Skip to main content
Log in

Evaluating the quality of online optimization algorithms by discrete event simulation

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

A key feature of dynamic problems which offer degrees of freedom to the decision maker is the necessity for a goal-oriented decision making routine which is employed every time the logic of the system requires a decision. In this paper, we look at optimization procedures which appear as subroutines in dynamic problems and show how discrete event simulation can be used to assess the quality of algorithms: after establishing a general link between online optimization and discrete event systems, we address performance measurement in dynamic settings and derive a corresponding tool kit. We then analyze several control strategies using the methodologies discussed previously in two real world examples of discrete event simulation models: a manual order picking system and a pickup and delivery service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Angelopoulos S, Dorrigiv R, López-Ortiz A (2007) On the separation and equivalence of paging strategies. In: Proceedings of the 18th annual ACM-SIAM symposium on discrete algorithms, pp 229–237

  • Becchetti L, Leonardi S, Marchetti-Spaccamela A, Schäfer G, Vredeveld T (2006) Average-case and smoothed competitive analysis of the multilevel feedback algorithm. Math Oper Res 31(1):85–108

    Article  Google Scholar 

  • Ben-David S, Borodin A (1994) A new measure for the study of on-line algorithms. Algorithmica 11(1):73–91

    Article  Google Scholar 

  • Blom M, Krumke S, de Paepe W, Stougie L (2000) The online TSP against fair adversaries. In: Bongiovanni G, Petreschi R, Gambosi G (eds) Algorithms and complexit. Springer, Berlin, pp 137–149

    Chapter  Google Scholar 

  • Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Boyar J, Favrholdt L (2007) The relative worst order ratio for online algorithms. In: ACM transactions on algorithms, 3(2), article no. 22

  • Boyar J, Favrholdt L, Larsen K, Nielsen M (2003) Extending the accommodating function. Acta Inform 40(1):3–35

    Article  Google Scholar 

  • Boyar J, Larsen K, Nielsen M (2002) The accommodating function: a generalization of the competitive ratio. SIAM J Comput 31(1):233–258

    Article  Google Scholar 

  • Cassandras C, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Coffman E, So K, Hofri M, Yao A (1980) A stochastic model of bin-packing. Inf Control 44(2):105–115

    Article  Google Scholar 

  • Cordeau J, Laporte G (2003) A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp Res B Methodol 37(6):579–594

    Article  Google Scholar 

  • Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812

    Article  Google Scholar 

  • Csirik J, Woeginger G (2002) Resource augmentation for online bounded space bin packing. J Algorithms 44(2):308–320

    Article  Google Scholar 

  • Dorrigiv R, Lopez-Ortiz A (2007) Adaptive analysis of on-line algorithms. In: Fekete S, Fleischer R, Klein R, Lopez-Ortiz A (eds) Robot navigation, number 06421 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI). Schloss Dagstuhl, Germany

  • Dorrigiv R, López-Ortiz A (2008) Closing the gap between theory and practice: new measures for on-line algorithm analysis. In: Proceedings of the 2nd international conference on algorithms and computation, pp 13–24

  • Dorrigiv R, López-Ortiz A, Munro J (2009) On the relative dominance of paging algorithms. Theor Comput Sci 410(38–40):3694–3701

    Article  Google Scholar 

  • Dunke F (2014) Online Optimization with Lookahead. Ph.D. thesis, Karlsruhe Institute of Technology

  • Fiat A, Woeginger G (1998) Competitive odds and ends. In: Fiat A, Woeginger G (eds) Online algorithms: the state of the art. Springer, Berlin, pp 385–394

    Chapter  Google Scholar 

  • Franaszek P, Wagner T (1974) Some distribution-free aspects of paging algorithm performance. J ACM 21(1):31–39

    Article  Google Scholar 

  • Ghiani G, Laporte G, Musmanno R (2004) Introduction to logistics systems planning and control. Wiley, Hoboken

    Google Scholar 

  • Grötschel M, Krumke S, Rambau J (eds) (2001) Online optimization of large scale systems, Springer

  • Grötschel M, Krumke S, Rambau J, Winter T, Zimmermann U (2001) Combinatorial online optimization in real time. In: Grötschel M, Krumke S, Rambau J (eds) Online optimization of large scale systems. Springer, Berlin, pp 679–704

    Chapter  Google Scholar 

  • Henn S, Koch S, Wäscher G (2012) Order batching in order picking warehouses: a survey of solution approaches. In: Manzini R (ed) Warehousing in the global supply chain. Springer, Berlin, pp 105–137

    Chapter  Google Scholar 

  • Hiller B (2009) Online optimization: probabilistic analysis and algorithm engineering. Ph.D. thesis, Technische Universität Berlin

  • Huber C (2011) Throughput analysis of manual order picking systems with congestion consideration. Ph.D. thesis, Karlsruher Institut für Technologie

  • Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630

    Article  Google Scholar 

  • Jaynes E (1957) Information theory and statistical mechanics II. Phys Rev 108(2):171–190

    Article  Google Scholar 

  • Kallrath J (2005) Online storage systems and transportation problems with applications: optimization models and mathematical solutions. Springer, Berlin

    Google Scholar 

  • Kalyanasundaram B, Pruhs K (2000) Speed is as powerful as clairvoyance. J ACM 47(4):617–643

    Article  Google Scholar 

  • Karlin A, Manasse M, Rudolph L, Sleator D (1988) Competitive snoopy caching. Algorithmica 3(1–4):79–119

    Article  Google Scholar 

  • Karlin A, Phillips S, Raghavan P (2000) Markov paging. SIAM J Comput 30(3):906–922

    Article  Google Scholar 

  • Kenyon C (1996) Best-fit bin-packing with random order. In: Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms, pp 359–364

  • Kirkpatrick S, Gelatt CD, Vecchi P (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  Google Scholar 

  • Koutsoupias E, Papadimitriou C (2000) Beyond competitive analysis. SIAM J Comput 30(1):300–317

    Article  Google Scholar 

  • Krumke S, Laura L, Lipmann M, Marchetti-Spaccamela A, Paepe Wd, Poensgen D, Stougie L (2002) Non-abusiveness helps: An o(1)-competitive algorithm for minimizing the maximum flow time in the online traveling salesman problem. In: Proceedings of the 5th international workshop on approximation algorithms for combinatorial oimization, APPROX ’02, 200–214, Springer

  • Lawler E, Lenstra J, Rinnooy Kan A, Shmoys D (eds.) (1985) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley

  • Miller C, Tucker A, Zemlin R (1960) Integer programming formulation of traveling salesman problems. J ACM 7(4):326–329

    Article  Google Scholar 

  • Müller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, Hoboken

    Google Scholar 

  • März L, Krug W (2011) Kopplung von Simulation und Optimierung. In: Krug W, Rose O, Weigert G (eds) Simulation und Optimierung in Produktion und Logistik: Praxisorientierter Leitfaden mit Fallbeispielen. Springer, Berlin, pp 41–45

    Chapter  Google Scholar 

  • Psaraftis H (1995) Dynamic vehicle routing: status and prospects. Ann Oper Res 61(1):143–164

    Article  Google Scholar 

  • Raghavan P (1991) A statistical adversary for on-line algorithms. DIMACS Ser Discrete Math Theor Comput Sci 7:79–83

    Article  Google Scholar 

  • Scharbrodt M, Schickinger T, Steger A (2006) A new average case analysis for completion time scheduling. J ACM 53(1):121–146

    Article  Google Scholar 

  • Sleator D, Tarjan R (1985) Amortized efficiency of list update and paging rules. Commun ACM 28(2):202–208

    Article  Google Scholar 

  • Spielman D, Teng S (2004) Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J ACM 51(3):385–463

    Article  Google Scholar 

  • Stadtler H, Kilger C (eds.) (2008) Supply chain management and advanced planning: concepts, models, sftware, and case studies. Springer, 4th edn

  • Toth PM, Vigo D (eds.) (2002) The vehicle routing problem. SIAM

  • Verein Deutscher Ingenieure (VDI) (1996) VDI-Richtlinie 3633. Simulation von Logistik-, Materialfluß- und Produktionssystemen: Begriffsdefinitionen. In: VDI-Handbuch Materialfluß und Fördertechnik, Beuth

  • Young N (1994) The k-server dual and loose competitiveness for paging. Algorithmica 11(6):525–541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Dunke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunke, F., Nickel, S. Evaluating the quality of online optimization algorithms by discrete event simulation. Cent Eur J Oper Res 25, 831–858 (2017). https://doi.org/10.1007/s10100-016-0455-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-016-0455-6

Keywords

Navigation