
Noname manuscript No.
(will be inserted by the editor)

A Multi-Heuristic Approach for Solving the
Pre-Marshalling Problem

Raka Jovanovic · Milan Tuba · Stefan
Voß

Received: date / Accepted: date

Abstract Minimizing the number of reshuffling operations at maritime con-
tainer terminals incorporates the Pre-Marshalling Problem (PMP) as an im-
portant problem. Based on an analysis of existing solution approaches we
develop new heuristics utilizing specific properties of problem instances of the
PMP. We show that the heuristic performance is highly dependent on these
properties. We introduce a new method that exploits a greedy heuristic of
four stages, where for each of these stages several different heuristics may be
applied. Instead of using randomization to improve the performance of the
heuristic, we repetitively generate a number of solutions by using a combina-
tion of different heuristics for each stage. In doing so, only a small number of
solutions is generated for which we intend that they do not have undesirable
properties, contrary to the case when simple randomization is used. Our ex-
periments show that such a deterministic algorithm significantly outperforms
the original nondeterministic method when the quality of found solutions is
observed, with a much lower number of generated solutions.

Keywords Pre-marshalling · Logistics · Container terminal · Heuristics

Raka Jovanovic
Institute of Physics, University of Belgrade, Pregrevica 118, Zemun, Serbia
E-mail: rakabog@yahoo.com
Present address: Qatar Environment and Energy Research Institute (QEERI), PO Box 5825,
Doha, Qatar

Milan Tuba
Faculty of Computer Science, Megatrend University, Belgrade, Serbia

Stefan Voß
Institute of Information Systems, University of Hamburg, Von-Melle-Park 5, 20146 Ham-
burg, Germany E-mail: stefan.voss@uni-hamburg.de

ar
X

iv
:1

41
1.

09
67

v1
 [

cs
.A

I]
 2

 N
ov

 2
01

4

2 Raka Jovanovic et al.

1 Introduction

In container terminals the time that is needed for loading containers to trans-
port vehicles and vessels is of utmost importance. Terminals usually operate
with a limited amount of storage space; because of this, block stacking is used
to increase the space utilization. More precisely, containers are simply stored
over each other in several stacks. A problem may arise as only the top con-
tainer can be retrieved from each stack. While containers usually need to be
loaded to transport vehicles in a certain order, in general, not only will it be
necessary to move containers from the stacks to the transport vehicles but they
also have to be relocated within container bays to make retrieval in the spec-
ified order possible. The order is reflected by priorities, where a small priority
value means that a container must be retrieved earlier than one with a larger
priority value. The loading process may be the most effective if the number of
block movements is minimized. This practical problem has been formalized in
several forms like the Blocks Relocation Problem (BRP), the Re-Marshalling
Problem (RMP), i.e. intra-block marshalling and the Pre-Marshalling Problem
(PMP) (Caserta et al, 2011a).

The goal of the PMP is to reorder the blocks within a container bay to have
all the blocks well located. We use the term “well located” for a block if there
are no blocks of smaller priority value located below it. In this paper we focus
on solving the PMP using a deterministic greedy algorithm. In our approach
we start with an algorithm described in (Expósito-Izquierdo et al, 2012) which
uses a heuristic process for the PMP for developing a greedy algorithm, but
combines it with a certain level of randomization to improve the quality of
results. The developed method is similar to an approach that has previously
been used for the BRP (Jovanovic and Voss, 2014).

Usually greedy algorithms give results that are of lower quality compared
to more complex methods like those following the tree search or the corri-
dor method’s paradigm. The advantage of greedy algorithms is that they, in
most cases, have a much lower computational cost than other more complex
approaches. The main problem with most greedy heuristics is that they only
create one solution which is frequently just a “relatively” good solution. One
possible method to avoid this problem is adding some type of randomization or
even some learning process like the ant colony optimization. In the case when
simple randomization is used, as in (Expósito-Izquierdo et al, 2012), although
an improvement is achieved, it often has the consequence that a large number
of solutions is created that simply do not have good properties.

In our work we attempt to avoid the use of randomization and try to
generate a large number of solutions that all satisfy some desirable properties.
More precisely, we use different heuristics in different stages of the greedy
algorithm proposed by (Expósito-Izquierdo et al, 2012) and in this way a
large number of solutions is generated. Heuristics in a greedy approach can
loosely be defined as functions that give us good properties for choosing the
next step in generating a solution. The problem is that this function just
corresponds to a specific “guess” about what good properties are. Because

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 3

of this, for many problems several competing heuristics are developed, that
are suitable for different types of problem instances; see, e.g., well known
approaches for the simple assembly line balancing problem (Scholl and Voß,
1996). A common practice is to use several heuristics and choose the best
found solution. This idea is well known, though, in the case of the PMP it can
be exploited extensively as we can combine the heuristics for different stages
of the algorithm.

To make this method work, special care is necessary to always find feasible
solutions. This seems not an issue in similar greedy algorithms implemented
for the BRP, but in the case of the PMP the algorithm would frequently
bring the container bay into a state from which it is not possible to generate
adequate solutions by simply applying the heuristic. This type of deadlock
would happen in cases when there is a high level of occupancy of the bay. The
standard approach to resolving this is to use a certain level of backtracking.
In case backtracking is implemented the basic greedy algorithm would become
very similar to the use of a tree search and loose its speed advantage. To resolve
this, we add a simple look-ahead mechanism that would find feasible solutions
in all cases when they are possible, from the initial state of the bay. As this
mechanism would in some cases add unnecessary relocations (or reshuffling
operations), a simple correction stage is added at the end of the algorithm to
improve the results.

We show in our tests that using this approach leads to less calculations
than Expósito-Izquierdo et al (2012), while achieving better results in almost
all the test data sets. By adding randomization to this algorithm it might be
possible to further improve the acquired results but this is not the focus of our
research.

The article is organized as follows. In the next section we give the prob-
lem formulation and a brief overview of published work. Then we provide an
overview of the original heuristic given in Expósito-Izquierdo et al (2012). In
Section 4 we give a detailed specification of the heuristics used at different
stages of our approach. This also incorporates a lookahead strategy used to
guarantee creating feasible solutions, and the appropriate correction method.
In Section 5 we give a comparison of the presented heuristics, and show that
their combination gives significantly better results than previously published
research.

2 The Pre-Marshalling Problem

The PMP, which we consider in this paper, is defined as follows. First we
describe the problem setup with some simplified assumptions as they are con-
sistently used in literature (Kim and Hong, 2006):

– All blocks (containers) are of the same size.
– The container bay will be viewed as a two dimensional stacking area, with

W stacks, for which a maximal height (number of tiers) H is given.

4 Raka Jovanovic et al.

– The initial configuration of the container bay is known (and consists of a
set C of containers).

– Only blocks from the top of a stack can be accessed.
– Blocks can only be placed either on top of another block, or on the ground

(tier 0).
– Each container has a priority value (which is not necessarily unique).
– A container is well located if no container with a larger priority value is on

top of it.
– A well located container can only be above other well located containers,

and has a smaller priority value than all of those below it (or the same
priority value as the one immediately below it).

– The goal is to have all of the containers in the bay well located. (For the
final bay layout this means that containers can be retrieved according to
increasing priority values without any further relocations.)

The problem is to minimize the number of moves needed to create a con-
tainer bay with only well located containers.

It has been shown that this problem is NP-hard (Caserta et al, 2011a).
In an early paper (Kim, 1997) influencing this area of research, various stack
configurations and their influence on the expected number of rehandles are
investigated in a scenario of loading import containers onto outside trucks with
a single transfer crane. For easy estimation regression equations are proposed.

There are quite a few papers proposing solution approaches for solving the
PMP. This incorporates using a tree search algorithm (Bortfeldt and Forster,
2012), integer programming (Lee and Lee, 2010) or the corridor method para-
digm (Caserta and Voß, 2009). Algorithms with direct heuristics have been
developed by (Huang and Lin, 2012); a neighborhood search heuristic can be
found in (Lee and Chao, 2009). Another heuristic is the one by (Expósito-
Izquierdo et al, 2012). Moreover, this paper also incorporates a simple A*-
algorithm which was lateron improved and appended by some symmetry break-
ing rules by (Tierney K, Pacino D, VoßS , 2013). Some comments on logical
observations leading to a lower bound are provided in (Voß, 2012). Some of
these ideas are also incorporated in the tree search algorithm of (Bortfeldt and
Forster, 2012). A constraint programming approach together with a more gen-
eral problem description allowing for priority ranges rather than priority values
has been proposed by (Rendl and Prandtstetter, 2013). Note that the PMP is
also closely related to blocks world planning; see, e.g., (Gupta and Nau, 1992).
A more comprehensive survey on the PMP and related problems is provided
in (Caserta et al, 2011a) and more recently by (Lehnfeld and Knust, 2014).

3 The Basic Heuristic Scheme

In this section we describe and extend the heuristic of Expósito-Izquierdo et al
(2012). The general idea of this algorithm is to well locate containers one by
one, starting with the containers with largest priority value, say p. Note that
according to the problem definition a container with a largest priority value

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 5

cannot be on top of a container with a smaller priority value as it would
otherwise hinder this container from being well located. The following pseudo-
code gives an outline of the method.

i = p
Ai=Set of non well located containers with priority value i
while (i 6= 0) do

while (Ai 6= ∅) do
Select container c ∈ Ai

Select a destination stack d for c
Well locate container c from its current position to stack d
Ai = Ai \ {c}

end while
Fill destination stack;
i = i− 1

end while

This type of algorithm can be divided into four stages which will be detailed
in the following subsections.

1. Select a container to be well located.
2. Select a destination stack.
3. Relocate the necessary containers to make the well locating possible.
4. Filling.

Compared to the original algorithm we introduce a new heuristic where we
select which container will be well located, without the priority constraint. In
the case of the original work presented in (Expósito-Izquierdo et al, 2012), the
selection of the next target container has been done using a random selection
between the blocks with the maximal priority value. As it will be explained
below this is just a simple lookahead mechanism. In the following subsections
we shall analyze the heuristics used at each stage of the algorithm.

3.1 Selecting a Destination Stack

To ease exposition, we first provide some details of how a destination stack
s∗ is selected for block c that we wish to well locate. The goal in this stage is
to well locate c in the smallest number of container relocations. The number
of relocations is depending on two factors. First the number of containers
necessary to be relocated to access block c, more precisely the blocks above c
have to be removed. Define g(c, s) as the number of blocks above c in stack s.
The second factor is how many relocations we need to well locate block c at
some stack s∗. In this way we define functions f(c, s∗). Practically, this is the
number of blocks that need to be removed from s∗, to have a well located block
a with a larger or the same priority value than c to allow c to be retrieved from
the final bay layout before a. An empty stack has the smallest such number
as every block can be well located once it is put onto the ground. We give

6 Raka Jovanovic et al.

a graphic representation of functions f and g in Figure 1. As presented in
(Expósito-Izquierdo et al, 2012), a heuristic function w can be presented in
the following form.

w(c, s∗) =

{
f(c, s∗) + g(c, s) + 1 s 6= s∗

f(c, s∗) + 1 s = s∗
(1)

Fig. 1 Graphic presentation of the basic functions f(10, 3) = 3 and g(10, 1) = 2.

We minimize the heuristic function w(c, s∗) to determine the stack s∗ to
which block c will be well located. This will simply be the stack s∗ that has the
minimal value of w(c, s∗). It has been shown that this approach gives results
of good quality (Expósito-Izquierdo et al, 2012).

The problem with the heuristic function given in Eq. (1), is that it does
not consider that this move can create some new, in many cases avoidable
relocations. The most obvious source of this is the relocation of already well
located containers. This can be illustrated in Figure 2. When using the original
heuristic to well locate block c with priority 12 all stacks are equal, since in
all the cases f(c, s∗) = 3. But it is evident that selecting stack 2 might be a
very bad choice because three well located containers will be moved.

Fig. 2 Exemplifying the heuristic function. The values are shown for the case when block
12 is being well located.

We introduce a new approach that takes this into account. We first define
nw(c, s∗) as a number of well located containers that need to be relocated
when c is moved to stack s∗:

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 7

nw(c, s∗) =

{
0, , f(c, s∗) < nwl(s∗)
f(c, s∗)− nwl(s∗) , otherwise

(2)

In Eq. (2), nwl(s∗) denotes the number of non-well located blocks in stack s∗.
Using the nw(c, s∗) we define a new heuristic for the number of relocations
related to well locating c in stack s∗.

f̂(c, s∗) = f(c, s∗) + nw(c, s∗) (3)

Note that it is not necessary to use a similar extension of function g as we
know there are no well located blocks above block c. The improved heuristic
ŵ(c, s∗) is defined by substituting f by f̂ in w. Using the improved heuristic,
we can differentiate between the stacks in Figure 2, and choose stack 4 as it
has the smallest value of ŵ(c, s∗).

3.2 Selecting the Block to be Well Located

In our approach we introduce the use of a heuristic function for selecting which
block will be well located next. This is an adaptation of the original algorithm
in the sense that we remove the constraint that we only select a block c that
has the highest priority value. In (Expósito-Izquierdo et al, 2012), the blocks
are well located in descending order of their priority values. The idea of this
approach is that once a container with the highest priority value is well located
it will no longer interfere with the well locating of succeeding blocks, and there
will be a lower number of forced relocations. Although this approach proves
to be very efficient, this rule can be considered overly strict.

The reasoning for the new stage of the algorithm is the following. In many
cases well locating the container with the highest priority value can be hard
in the sense that many relocations need to be performed. It may be advanta-
geous to first well locate some other block, since the relocations that will be
performed may in some cases make it easier for well locating a container with
highest priority value.

Another aspect that should be considered when well locating a block from
stack s to stack s∗ is how many new forced relocation will be created. We shall
consider that we have created a forced relocation if we move block a over a
non-well located block b, and the priority value of a is smaller than the one
of b. This is due to the fact, that b will be well located before a, and while
conducting the necessary reshuffle operation to well locate b, block a will be
relocated. We give an example of a forced relocation in Figure 3.

In this section we introduce a new heuristic function that addresses this
problem. The new heuristic function needs to have the following properties:

– Prefer well locating containers with high priority values.
– Prefer a low number of relocations.
– Prefer a low number of forced relocations.

8 Raka Jovanovic et al.

Fig. 3 Illustration of creating a forced relocation. When trying to well locate block 10
on stack 3, block 2 needs to be positioned over block 8 which is non well located. The new
position of 2 creates a forced relocation since block 2 will be moved again when well locating
block 8.

The proposed heuristic can be formalized by the following function:

d = ind(mins∈Sŵ(c, s)) (4)

ĥ(c) = −p(c) + ŵ(c, d) + fr(c, d) (5)

In Eq. (4), d is the index of the stack that has the lowest value ŵ(c, s) for a
block c, or in other words the stack to which block c can be well located with
a minimal number of relocations. Eq. (5) represents the heuristic function for
selecting the block that will be well located next. In Eq. (5), fr(c, d) gives the
number of created forced relocations corresponding to the selection of stack
d. As illustrated in Figure 3, fr(10, 3) = 1. p(c) is the priority value of block
c, the negative prefix is used since we wish to minimize our heuristic function
and high propriety values are more desirable. Finally, the block that will be
well located next is the one that has the minimal value of ĥ(c), as given in the
following equation.

next = ind(minc∈C(ĥ(c)) (6)

Forced relocations have been defined in a relatively simple way in the at-
tempt to make the calculation of fr(c, d) straightforward. A good approxima-
tion of the total number of relocations can be effectively calculated only by
tracking the priority value at the top of each stack. If a block c is relocated a
forced relocation occurs only if all of the top stack priority values are higher
than p(c). If all the blocks in a stack are well located we will consider that
stack having priority value zero.

Note that the minimization in Eq. (6) can in most cases be calculated

by evaluating ĥ(c) for a small number of blocks. More precisely the highest
number of blocks that are tested is

n = ŵ(cm, d) + fr(cm, d). (7)

In Eq. 7, cm is used for the block with the highest priority value. As it can
be seen in Eq. 5 the heuristic function ĥ is dependent on the priority p(c) of
the block being relocated. It is obvious that for block a which has a priority
p(a) < p(cm)− n, even if ŵ(a, d) + fr(a, d) = 0, we have ĥ(a) > ĥ(cm).

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 9

3.3 Relocating the Necessary Blocks

The heuristic functions presented in the previous subsections tell us that block
c should be well located in stack s∗. To perform this action it is necessary to
relocate several containers from the source s, where block c is located, and
destination stack s∗ as explained in Subsection 3.1. The goal is to relocate all
the required blocks without creating new avoidable relocations in the future.
This process can be divided into two parts.

– Order in which blocks are relocated.
– Selection of the stack to which a block will be relocated.

In (Expósito-Izquierdo et al, 2012) a detailed description of the ordering
in which the blocks are relocated is presented. The basic idea is that at each
step we relocate one of the two top blocks of stacks s or s∗ that has a higher
priority value. Of course, only the blocks whose relocation is necessary for well
locating c are considered. The process is continued until all the required blocks
are relocated. Using this approach the number of blocks to be moved in future
iterations is minimized.

The second part is about deciding whereto blocks should be relocated. This
stack is selected by some heuristic function that measures their desirability,
in the sense that we do not wish to create new unnecessary relocations. This
problem is very similar to what appears in the BRP. Heuristic functions of this
type have been widely researched and analyzed for this problem. As a conse-
quence we can use these heuristics in the case of the PMP. Several different
heuristics have been developed for which detailed descriptions can be found
in literature. We give a short overview of the ones that seem most suitable for
the PMP.

– The Lowest Position (TLP) heuristic (Zhang, 2000). In the TLP we relo-
cate the block to a stack that has the lowest number of tiers. The goal is
to keep the container bay as balanced as possible. In this way the average
number of relocations should stay low, and to avoid extreme cases where
a large number of blocks needs to be moved from a stack with many tiers.

– Lowest Priority Index (LPI) heuristic (Expósito-Izquierdo et al, 2012). In
this approach, the blocking block will be moved to the stack in which it
blocks the highest priority value of a non well located block. It is expected
that the overall number of reshuffles will be lowered since every time a
block is put over another with a lower priority value, extra reshuffles need
to be done (Wu and Ting, 2010).

– The Min-Max heuristic presented in (Caserta et al, 2011b), and a very
similar approach in (Ünlüyurt and Aydin, 2012), only takes into account
the maximal priority value of a block in each stack. An extended version,
including a look ahead mechanism, of this algorithm has been presented
(Jovanovic and Voss, 2014). The Min-Max heuristic when adapted to the
PMP, will also use the highest priority value of a non well located block. It
has a different way of choosing the stack to which the block will be moved

10 Raka Jovanovic et al.

Fig. 4 Illustration of filling a stack. The filling is done after block 12 has been well located.

to, depending if it will be blocking some new container. The general idea
of this approach is to avoid relocations of blocks in the near future while
grouping blocks of similar priorities.

In practical applications of these heuristics to the PMP, certain improve-
ment can be achieved by adding some fine tuning. First, in the case when the
source and destination stack are the same, i.e. s = s∗, special care should be
taken when temporarily relocating the block c that is being well located. In
this case the stack should be taken which has the worst value of the previously
defined heuristics. In the case of the second two heuristics, reaching the top
tier of a stack should be avoided.

3.4 Filling

In (Expósito-Izquierdo et al, 2012) the idea of stack filling is introduced to
exploit the fact that after a specific container is relocated to a well located
position it is at the top of a stack and the whole stack is well located. More
precisely, when a target container c is relocated in a destination stack s∗, this
container is at the top of stack s∗.

The idea is that we can take advantage of the empty slot in a well located
stack, by maximizing the number of well located containers and maximizing
the number of usable slots. In practice this is equivalent to filling the empty
slots in the destination stack with non-well located containers in the most
adequate sorted sequence. So for each destination stack s, all accessible non-
located containers with a priority value equal to or lower than the container
at the top of s are candidates that can potentially be moved to this stack. The
filling is done step by step, by relocating the container with the highest priority
value that is possible to well locate to the stack s. The process is finished either
when the stack is full or there are no more containers that can be properly
located in stack s. An illustration of this process is given in Figure 4.

Tests conducted in (Expósito-Izquierdo et al, 2012) show that this approach
is very effective, in a vast majority of problem instances, and manages to
significantly reduce the number of necessary relocations needed to set the
container bay in a suitable state. They have also pointed out that the use of
filling degraded the quality of solutions in case of problems of small size. There

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 11

are two main reasons for the possible negative effect of stack filling. First, the
filling can be responsible for more block relocations that the heuristic used for
well locating of specific containers explained in the previous section. This has
the effect that the important heuristics presented previously can be neglected
to a large extent. The other problem is that the minimal priority value of a well
located stack can decrease too rapidly. This way we can lose the possibility
of well locating a block a with a high priority value to this stack s. This can
in many cases result in having to add new relocations, for well locating a, in
some case even by relocating blocks from stack s that have just been placed
there.

We try to balance out the positive and negative properties of stack filling
by using four different types of stack filling.

– None. In this case no filling is conducted
– Standard. We try to well locate as many non well located blocks to stack

s. This is the approach as presented by (Expósito-Izquierdo et al, 2012).
– Safe. In this case we only use filling if we expect it to loose only a few

slots where blocks with high priority value can be well located. We shall
consider no such slots are lost if the stack s has reached the maximum tier
after filling. In practice we shall consider our heuristic for the desirability
of performing filling, f(s) = MaxTier − Tier(s′), where s′ presents stack
s after filling. Filling of s is only done if f(s) ≤ a, where a is a predefined
parameter.

– Stop. In this case a simple lookahead mechanism is used to discontinue
the filling process. More precisely, if at step n, we are relocating block a
and realize that underneath it is b, and b > a, and b can be well located
on stack s′.

4 Multi-Heuristic Approach

In the previous section we have presented several heuristics that can be used for
solving the PMP. A greedy algorithm that uses one specific heuristic function
for each stage of the algorithm is presented in (Expósito-Izquierdo et al, 2012).
The performance of the basic deterministic algorithm is improved by adding a
certain level of randomization when using the heuristic function. This is done
by randomly selecting one of the n stacks with the highest value of the heuristic
function at each step of the algorithm. In this way solutions of higher quality
are found by searching a wider range of potentially good solutions. Although
this method significantly improves the performance, it often explores solutions
of low quality. This is due to the fact, that we often select stacks which have
undesirable properties, at least according to the heuristic function used.

In our new approach the goal is to avoid generating solutions for which
we expect that they have undesirable properties. In other words, we wish
only to generate solutions for which it is presumed that they will be of good
quality, while not making the original greedy algorithm more complex. For
most problem instances our main focus is to find the best possible heuristic

12 Raka Jovanovic et al.

function. As it will be shown in the following section in the case of the PMP,
none of the proposed heuristics is overwhelmingly superior to the competing
ones. Another problem with using heuristic functions is that the use of filling
greatly changes the state of the bay that we have used for evaluating the
heuristic functions and as a consequence makes our choices less valid.

It is well known that if we have several competing heuristics for some
instance, their performance will be highly dependent on the specific properties
of the instances we are solving. In case we do not know, or it is hard to evaluate
the properties, of a problem instance, a common practice is to use several
heuristics and just choose the best found solution. This simple logic can be
very efficiently exploited in case of using the proposed algorithm and heuristics
for the PMP.

The idea is to test a relatively small group of good candidates for optimal
solutions. In case of our problem this can be done by combining different
heuristics at different stages of the algorithm. With this simple method we
can generate a ∗ b ∗ c ∗ d different solutions that have desirable properties in
different frames of reference. a, b, c, d give us the number of different heuristics
for each stage of the algorithm, and a ∗ b ∗ c ∗ d represents the total number of
combinations. Using the proposed heuristics we have a total of 48=2 ∗ 3 ∗ 2 ∗ 4
generated solutions.

For such a method to work it is necessary for all runs of the algorithm to
create feasible solutions. In the case of BRP, when a problem instance has been
well defined, a feasible solution is always acquired by a greedy algorithm using
some of the heuristics proposed in (Zhang, 2000; Murty et al, 2005; Ünlüyurt
and Aydin, 2012; Caserta et al, 2011b). Contrary to this in case of the PMP, in
many cases it is not possible to well locate all the blocks by directly applying
the greedy algorithm. This is especially noticeable for bays with a high level of
occupancy. The standard approach for avoiding this situation is to use some
kind of backtracking. There are two main drawbacks of this approach. First,
the calculation time can in some cases become very long and is in general
unpredictable. On the other hand when backtracking is added to the original
greedy algorithm it becomes more complex. In this situation it may just be
better using a more complicated method like tree search that generally gives
better results.

From this we can see that by adding backtracking we have lost the two main
advantages of the greedy algorithm, i.e. its speed and simplicity of implemen-
tation. We can avoid such deadlock using a much simpler logic. We can add a
simple mechanism that can always make one more relocation possible from the
source stack. In this way we can always bring the bay to a state where all the
blocks are well located. One of the down sides of such approach is that often
we will add several needless relocations to the final solution. The generated
solutions can then be improved by adding a simple correction method.

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 13

Avoiding Deadlocks

For a well defined problem instance, in a sense that a feasible solution exists,
a deadlock, i.e. a state of the bay from which it is not possible to add a move
using a heuristic function, is only possible if the source stack s is equal to the
destination stack d when trying to well locate block c. The reason for this is
that when performing the necessary relocations some free slots in the bay can
be lost when block c is temporarily relocated. The reason for this is that we will
not be placing any new block a above c, and as a consequence MaxTier− t(c)
will be lost. Here t(c) gives us the tier of block c. Because of this if there is a
stack with only one free slot block c should always be relocated there.

If such a stack did not exist, when c was relocated it is possible to enter
a deadlock, a state from which it is not possible to perform a desired move.
This situation can be avoided by a few simple steps. First we can remove the
last relocation from the solution. Let us say that the removed relocation was
(s, sr). After reverting the last step we know that stack sr. We can select a
random full stack sf , and relocate a block from it to sr. Now we can relocate
block c to this stack. In this way a new free slot has been created. This process
can be more formally presented in the following way.

Except = {s, s(c))} (8)

sf = Random(Full(S\Except)) (9)

And we add the following reshuffle operations to the solution.

(sf , s(cr)), (s(c), sf), (s, s(c)) (10)

Correction

Due to the fact, that the previously described mechanism would in some cases
add unnecessary relocations to the solution a simple correction stage is added
at the end of the algorithm to improve results.

(a, b), (b, c)→ (a, c) (11)

(a, b), (b, a)→ ∅ (12)

5 Experimental Results

All of the algorithms have been implemented in C# using Microsoft Visual
Studio 2012. The calculations have been done on a machine with Intel(R)
Core(TM) i7-2630 QM CPU 2.00 Ghz, 4GB of DDR3-1333 RAM, running on
Microsoft Windows 7 Home Premium 64-bit.

The test data sets are the same as the ones used in (Expósito-Izquierdo
et al, 2012), more precisely the data sets that had unique priority values.1 Tests

1 Note that the data from that paper had been lost and replaced by those on the web-
page of the authors: https://sites.google.com/site/gciports/premarshalling-problem/bay-
generator

14 Raka Jovanovic et al.

have been conducted for a wide range of bay sizes with different proportions
of maximal tier and number of stacks. For each of the bay sizes there are 40
different problem instances, and the average number of reshuffle operations is
observed. In our experiments we analyze the behavior of different heuristics
for each stage of the algorithm. In the final group of our tests we compare
the results presented in (Expósito-Izquierdo et al, 2012) to the multi-heuristic
approach. The calculation time for all the heuristics is very similar and very
fast.

We first observe the effect of using different heuristics for the relocating of
necessary blocks to perform the well-locating of some block. In these tests, to
give a better evaluation, no filling or heuristic selection of blocks is used. The
improvement is not used for the selection of the destination stack. The results
can be seen in Table 1.

Table 1 Comparison of heuristics for the relocating of necessary blocks when attempting
to well locate a container. TLP corresponds to the Lowest Position (TLP) heuristic (Zhang,
2000), LPI represents the Lowest Priority Index heuristic (Expósito-Izquierdo et al, 2012)
and MinMax is used for the heuristic presented in (Caserta et al, 2011b; Ünlüyurt and
Aydin, 2012)

Tier *Stack MaxHeight TLP LPI MinMax

3*3 5 11.98 11.85 10.95
3*4 5 12.20 11.80 11.63
3*5 5 13.75 12.80 12.55
3*6 5 15.70 14.48 14.13
3*7 5 17.83 16.43 15.98
3*8 5 19.63 16.98 16.65
4*4 6 23.35 23.25 22.90
4*5 6 29.15 27.45 26.30
4*6 6 30.68 27.93 27.10
4*7 6 35.50 31.08 30.25
5*5 7 45.20 42.93 41.88
5*6 7 56.35 51.78 50.38
5*7 7 61.03 51.90 49.93
5*8 7 69.23 60.68 58.33
5*9 7 75.20 64.43 61.45
5*10 7 81.80 69.23 65.68
6*6 8 84.15 77.03 74.98
6*10 8 123.08 102.75 96.33

First noticeable issue for the results given in Table 1 is that the MinMax
heuristic manages to outperform the other two methods for all the bay sizes,
when the average number of reshuffle operations is observed. The advantage of
using the MinMax heuristic is more significant in larger problem instances. We
wish to point out that when the results are observed for individual problem
instances, the other two methods have achieved the best results in several of
them but had very bad performance in others when compared to MinMax.

In the second group of tests we compare the effect of the two improvements
for heuristics presented in (Expósito-Izquierdo et al, 2012). More precisely, we

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 15

observe the influence of using a lookahead for selecting which block will be
well located next and including the number of moved well located blocks when
selecting the destination stack. The results are presented in Table 2.

Table 2 Comparison of the effect of improvements to the MinMax heuristic. In the notation
letters L, W are used to specify if some improvement is added: L if a look ahead is included;
W is included if the number of relocated well located containers is considered.

Tier *Stack MaxTier MinMax MinMax-W MinMax-L MinMax-
LW

3*3 5 10.95 10.95 10.75 10.75
3*4 5 11.63 11.23 11.40 11.08
3*5 5 12.55 12.20 12.53 12.20
3*6 5 14.13 13.98 14.00 13.75
3*7 5 15.98 15.28 15.83 15.50
3*8 5 16.65 16.25 16.73 16.28
4*4 6 22.90 22.70 21.30 20.85
4*5 6 26.30 25.88 24.90 24.63
4*6 6 27.10 26.48 26.90 25.85
4*7 6 30.25 30.43 29.48 29.55
5*5 7 41.88 41.55 36.25 35.98
5*6 7 50.33 49.63 43.15 42.35
5*7 7 49.93 47.85 45.98 45.50
5*8 7 58.33 57.45 52.68 52.60
5*9 7 61.45 61.30 57.23 56.83
5*10 7 65.68 64.98 60.93 60.55
6*6 8 74.98 73.60 60.70 59.88
6*10 8 96.33 95.20 84.70 83.38

Table 2 represents the effect of each of the improvements separately, and
combined when the MinMax heuristic is used. In it MinMax represents the
basic algorithm, MinMax-W is used if we take into account the number of
well located containers, MinMax-L if we select which block will be well lo-
cated next and MinMax-LW if both improvements are applied. The results
show that a MinMax-LW gives the best results. It is also shown that each
of the improvements manage to reduce the total number of relocation oper-
ations when compared to the basic method. MinMax-W is more effective in
case of smaller problem instances, while MinMax-L gives the highest level of
improvement in case of large problem instances. The use of MinMax-L man-
ages to decrease the number of reshuffle operations close to 20% in the case of
the largest problem instances. Note that although MinMax-LW gives the best
results it is not overwhelming and in 25% of the tests it is better using only
one of the improvements.

In Table 3 we give results of our experiments regarding different meth-
ods of filling. We also investigate the effect of combining with the lookahead
mechanism. In all of the tests we use MinMax-W as the base heuristic for the
algorithm.

Results acquired by using different methods of filling are much less con-
clusive than the ones presented in the previous two tables. First, we have

16 Raka Jovanovic et al.

Table 3 Evaluation of the effect of different filling algorithms and their combination with
a look ahead mechanism. In the notation an added letter L means a look ahead is included.

Tier
*Stack

MaxHeight None Standard Stop Safe L-Stop L-Safe

3*3 5 10.75 10.98 10.80 10.80 10.78 10.68
3*4 5 11.23 11.75 11.78 11.33 11.25 11.08
3*5 5 12.20 12.53 12.55 12.38 12.70 12.63
3*6 5 13.98 14.08 14.03 13.90 13.98 14.03
3*7 5 15.28 16.18 16.18 16.00 16.28 16.08
3*8 5 16.25 16.50 16.48 16.50 16.85 16.63
4*4 6 22.70 20.78 20.78 20.60 21.03 20.83
4*5 6 25.88 24.60 24.65 24.38 23.90 24.13
4*6 6 26.48 25.75 25.73 25.98 25.35 25.60
4*7 6 30.43 29.70 29.83 29.90 29.60 29.45
5*5 7 41.55 34.33 34.35 35.35 34.40 34.23
5*6 7 49.63 40.75 40.78 42.53 39.15 41.18
5*7 7 47.85 43.33 43.28 44.80 44.53 42.75
5*8 7 57.45 49.20 49.28 51.50 49.48 51.03
5*9 7 61.30 53.30 53.15 55.28 54.78 52.90
5*10 7 64.98 57.20 57.35 58.98 58.13 57.00
6*6 8 73.60 53.20 53.10 59.75 53.28 55.83
6*10 8 95.20 76.03 76.05 80.63 75.73 78.73

confirmed the results of (Expósito-Izquierdo et al, 2012) that in case of small
problem instances it is often advantageous not to use filling, and that it is very
effective in case of large instances. From our observations of individual prob-
lem instances for problems of this size it is noticeable that the use of filling, in
certain situations, would decrease the available number of free slots in the bay
which had as a consequence the increase of the number of reshuffle operations
needed to bring the bay to a desired state. This problem could be, to a large
extent, avoided by using the lookahead mechanism. Although the results of
using different filling methods would be very dependent on problem instances,
combining it with lookahead is generally a good approach.

Finally, a comparison of the multi-heuristic approach and the original
methods presented in (Expósito-Izquierdo et al, 2012) is given in Table 4.
In this table the notation ”Exposito D” has been used for our determinis-
tic implementation of the algorithm given by (Expósito-Izquierdo et al, 2012).
The algorithm is implemented as a simple greedy algorithm excluding the ran-
domization that is used in the original work. It is important to point out that
the results for our method are obtained generating only 48 different solutions
compared to the 150 in case of (Expósito-Izquierdo et al, 2012). The average
results obtained using the multi-heuristic approach are noticeably better, in
many cases close to 10% improvement, than the previously published work.
These results are also significantly better than the ones acquired by any of the
individual heuristics. This confirms the high level of dependance between the
performance of a heuristic and the initial state of the bay.

In Table 4, we have also included the optimal results from (Expósito-
Izquierdo et al, 2012) for smaller instances, and our deterministic implemen-

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 17

Table 4 Comparison of the proposed multi-heuristic approach with previously published
results.

Tier
*Stack

MaxHeight Exposito
D

(Expósito-
Izquierdo
et al,
2012)

Multi Time
(Multi)

Opt

3*3 5 11.85 10.95 9.98 2.991 8.78
3*4 5 12.20 11.03 10.33 2.932 9.03
3*5 5 13.18 11.98 11.60 2.812 10.15
3*6 5 14.52 13.40 13.05 2.833 11.28
3*7 5 16.77 15.40 14.80 3.058 12.80
3*8 5 17.50 16.38 15.70 3.040 13.68
4*4 6 21.08 20.10 18.63 3.243 15.83
4*5 6 25.55 22.13 21.88 3.265 21.05
4*6 6 26.15 24.20 23.50 3.265 -
4*7 6 30.03 27.88 27.18 3.500 -
5*5 7 35.03 31.78 31.48 3.574 -
5*6 7 41.30 38.40 37.30 3.996 -
5*7 7 44.50 41.43 40.73 3.872 -
5*8 7 50.35 47.80 47.25 3.873 -
5*9 7 54.42 53.73 50.28 4.088 -
5*10 7 59.05 58.08 54.38 4.271 -
6*6 8 54.80 51.55 50.23 4.047 -
6*10 8 78.45 77.90 72.40 4.941 -

tation of the algorithm from the same article. Our results show that the effect
of using randomization, although it always improved the average results, is
much larger in case of smaller problem instances. For larger problem instances
the use of a more suitable heuristic is of significantly higher importance. If we
observe the results for deterministic algorithms given in Table 3 we can see
that in many cases we outperform the randomized algorithm.

Table 4 also shows the execution times (in seconds) for different problem
sizes, where each one of them contains 40 different instances. The approximate
calculation time for solving one problem instance using only one heuristic
would be close to 2500 (48*40) times shorter. We wish to emphasize that the
implementation has been done in C# (which is known for lower speed), and
that we did not focus on making highly optimized code. Because of this we
believe that, if necessary, it is possible to develop code of significantly lower
calculation time using the same algorithm. The main reason for presenting
these results is to show that the presented method is very suitable for instances
of higher dimensions, due to the good scaling. We can see that the increase
of calculation time from the smallest instance (3*3) to the largest(6*10) one
is only 1.66 times. The second observation is that the execution time is more
dependant of the maximal number of tiers than the number of stacks.

18 Raka Jovanovic et al.

6 Conclusion

In this paper we have presented a new method for solving the pre-marshalling
problem. It can be seen as an improvement to a previously developed heuristic
of (Expósito-Izquierdo et al, 2012). We have analyzed different stages of that
algorithm, and for each of them we have developed several different heuristics.
We have tested and compared the performance of the developed approach on a
wide range of problem instances and shown that the newly developed approach
outperforms the ones used in the original algorithm in most cases. Our tests
have also shown that for the PMP it is very hard to find a universal heuristic
that will always give solutions of high quality. We have observed that the
performance of the proposed heuristics is highly dependant on the properties
of specific problem instances under consideration.

We have used this knowledge to develop a multi-heuristic approach for
solving the PMP. The idea of the new method is to exploit the fact that
the given greedy heuristic for solving the PMP consists of four stages, and
that for each of them several different heuristics exist. We have generated
a number of solutions by using a combination of those different heuristics for
each stage. In this way only a small group of solutions was generated for which
it was expected that they would not have undesirable properties, contrary to
the case when simple randomization is used. Our tests have shown that this
deterministic algorithm significantly outperforms the original nondeterministic
method when the quality of found solutions is observed, with a much lower
number of generated solutions.

In the future we plan to develop a more adaptive method for heuristic
selection which will provide a higher variation of generating solutions while
still avoiding the creation of solutions for which it is expected that they are
of lower quality. Moreover, it would be interesting to extend our approach to
the problem where each container does not have a specific priority value but
some sort of range of priority values, eventually corresponding to prospective
changes of priority values, e.g., due to modified ship or truck arrivals.

References

Bortfeldt A, Forster F (2012) A tree search procedure for the container pre-
marshalling problem. Eur J Oper Res 217(3):531–540

Caserta M, Voß S (2009) A corridor method-based algorithm for the
pre-marshalling problem. Lecture Notes in Computer Science, vol 5484,
Springer, Berlin, pp 788–797

Caserta M, Schwarze S, Voß S (2011a) Container rehandling at maritime con-
tainer terminals. In: Böse J (ed) Handbook of Terminal Planning, Oper-
ations Research/Computer Science Interfaces Series, vol 49, Springer New
York, pp 247–269

Caserta M, Voß S, Sniedovich M (2011b) Applying the corridor method to a
blocks relocation problem. OR Spectr 33:915–929

A Multi-Heuristic Approach for Solving the Pre-Marshalling Problem 19

Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M (2012) Pre-
marshalling problem: Heuristic solution method and instances generator.
Expert Syst Appl 39(9):8337–8349

Gupta N, Nau DS (1992) On the complexity of blocks-world planning. Artifi-
cial Intelligence 56(23):223 – 254,

Huang SH, Lin TH (2012) Heuristic algorithms for container pre-marshalling
problems. Comput Ind Eng 62(1):13 – 20

Jovanovic R, Voss S (2014) A chain heuristic for the blocks relocation problem.
Comput Ind Eng 75(0):79 – 86

Kim K, Hong GP (2006) A heuristic rule for relocating blocks. Comput Oper
Res 33(4):940–954

Kim KH (1997) Evaluation of the number of rehandles in container yards.
Comput Ind Eng 32:701–711

Lee Y, Chao SL (2009) A neighborhood search heuristic for pre-marshalling
export containers. Eur J Oper Res 196(2):468–475

Lee Y, Lee YJ (2010) A heuristic for retrieving containers from a yard. Comput
Oper Res 37(6):1139–1147

Lehnfeld J, Knust S (2014) Loading, unloading and premarshalling of stacks
in storage areas: Survey and classification. Eur J Oper Res (0):–

Murty K, Wan YW, Liu J, Tseng M, Leung E, Lai KK, Chiu H (2005)
Hongkong international terminals gains elastic capacity using a data-
intensive decision support system. Interfaces 35(1):61–75

Rendl A, Prandtstetter M (2013) Constraint models for the container pre-
marshaling problem. In: Katsirelos G, Quimper CG (eds) ModRef 2013:
12th International Workshop on Constraint Modelling and Reformulation,
pp 44–56

Scholl A, Voß S (1996) Simple assembly line balancing – heuristic approaches.
J Heuristics 2:217–244

Tierney K, Pacino D, VoßS (2013), Solving the pre-marshalling problem to
optimality with A* and IDA*. Tech. rep., DTU Transport, Technical Uni-
versity of Denmark

Ünlüyurt T, Aydin C (2012) Improved rehandling strategies for the container
retrieval process. J Adv Transport 46(4):378–393

Voß S (2012) Extended mis-overlay calculation for pre-marshalling containers.
In: Hu H, Shi X, Stahlbock R, Voß S (eds) Computational Logistics, Lecture
Notes in Computer Science, vol 7555, Springer, Berlin, pp 86–91

Wu KC, Ting CJ (2010) A beam search algorithm for minimizing reshuffle
operations at container yards. In: Proceedings of the 2010 International
Conference on Logistics and Maritime Systems, Busan, Korea

Zhang C (2000) Resource planning in container storage yard. PhD thesis,
Department of Industrial Engineering, The Hong Kong University of Science
and Technology

	1 Introduction
	2 The Pre-Marshalling Problem
	3 The Basic Heuristic Scheme
	4 Multi-Heuristic Approach
	5 Experimental Results
	6 Conclusion

