θ \ Θ, suppose ∀S+ ⊇ S, mi(S
+) = 0 for all

i = 1, · · · , L. Discount all the L BBAs with their corresponding importance factors βi using the
importance discounting operation displayed as Eq.(5), we can get the importance discounted
IBBAs assigned to S+

mi
βi (A) = 0,∀A ⊇ S, for i = 1, · · · , L. (15)

Then, the extended Dempster’s rule of combination displayed as Eq.(7) will be used to get
the integrated IBBAs assigned to S

mED(S) =
∑

Xi∈2Θ
+

;
L∩

i=1
Xi=S

L∏
i=1

m
βi
i (Xi)

/1−
∑

Xi∈2Θ
+

;
L∩

i=1
Xi=∅

L∏
i=1

m
βi
i (Xi)

. (16)

As
L∩

i=1
Xi = S, so Xi ⊇ S. According to Eq.(15), m

βi
i (Xi) = 0 for all i = 1, · · · , L. Hence,

mED(S) in Eq.(16) equals 0. It’s straightforward that m(S) = mED(S)
/(

1−mED(Ω)
)
= 0.

That is, the importance discounting and combination method satisfies the independence axiom.
As for the consensus axiom, ∀S ∈ 2Θ \ Θ, suppose mi(S) = 1 for all i = 1, · · · , L.

Discount all the L BBAs with their corresponding importance factors βi using the importance
discounting operation displayed as Eq.(5), we can get the importance discounted IBBAs

mi
βi (A) =

 βi, for A = S
0, for A ∈ 2Θ, A ̸= S for i = 1, · · · , L.
1− βi, for A = Ω

Then, the extended Dempster’s rule of combination displayed as Eq.(7) will be used to
integrate the importance discounted IBBAs

mED(A) = 0, ∀A ∈ 2Θ, A ̸= S.

According to Lemma 1, it holds that∑
A∈2Θ

+ mED(A) =
∑

A∈2Θ,A̸=S
mED(A)+mED(S)+mED(Ω) = mED(S)+mED(Ω) = 1.

Furthermore, via the normalization in Eq.(8), we obtain

m(S) =
mED(S)

1−mED(Ω)
=

mED(S)

mED(S)
= 1.

So, the importance discounting and combination method satisfies the consensus axiom.
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As for the completeness axiom, ∀S ∈ 2Θ \ Θ, suppose
∑

S−⊆S mi(S
−) = 1 for all i =

1, · · · , L. We can know that ∀S++ ⊃ S, mi(S
++) = 0. Discount all the L BBAs with their

corresponding importance factors βi using the importance discounting operation displayed as
Eq.(5), we can get the importance discounted IBBAs assigned to S++

mi
βi (A) = 0, ∀ A ⊃ S, for i = 1, · · · , L. (17)

Then, the extended Dempster’s rule of combination displayed as Eq.(7) will be used to get
the integrated IBBAs assigned to S++

mED(S++) =
∑

Xi∈2Θ
+

;
L∩

i=1
Xi=S++

L∏
i=1

m
βi
i (Xi)

/1−
∑

Xi∈2Θ
+

;
L∩

i=1
Xi=∅

L∏
i=1

m
βi
i (Xi)

.

(18)

As
L∩

i=1
Xi = S++, so Xi ⊇ S++ ⊃ S. According to Eq.(17), m

βi
i (Xi) = 0 for all

i = 1, · · · , L. Hence, mED(S++) in Eq.(18) equals 0. It’s straightforward that m(S++) =
mED(S++)

/(
1−mED(Ω)

)
= 0. So,

∑
S−⊆S m(S−) = 1 −

∑
S++⊃S m(S++) = 1. That is,

the importance discounting and combination method satisfies the completeness axiom.
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