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Abstract Interior point methods proved to be efficient and robust tools
for solving large–scale optimization problems. The standard infeasible–start
implementations scope very well with wide variety of problem classes, their
only serious drawback is that they detect primal or dual infeasibility by
divergence and not by convergence. As an alternative, approaches based on
skew–symmetric and self–dual reformulations were proposed. In our com-
putational study we overview the implementation of interior point methods
on the homogeneous self–dual formulation of optimization problems and
investigate the effect of the increased dimension from numerical and com-
putational aspects.
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1 Introduction

Infeasible–start interior point methods were proposed and studied by [10,
4,11,26] and became very popular in implementations [14,1]. The main
disadvantage of this approach are the necessary regularity conditions, for
example the existence of a feasible primal and dual interior solution. As
these conditions are often not practical in real–life, several techniques were
developed to handle such degenerate cases [12,16,32].

As an alternative, Ye, Todd and Mizuno [37] proposed a skew–symmetric
and self–dual reformulation for LP problems that overcomes this drawback.
The approach was also generalized for monotone complementarity problems
[3,2]. Nesterov, Todd, Ye [28] proposed a different self–dual embedding. The

? Supported in part by Hungarian Research Fund OTKA K-77420.



2 Csaba Mészáros

investigations of Mizuno and Todd [27] showed the equivalence of the central
paths in these approaches but pointed out that the linearizations, therefore
the practical behavior of the two approaches are different. Jansen, Terlaky
and Roos [9] presented a similar self–dual model in a symmetric form. Xu,
Hung and Ye [35,36] considered a homogeneous self–dual feasibility (HLF)
model, which was already studied by Goldman and Tucker [6,29] and proved
by numerical experiments that a long–step path following algorithm can
solve the HLF model efficiently [33,34].

In our study we will use the homogeneous feasibility model presented
in [35] and review its implementation in the path–following interior point
method and compare the practical behavior on feasible and infeasible linear
and quadratically constrained quadratic programming problems (QCQPs)
to the implementation of the infeasible–start version. In section 2 we will
describe the homogeneous self–dual (HSD) formulation and its implemen-
tation in the framework of our BPMPD package [17]. In Section 3 we will
compare the behavior if the infeasible–start and the homogeneous self–dual
implementations and investigate their behavior in different situations. In
Section 4 we will summarize our findings.

2 Interior point methods and the homogeneous self–dual form

In this section we will consider the primal and dual linear programming
problem in the form of

min cTx max bT y
Ax = b AT y + z = c
x ≥ 0 z ≥ 0

(1)

where A ∈ Rm×n, c, x ∈ Rn, y, b ∈ Rm. Following the success of the OB1
code [13], the primal–dual interior points methods (IPMs) gained popularity
in practice. Theoretically, the starting point of a primal–dual IPM should
be feasible and from the close neighborhood of the central path. Since such
requirement is not practical, heuristics are used in the implementations
that work usually well, but may fail to generate efficient starting points
in certain situations. It was also observed that the detection of primal or
dual infeasibility often results in difficulties for these IPM implementations
because infeasibility is detected by divergence and not by convergence.

The remedy for these drawbacks was the main motivation for the self–
dual formulations, which provide a feasible, well–centered starting point for
the algorithm, allow to prove infeasibility or compute an optimal solution
for the original problem by a log–barrier method with good complexity.

Following Ye, Todd, Mizuno [37] let us introduce the new variables τ ≥
0, κ ≥ 0 and θ and set a starting point

(
x0, z0, τ0, κ0, y0, θ0

)
where

x0, z0, τ0, κ0 > 0 and θ0 = 1. Let us define
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b0 = bτ0 −Ax0,
c0 = cτ0 −AT y0 − s0,
g0 = bT y0 − cTx0 − κ0,
h0 = (z0)Tx0 + τ0κ0,

and consider the skew–symmetric and self–dual system:

min h0θ
Ax −bτ +b0θ = 0,

−AT y +cτ +c0θ −z = 0,
bT y −cTx −g0θ −κ = 0,

−(b0)T y +(c0)Tx +g0τ = −h0,
x ≥ 0, τ ≥ 0, z ≥ 0, κ ≥ 0.

(2)

Ye, Todd, Mizuno [37] proved that (2) has always an optimal solution
whose objective value is 0, and if (x∗, z∗, τ∗, κ∗, y∗, θ∗) is a strictly com-
plementary solution then either

τ∗ > 0 then x∗/τ∗ and (y∗/τ∗, z∗/τ∗) is optimal for (1), or
κ∗ > 0 then (1) is infeasible.

It is easy to see that in (2)

xT z + τκ = θh0

thus the complementarity gap is linear with θ. Let

F = {(x, y, z, τ, κ, θ) : feasible for (2)}

then the central path may be defined as

P = {(x, y, z, τ, κ, θ) ∈ F, Xz = µe, τκ = µ},

where e is the vector of ones, for some µ > 0. Let us define

µ0 =

(
x0
)T
z0 + τ0κ0

n+ 1
,

then θ = µ/µ0, thus ∆θ = −(1− γ)θ where

µ = γ
xT z + τκ

n+ 1
.

In this way we can simplify (2) to a homogeneous feasibility model [35,
36] by expressing θ with µ. The resulting system can be written as

Ax −bτ = 0,
−AT y −z +cτ = 0,

−cTx bT y −κ = 0,
x ≥ 0, z ≥ 0, τ ≥ 0, κ ≥ 0.

(3)
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This system has been already studied by Goldman and Tucker [7] and
investigated with interior point methods by Xu, Hung and Ye [35,36,33,34].

In our further investigations we will consider the convex quadratically
constrained quadratic programming problem (QCQP) as

min 1
2x

TQx+ cTx,
1
2x

TQix+ aTi x ≥ bi for i = 1, ...,m,
x ≥ 0.

(4)

where x, ai, c ∈ Rn, bi ∈ R, Q,Qi ∈ Rn×n, furthermore Q and −Qi for
i = 1...m are symmetric positive semidefinite, which conditions define a
smooth convex optimization problem. The dual problem in the Wolfe-sense
[31] can be formulated as:

max bT y − 1

2

(
xTQx−

m∑
i=1

yix
TQix

)

AT y + z = c+Qx−
m∑
i=1

yiQix, (5)

y, z ≥ 0.

Using the ideas in [3,2] we derive the basic HSD algorithm for the QCQP
problem (4– 5) as follows: let us introduce the variables τ, κ ≥ 0 and define
the homogeneous system as

(
1

2

xTQix

τ
+ aix− si − τbi

)
i

= 0 for i = 1, ...m,

τc+Qx−AT y −
m∑
i=1

yiQix

τ
− z = 0, (6)

−cTx− xTQx

τ
+ bT y +

m∑
i=1

yix
TQix

2τ2
− κ = 0.

Let a starting point be x0, y0, z0, s0, τ0, κ0 > 0 and define

rp =

(
1

2

xTQix

τ
+ aix− si − τbi

)
i

,

rd = cτ +Qx−AT y −
m∑
i=1

yiQix

τ
− z,

rg = −cTx− xTQx

τ
+ bT y +

m∑
i=1

yix
TQix

2τ2
− κ,

and set µ, η > 0 to perturb complementarity and feasibility as
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αp = ηr0p, αd = ηr0d, αg = ηr0g ,

Xz = µe, Sy = µe, τκ = µ.

Then the Newton–system for (6) can be formulated as



∑
Qix
τ +A −I −b−

∑
xQix
2τ2

Q−
∑
yiQi

τ −I −A−
∑
Qix
τ c+

∑
yiQix
τ2

−c− 2Qx
τ +

∑
yiQix
τ2 b+

∑
xQix
2τ2

xQx
τ2 −

∑
yixQix
τ3 −1

Z X
Y S

κ τ




dx
ds
dz
dy
dτ
dκ

 =

=


αp
αd
αg

µe−Xz
µe− Sy
µ− τκ

 .

The above system can be simplified by the elimination of dκ, ds and dz to

 Q−
∑
yiQi

τ +X−1z −
∑
Qix
τ −AT c0 +

∑
yiQix
τ2∑

Qix
τ +A Y −1s −b−

∑
xQix
2τ2

−c0 − 2Q0x
τ +

∑
yiQix
τ2 b+

∑
xQix
2τ2

xQx
τ2 −

∑
yixQix
τ3 + κ

τ


dxdy
dτ

 =

=

αp +X−1 (µe−Xz)
αd + Y −1 (µe− Sy)

αg + µ−τκ
τ

 . (7)

By using the notations

Q(y, τ) = Q−
∑
yiQi
τ

,

A(x, τ) = A+

∑
Qix

τ
and

M =

[
−Q(y, τ)−X−1z A(x, τ)T

A(x, τ) Y −1s

]
the reduced Newtons system can be written as[

M g
f h

] [
dx
dy

]
=

[
γ
δ

]
, (8)

where f , g, γ and δ are defined by (7). In each iteration we define and solve
systems in the form of (8) and derive the components of the search direction
by substitution.
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The solution of (8) can be computed by the following steps:

a = M−1g,

d = M−1γ,

dy =
δ − d
h− fa

,

dx = M−1(γ − gdy) = d− dya.

Clearly, the additional work compared to the infeasible primal–dual method
is one backsolve operation to compute a = M−1g in every iteration. It
is to be noted, however, that the operations a = M−1g and d = M−1γ
are independent, therefore their computation can be combined into one
backsolve step with two vectors which can be performed significantly faster
than two consecutive backsolves due to the reduced data flow.

2.1 Implementation and numerical results

We implemented the approach in our software called BPMPD [17]. In our
experiments we compare the infeasible–start (IS) and homogeneous self–
dual (HSD) approaches in this framework. Our implementation employs
presolve [24] and sparse matrix ordering [21] to reduce the computational
work and to improve the efficiency. After reordering the problem for sparsity,
our implementation in every iteration computes a symmetric factorization

M = LΛLT ,

where L ∈ R(m+n)×(m+n) symmetric lower triangular and Λ ∈ R(m+n)×(m+n)

is diagonal. The quasidefinite property of M ensures that such decomposi-
tion always exists [30]. This is the computationally most costly operation
and our implementation uses vectorization and parallel computation tech-
niques to exploit the hardware features [20]. The decomposition is used in
several backsolve steps to compute the predictor–corrector direction [15]
and further corrector steps [8]. After the determination of the search direc-
tions, suitable steplengths are chosen to preserve the nonnegativity of the
variables and to optimize a merit function that warrants the convergence.

In our experiments we used two different starting points. The first one,
called ”simple” sets the variables x = z = e, y = s = e and additionally
τ = κ = 1 for the HSD variant. The other starting point is our ”standard”
version which is described in [22] in details. The approach is based on the
relaxed problem

max
1

2

m∑
i=1

wi
(
xTQix

)
−

n∑
j=1

x2j (9)

A(0)x− s = b,
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where wi > 0 and set accordingly to ‖Qi‖ and bi for i = 1, ...,m. The
optimal solution (x∗, s∗) of the above problem can be computed directly
and (x0, s0) is derived by shifting (x∗, s∗) into the positive orthant, similarly
as described in [1]. The starting point for the dual variables is set as: y0 =
w, z0 = c0 +Q0x

0−A(x0)T y0 +δ where δ > 0 is chosen suitably to provide
positiveness. For the HSD approach, τ0 is set to 1 and κ0 is computed as

κ0 =

(
x0
)T
z0 +

(
y0
)T
s0

n+m
.

First, we compare the performance on feasible problems with different
starting points. We selected the largest problems form the NETLIB [5] fea-
sible testcases and the results are summarized in Table 1. Figures given
include the number of iterations to achieve 8-digits of accuracy by the two
methods using the two starting points. Failures are marked by the ”*” sym-
bol.

Table 1 Efficiency on standard feasible LP problems

Problem IS IPM HSD IPM
name simple standard simple standard

25fv47 341 15 15 14
80bau3b 45∗ 29 28 26
bnl2 22∗ 17 19 18
cycle 33∗ 20 19 17
d2q06c 400∗ 18 18 16
degen3 9 12 9 9
dfl001 203∗ 20 26 23
fit2p 72 17 16 22
fir2d 27 15 19 21
greenbeb 50∗ 22 25 30
grow22 41 13 15 15
nem 25∗ 28 28 28
pilot87 113 22 33 30
sctap3 16 13 10 10
ship12l 31 13 20 19
stocfor3 36∗ 18 21 18
truss 33 13 15 15

Average 17.94 19.76 19.47

The results show that the infeasible–start IPM fails to converge on sev-
eral test cases with the simple starting point, in contrary to the HSD imple-
mentation, which performed nearly equally with both starting point choices.
The results also indicate that the HSD implementation needs about 10%
more iterations than the IS implementation when using the more efficient
starting point choice.

In the second experiments we compared the performance on infeasible
cases. Here we selected the infeasible test set of the NETLIB repository. It is
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to be noted, that in most cases our presolve already detects the infeasibility
in the problems. We included in Table 2 only the test cases which required
the execution of the interior point algorithm.

Table 2 Efficiency on standard infeasible LP problems

Problem name IS IPM HSD IPM τ

box1 3 5 10−9

cplex2 34 34 10−3

ex72a 4 4 10−9

ex73a 4 4 10−9

forest6 7 7 10−11

klein1 19 9 10−6

klein2 10 6 10−5

klein3 23 9 10−7

mondou2 4 7 10−8

pang 15 23 10−9

qual 16 12 10−8

refinery 8 9 10−10

vol1 13 11 10−10

Figures given include the number of iterations and the final value of τ
in case of the HSD algorithm. The infeasible status was correctly identi-
fied by both algorithms in all cases, and in average, the effort is roughly
equal. Let us note that on these problems the minimal infeasibility is con-
siderably large while the problem sizes are rather moderate, this is why the
infeasible–start algorithm had no trouble to detect the infeasibility. Our ex-
periences on real–life problems showed that infeasible problems, which are
at the ”boundary” of the feasibility, i.e. on which the norm of the mini-
mal infeasibility is small (e.g. < 10−6), often presents a challenge for the
infeasible–start implementation.

Table 3 presents test results on feasible QCQP testcases from [25]. The
results indicate the infeasible–start IPM is very sensitive to the choice of
the starting point on QCQP problems.

In our next experiment we created such a testcase. Our QCQP test-
case has 10 variables, 4 linear and one quadratic constraint. The quadratic
constraint was defined as

a1x+
1

2
xTQ1x ≤ z + ε where z = min a1x+

1

2
xTQ1x

i.e. with ε ≥ 0 the problem is feasible, otherwise it is infeasible. Table 4
collects the results with different values of ε.

The experiments show that both versions are equally robust to solve
the feasible cases with ε > 0. The results also show that the HSD imple-
mentation behaves significantly better if the problem is infeasible and the
infeasibility is very small.
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Table 3 Efficiency on standard feasible QCQP problems

Problem IS IPM HSD IPM
name simple standard simple standard

boyd1 87 23 17 15
boyd2 380∗ 89 73 75
cont-201 23 12 11 11
cont-300 152∗ 13 11 10
cvxqp1-l 128 12 8 12
cvxqp2-l 400∗ 12 8 8
cvxqp3-l 400∗ 15 7 7
stadat1 78 23 42 40
stadat2 39∗ 18 12 14
stadat3 57∗ 20 13 13
laser 56 13 8 7
exdata 112 19 11 10

Average 22.42 19.76 18.50

Table 4 Behaviour on the boundary of feasibility on a QCQP problem

ε IS IPM HSD

10−4 8 8
10−6 9 12
10−8 10 16
10−9 fail fail

0 12 12

−10−4 15 12
−10−6 fail 16
−10−8 fail 32
−10−10 fail 42

In [18] it was pointed out that badly scaled optimal solutions may present
numerical challenges for the interior point methods due to the increasing ill–
conditioning of the underlying Newton system. This situation was further
discussed in [19,23]. Most common causes are problems with unbounded
optimal faces and the presence of large bounds. To compare the behavior
on such case, we created a QCQP testcase with 4 linear and 1 quadratic
constraints, 9 nonnegative and one free variable, whose optimal solution is
(1,...,1). Then we replaced the free variable in the model as M ≥ xf ≥
−M, where M ≥ 1. Table 5 collects the number of iterations depending
on the value of M . During the execution we turned off our dynamic bound
relaxation technique [17] that was developed to help in similar situations.

The results show that the behavior of the two implementation is rather
similar and both fail if M is sufficiently large.

Our last test examples were derived form 57 mixed integer QCQP test
cases of varying sizes, ranging the number of constraints between 3 and
23562 and the number of variables between 5 and 31316. In total, 698 sub-
problems were extracted from the branch and bound trees which presented
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Table 5 Effect of ill–conditioning

M IS IPM HSD

100 6 5
102 6 6
104 7 9
106 7 11
107 14 18
108 15 fail
109 fail fail
1010 fail fail
1011 fail fail

difficulties for the embedded previous solver. We found that 297 of these
problems were not successfully solved with our infeasible–start implementa-
tion either. Switching to the HSD implementation the unsuccessfully solved
cases were reduced to 33, and we found that these needed only some tweak-
ing in the default parameters.

2.2 Conclusion

Our experiments showed that the implementation of interior point meth-
ods for the homogeneous self–dual model requires very moderate additional
work per iteration compared to the infeasible–start implementation. This
additional work can be greatly reduced with a special backsolve operation
by exploiting data independence in the required steps. The main disadvan-
tage is the slightly increased iteration numbers on the feasible problems. We
also observed that present implementations of the infeasible–start methods
are robust to detect infeasibility if the inconsistency in the constraints is
sufficiently large. On infeasible problems with little inconsistency the ho-
mogeneous self–dual model showed its advantages and proved to be very
reliable. This was also observed when the solver was used in the branch
and bound tree to solve relaxations of mixed integer problems, where the
appearance of infeasible cases is more likely. The homogeneous self–dual
model is also very robust to the choice of the starting point. Our experi-
ments also showed that both versions face similar numerical problems with
badly scaled solutions.
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