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Abstract We consider a semi-online version of the problem of scheduling a sequence
of jobs of different lengths on two uniform machines with given speeds 1 and s. Jobs
are revealed one by one (the assignment of a job has to be done before the next job
is revealed), and the objective is to minimize the makespan. In the considered variant
the optimal offline makespan is known in advance. The most studied question for this
online-type problem is to determine the optimal competitive ratio, that is, the worst-
case ratio of the solution given by an algorithm in comparison to the optimal offline
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solution. In this paper, we make a further step towards completing the answer to this

question by determining the optimal competitive ratio for s between 5+√
241

12 ≈ 1.7103
and

√
3 ≈ 1.7321, one of the intervals that were still open. Namely, we present and

analyze a compound algorithm achieving the previously known lower bounds.

Keywords Scheduling · Semi-online algorithm · Makespan minimization ·
Mixed-integer linear programming

1 Introduction

Combinatorial optimization problems come with various paradigms on how an
instance is revealed to a solving algorithm.The very common offline paradigmassumes
that the entire instance is known in advance. On the opposite end, one can deal with
the pure online scheme, where the instance is revealed part by part, unpredictable to
the algorithm, and no further knowledge on these parts is assumed. In between these
two extremes, and also highly relevant for many practical applications, are semi-online
paradigms, where at least some characteristics of the instance in general are assumed
to be known, for example, the total instance size or distributions of some internal
values.

As a continuation of our work (Dósa et al. 2015a), we consider a semi-online variant
of a scheduling problem for two uniformmachines, that is defined as follows. Suppose
that two machines M1 and M2 are processing a sequence of incoming jobs of varying
lengths. Machine M1 has a speed of 1, so that a job of length � is processed within �

units of time, whereas machine M2 has a speed of s ≥ 1, so that a job of length � can
be processed within �

s units of time. The load of a machine is the total size of jobs
assigned to thatmachine (without dividing by the speed of themachine). This definition
is non-standard, but in this way some of our calculations become simpler. The jobs
must be assigned to the machines in an online fashion, so that the next job becomes
visible only when the previous job has already been assigned. The goal is to find a
schedule that minimizes the total makespan, that is, the point in time when the last job
on either machine is finished. We assume that the optimal value of the makespan for
the corresponding offline problem (where all jobs are known in advance), denoted by
OPT is available to the scheduler, and can be taken into account during its assignment
decisions.

We are interested in constructing an algorithmA that solves this semi-online prob-
lem, and achieves a small makespan. Of course, for a given instance I of the problem,
the (offline) OPT = OPT(I ) value is a lower bound for the semi-online problem.
Thus, we consider the competitive ratio MA(I )

OPT(I ) ≥ 1, where MA(I ) is the makespan
value achieved by algorithmAwhen applied to instance I , as a performance measure.

The competitive ratio rA of an algorithmA is then defined as the worst case of this
ratio, that is, the supremum over all possible problem instances:

rA = sup

{
MA(I )

OPT(I )
: I is an instance

}
.
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One can try to bound the value of r from below by estimating the infimum of rA over
all algorithms A, that is,

r∗ := inf{rA : A an algorithm}.

We call r∗ the optimal competitive ratio. An algorithm A is said to be r -competitive,
if for any instance I its performance is bounded by r from above: MA(I )

OPT(I ) ≤ r . An
optimal algorithm in this sense is r∗-competitive.

1.1 Survey of the literature

The problem of scheduling a set of jobs onm (possibly not identical)machineswith the
objective to minimize the makespan (maximum completion time), with the jobs being
revealed one-by-one, is a classic online algorithmic problem. Starting with results of
Graham (1969), much work has been done in this field (see for example Albers 1999;
Berman et al. 2000; Ebenlendr and Sgall 2007; Faigle et al. 1989; Fleischer and Wahl
2000; Gormley et al. 2000), although even if we restrict only to the case of identical
machines, the optimal ratio is still not known in general.

From both the theoretical and practical point of view, it may be important to inves-
tigate semi-online models, in which some additional information or relaxation is
available. In this work we consider the scheme in which only the optimal offline value
is known in advance (OPT version); however it is worth mentioning a strong relation
with another semi-online version of the described scheduling problem, in which only
the sum of jobs is known (SUMversion) (Angelelli et al. 2004, 2007, 2008; Dósa et al.
2011; Kellerer et al. 1997; Lee and Lim 2013; Ng et al. 2009). Namely, for a given
numberm of uniform (possibly non-identical) machines the optimal competitive ratio
for the OPT version is at most the competitive ratio of the SUM version [see Dósa
et al. (2011); for equal speeds this was first implicitly stated by Cheng et al. (2005)].

For a more detailed overview of the literature on online and various semi-online
variants, we refer to the survey of Tan and Zhang (2013).

Azar and Regev (2001) introduced the OPT version on (two or more) identical
machines under the name of bin stretching, and this case was studied further by Cheng
et al. (2005) and by Lee and Lim (2013). However, knowing the relation between the
OPT and SUM versions, the first upper bound for two equal-speed machines follows
from the work of Kellerer et al. (1997) on the SUM version.

We must mention some recent papers in the case of identical machines by Gabay
et al. (2015) andBöhmet al. (2016a, b). Themain reason is the similarity of attitudes by
which we and those authors approach the problems: they also use separate algorithms
for certain good situations. In particular, Böhm et al. (2016b) makes this method very
explicit. During the execution of some (online) algorithm, we sometimes meet some
“good situations”. This means that the schedule can surely be finished without any
bigger problem or surprise, i.e. keeping the targeted worst-case ratio. And the more
difficult cases are handled by some other algorithmwhich is exactly trained to dealwith
the difficult situations. We do this idea by handling the good situations by algorithm
FinalCases, and the remaining not so friendly cases by another algorithm, called

123



164 G. Dósa et al.

InitialCases. The separation of the final and other cases seems to be very natural
for this type of problem.

In this work we are interested in the OPT version on two uniform machines with
non-identical speeds, therefore we summarize previous results for this case. Recall
that speeds of machines are 1 and s. Known bounds on the optimal competitive ratio
r∗ are expressed in terms of s.

Studies on this versionof the problemwere initiatedbyEpstein (2003). Sheprovided
the following bounds:

r∗(s) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∗(s) ∈
[
3s+1
3s , 2s+2

2s+1

]
for s ∈ [1, qE ≈ 1.1243]

r∗(s) ∈
[
s
( 3
4 +

√
65
20

)
, 2s+2
2s+1

]
for s ∈ [

qE , 1+√
65

8 ≈ 1.1328
]

r∗(s) = 2s+2
2s+1 for s ∈ [ 1+√

65
8 , 1+√

17
4 ≈ 1.2808

]
r∗(s) = s for s ∈ [ 1+√

17
4 , 1+√

3
2 ≈ 1.3660

]
r∗(s) ∈

[
2s+1
2s , s

]
for s ∈ [ 1+√

3
2 ,

√
2 ≈ 1.4142

]

r∗(s) ∈
[
2s+1
2s , s+2

s+1

]
for s ∈ [√

2, 1+√
5

2 ≈ 1.6180
]

r∗(s) ∈
[
s+1
2 , s+2

s+1

]
for s ∈ [ 1+√

5
2 ,

√
3 ≈ 1.7321

]
r∗(s) = s+2

s+1 for s ≥ √
3

where qE is the solution of 36x4 − 135x3 + 45x2 + 60x + 10 = 0.
Ng et al. (2009) studied this problem with comparison to the SUM version. They

presented algorithms giving the upper bounds

r∗(s) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2s+1
2s for s ∈ [ 1+√

3
2 , 1+√

21
4 ≈ 1.3956

]
6s+6
4s+5 for s ∈ [ 1+√

21
4 , 1+√

13
3 ≈ 1.5352

]
12s+10
9s+7 for s ∈ [ 1+√

13
3 , 5+√

241
12 ≈ 1.7103

]
2s+3
s+3 for s ∈ [ 5+√

241
12 ,

√
3
]

and proved the following lower bounds:

r∗(s) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3s+5
2s+4 for s ∈ [√

2,
√
21
3 ≈ 1.5275

]
3s+3
3s+1 for s ∈ [√

21
3 , 5+√

193
12 ≈ 1.5744

]
4s+2
2s+3 for s ∈ [ 5+√

193
12 , 7+√

145
12 ≈ 1.5868

]
5s+2
4s+1 for s ∈ [ 7+√

145
19 , 9+√

193
14 ≈ 1.6352

]
7s+4
7s for s ∈ [ 9+√

193
14 , 5

3

]
7s+4
4s+5 for s ∈ [ 5

3 ,
5+√

73
8 ≈ 1.6930

]
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Dósa et al. (2011) considered this version together with the SUMversion. Their results
included the bounds

r∗(s) ≥
⎧⎨
⎩

8s+5
5s+5 for s ∈ [ 5+√

205
18 , 1+√

31
6 ≈ 1.0946

]
2s+2
2s+1 for s ∈ [ 1+√

31
6 , 1+√

17
4 ≈ 1.2808

]

r∗(s) ≤
{ 3s+1

3s for s ∈ [
1, qD ≈ 1.071

]
7s+6
4s+6 for s ∈ [

qD, 1+√
145

12 ≈ 1.0868
]

where qD is the unique root of the equation 3s2(9s2−s−5) = (3s+1)(5s+5−6s2).
Finally, the recent manuscript (Dósa et al. 2015a) whose results complement this

work of the present authors provided the following lower bounds:

r∗(s) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6s+6
4s+5 for s ∈ [√

21+1
4 ≈ 1.3956,

√
73+3
8 ≈ 1.443

]
12s+10
9s+7 for s ∈ [ 5

3 ,
13+√

1429
30 ≈ 1.6934

]
18s+16
16s+7 , for s ∈ [ 13+√

1429
30 , 30+7

√
186

74 ≈ 1.6955
]

8s+7
3s+10 , for s ∈ [ 30+7

√
186

74 , 31+√
8305

72 ≈ 1.6963
]

12s+10
9s+7 for s ∈ [ 31+√

8305
72 , 4+√

133
9 ≈ 1.7258

]

Here we collected only a brief summary of known bounds; for further details about
previous results we refer to Dósa et al. (2015a).

1.2 Our contribution

After thework ofDósa et al. (2015a), between 5
3 and

√
3 there are two intervals, namely[ 13+√

1429
30 , 31+√

8305
72

] ≈ [
1.6934, 1.6963

]
that we call narrow interval and [ 5+

√
241

12 ,√
3] ≈ [1.7103, 1.7321] that we call wide interval, where the question remained open

regarding the tight value of the competitive ratio.
In the narrow interval the upper bound is very close to the lower bound (the biggest

gap is still smaller than 0.000209), so in this paper we focus on the wide interval, for
which we present an optimal compound algorithm which has a competitive ratio that
equals the previously known lower bounds.

We apply the method of “safe sets”. This idea probably first applied in Epstein
(2003). The concept is used also later by Ng et al. (2009) and Angelelli et al. (2010)
(called “green set” in the latter), and also used by Dósa et al. (2011). Once those sets
are properly defined (cf. Fig. 2), we try to assign the next job in the sequence to a
machine where its completion time will be in some safe set. In case of the quoted
papers, the safe sets are defined in such a way that the next property holds in any case:
after some initial phase when the loads of both machines are low, a job will surely
arrive that can be assigned into a safe set. In other words, the boundaries of the safe
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Fig. 1 Known and new upper and lower bounds from Epstein (2003), Ng et al. (2009), and Dósa et al.
(2015a)

sets are optimized in the way that the best possible competitive ratio would be reached
while the above property holds.

Now,wemake a crucial modification extending the power of themethod.We realize
that, keeping the above property, the algorithm cannot be optimal in the considered
interval of speeds, thereforewedonot insist on this property for defining the boundaries
of the safe sets. We are less restrictive as we allow the possibility that during the
scheduling process, some relatively big job may arrive, which cannot be assigned
within a safe set. But it turns out that this unpleasant case can be handled by another
kind of algorithm. So, for any incoming job first we try our algorithm “Final Cases”
which uses the safe sets, to assign the actual job into a safe set if possible. If this is
not possible, we apply our second algorithm “Initial Cases” to assign the job.

We further show that our algorithm matches the best known algorithm of Ng

et al. (2009) regarding the competitive ratio on the interval [ 1+
√
13

3 , 5+√
241

12 ] ≈
[1.5352, 1.7103]. For a visual comparison of the previously known results and our
contribution we refer to Fig. 1. Whenever the dotted line (that represents an upper
bound) is on an unbroken line (that represents a lower bound), the optimal competi-
tive ratio is known.

2 Notions and definitions

Let q0 := 1+√
13

3 ≈ 1.5352, which is the positive solution of 6s+6
4s+5 = 12s+10

9s+7 .

Let q6 := 5+√
241

12 ≈ 1.7103, which is the positive solution of 12s+10
9s+7 = 2s+3

s+3 .

Let q7 := 4+√
133

9 ≈ 1.7258, which is the positive solution of 12s+10
9s+7 = s+1

2 .
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M2

M1

S5

D5
B5 T5

S3

D3
B3 T3

S1

D1
B1 T1

S4

D4
B4 T4

S2

D2
B2 T2

Fig. 2 Safe sets

We note that the values q6 and q7 were already defined in the paper (Dósa et al.
2015a). Then thewide interval is [q6,

√
3]. For the remainder of this articlewe consider

values of s from the wide interval only. We define

r(s) :=
{
r2(s) := 12s+10

9s+7 , if q6 ≤ s ≤ q7 ≈ 1.7258, i.e., s is regular,

r5(s) := s+1
2 , if q7 ≤ s ≤ √

3, i.e., s is large.

We remark that the value r2(s) is the same as in our preceding paper (Dósa et al.
2015a). The speeds to the left from the narrow interval (which are not considered in
this paper) were called smaller regular speeds. The speeds to the right of the narrow
interval were called bigger regular speeds, now we call these speeds simply as regular.
The value r5(s) is Epstein’s lower bound from Epstein (2003) on the right side of the
wide interval. Note also that the graph of r2(s) can be seen on the figure between q6
and q7, where the dotted line touches the unbroken line. Similarly, the graph of r5(s)
appears between q7 and

√
3, where the dotted line touches the unbroken line.

Let OPT and SUM mean, respectively, the known optimum value, and the total
size of the jobs. Note that SUM ≤ (s + 1) · OPT , and the size of any job is at most
s · OPT . We denote the prescribed competitive ratio (that we do not want to violate)
by r .

The optimum value is assumed to be known, and for sake of simplicity we will
assume that OPT is equal to 1. (This can be assumed without loss of generality by
normalization, i.e., dividing all of the job lengths by the optimal makespan.) Then we
define five safe sets Si := [Bi , Ti ]with size Di := Ti − Bi for i = 1, . . . , 5 as follows
(see also Fig. 2):

1. B1 := s + 1 − r and T1 := rs, thus D1 = (s + 1)(r − 1),
2. B2 := s + 1 − sr and T2 := r , thus D2 = (s + 1)(r − 1),
3. B3 := 2s − 2r − rs + 2 and T3 := s(r − 1), thus D3 = 2r − 3s + 2rs − 2,
4. B4 := 4s − 2r − 3rs + 3 and T4 := r − 1, thus D4 = (3r − 4)(s + 1),
5. B5 := 6s−5r−4rs+6 and T5 := 10s−7r−7rs+9, thus D5 = 4s−2r−3rs+3.
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168 G. Dósa et al.

These sets define time intervals, and they are called “safe” because if the load of the
machine is in this interval, this enables a “smart” algorithm (as the one we introduce
later) to finish the schedule by not violating the desired competitive ratio. In other
words, from the point of view of an algorithm (which wishes to keep the competitive
ratio low), we want to assign the actual job in a way that the increased load of some
machine will be inside a safe set.

3 Properties

In this section we summarize some technical properties and estimations of the defini-
tions and notions from the previous section, which are needed within the computations
in the subsequent sections.

Lemma 1 r5(s) ≥ r2(s) for s ≥ q7.

Proof r5(s)−r2(s) = s+1
2 − 12s+10

9s+7 = 9s2−8s−13
2(9s+7) ≥ 0, which is true since 9s2 −8s−

13 ≥ 0 holds if and only if s ≤ 4−√
133

9 or s ≥ 4+√
133

9 = q7. �	
Lemma 2 The following inequalities hold in the entire considered domain of the
function r , i.e., for all s ∈ [q6,

√
3].

1. 3s+2
2s+2 < 4

3 < 1.35 < r(s) < min
{
4s+3
3s+2 ,

s+2
s+1

}
< 2s+1

s+1 < 2.

2. 8s+7
6s+5 ≤ r(s).

3. s+3
s+2 < 7s+5

5s+4 < s+1
2 ≤ r(s) < 6s+6

4s+5 .

Proof The rightmost part in Lemma 2.1, i.e. 2s+1
s+1 < 2, holds trivially. All other claims

in 2.1 and 2.2 but the ones which regard r5(s) are already proven in Dósa et al. (2015a),
thus we give only this unproved part here. Moreover, we give the proof for 2.3, whose
claims were not considered before.

1. The leftmost lower boundholds as 3s+2
2s+2 < 4

3 is equivalent to 4(2s+2)−3(3s+2) =
2 − s > 0, and hence to s < 2. Further, it is easy to see that r(s) = s+1

2 > 1.35,
since s > 1.7 in the domain of r5. Regarding the upper bound, 2s+1

s+1 > s+2
s+1 holds

trivially since s > 1, thus it remains to show that r < min
{
s+2
s+1 ,

4s+3
3s+2

}
. Note that

4s+3
3s+2 ≥ s+2

s+1 for positive s holds if and only if (4s + 3)(s + 1)− (s + 2)(3s + 2) =
s2 − s − 1 ≥ 0, i.e., s ≥ 1+√

5
2 ≈ 1.618. Therefore, for large s we need to show

only that r < s+2
s+1 . We have s+1

2 − s+2
s+1 < 0, which holds since s2 − 3 ≤ 0 is true.

2. For large s we get that s+1
2 ≥ 8s+7

6s+5 holds if and only if (6s+5)(s+1)−2(8s+7) =
6s2 − 5s − 9 ≥ 0, i.e., s ≥ 5+√

241
12 ≈ 1.7103 = q6 which is valid.

3. Regarding the leftmost inequality, 7s+5
5s+4 − s+3

s+2 = 2(s−1)(s+1)
(s+2)(5s+4) > 0 trivially

holds. The next inequality holds since s+1
2 − 7s+5

5s+4 = 5s2−5s−6
2(5s+4) > 0 holds if

s > 5+√
145

10 ≈ 1.7042 (and this value is smaller than q6). Regarding r(s) ≥ s+1
2 ,

for large speeds the inequality holds trivially (with equality) and for regular speeds
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we have already seen the validity of the inequality in Lemma 1. Thus we are
done with the lower bound; let us see the upper bound. For regular s we have
6s+6
4s+5 − 12s+10

9s+7 = 6s2−4s−8
(9s+7)(4s+5) ≥ 0, which is true, since 6s2 − 4s − 8 ≥ 0 for

s ≤ 1−√
13

3 and s ≥ 1+√
13

3 = q0 ≈ 1.535. For large s we have 6s+6
4s+5 − s+1

2 =
−4s2+3s+7
2(4s+5) = (s+1)(7−4s)

2(4s+5) ≥ 0, which is true since s ≤ 1.75.

�	
In the next lemma we state some properties of the safe sets. Note that an alternative

option to define the safe sets would be to require these properties below.

Lemma 3 1. D1 = D2,
2. T1 − T3 = s and T2 − T4 = 1,
3. B3 = B1 − D1,
4. B4 = B2 − D3,
5. B5 = B3 − D4,
6. T5 = B5 + B4.

Proof Proofs of the equalities in Lemmas 3.1–3.4 were given in Dósa et al. (2015a).
Since these proofs use nothing else than the definition of the safe sets, we do not repeat
them. For proving 3.5 and 3.6 we use again the definitions of the boundaries.

5. B5 + D4 = (6s − 5r − 4rs + 6) + (3r − 4)(s + 1)

= 2s − 2r − rs + 2 = B3.

6. B5 + B4 = (6s − 5r − 4rs + 6) + (4s − 2r − 3rs + 3)

= 10s − 7r − 7rs + 9 = T5.

�	
The next lemma proves that the safe sets are well defined in the sense that they are

disjoint sets, and follow each other in the described order on the machines.

Lemma 4 The following inequalities hold:

1. 0 ≤ B4 < T4 < B2 < T2,
2. 0 < B5 < T5 ≤ B3 < T3 < B1 < T1.

Proof We note that in the paper Dósa et al. (2015a) we already introduced the first
four safe sets (in the same way), with the same properties. In this paper we need the
fifth safe set as well, moreover the claims of the lemma hold also for large values of
s, thus we need to give the proof of the lemma again. In the calculations we generally
use Lemma 2, unless stated otherwise.

1. From r ≤ 4s+3
3s+2 it follows that 0 ≤ 4s + 3 − 3rs − 2r = B4. From r > 4

3
and the definition we have that 0 < (3r − 4)(s + 1) = D4 = T4 − B4. From
r < s+2

s+1 it follows 0 < (s + 1− sr) − (r − 1) = B2 − T4. By r > 1 we have that
0 < (s + 1)(r − 1) = T2 − B2.
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2. We observe that for positive s the inequality 0 < 6s − 5r − 4rs + 6 = B5 is
equivalent to r(s) < 6s+6

4s+5 , which holds. Lemma 3.6 states that T5 − B5 = B4, and

thus using B4 > 0 fromLemma4.1we have T5−B5 > 0. From r ≥ 8s+7
6s+5 it follows

that 0 ≤ 5r−8s+6rs−7 = (2s−2r−rs+2)−(10s−7r−7rs+9) = B3−T5.
From r > 3s+2

2s+2 it follows that 0 < 2r + 2rs − 3s − 2 = D3 = T3 − B3. From

r < 2s+1
s+1 it follows that 0 < (s + 1− r)− s(r − 1) = B1 − T3. By r > 1 we have

that 0 < (s + 1)(r − 1) = D1 = T1 − B1. �	

Wewill need some further properties regarding the safe sets. These properties make
the later calculations easier.

Lemma 5 1. D1 = D2 > max {B2, D3},
2. B2 < 1 and B1 < s,
3. T3 − T5 ≥ B2,
4. B2 ≥ B3,

5. T2 ≥ B1,
6. D3 > B4,
7. T4 + D3 > B2,
8. 2D1 > s,
9. T4 + D1 > 1,

10. T4 + T2 ≥ s.

Proof We generally use Lemma 2 for the lower or upper bounds on r(s).

1. D1 = D2 holds directly by definition. For D2 > B2 we equivalently have D2 −
B2 = (s + 1)(r − 1) − (s + 1 − sr) = 2sr − 2s − 2 + r > 0, and hence
r(2s + 1) > 2s + 2, which holds. Finally, from D2 − D3 = (rs + r − s − 1) −
(2r − 3s + 2rs − 2) = −rs − r + 2s + 1 > 0 we get 2s+1

s+1 > r , which is true.
2. B2 = s + 1 − sr < 1, and B1 = s + 1 − r < s since 1 < r .
3. We have T3 − T5 − B2 = s(r − 1) − (10s − 7r − 7rs + 9) − (s + 1 − sr) =

7r − 12s + 9rs − 10 ≥ 0 if and only if r ≥ 12s+10
9s+7 . This is trivially true for any

s ≤ q7, and true for s > q7 by Lemma 1.
4. We have B2 − B3 = (s + 1 − sr) − (2s − 2r − rs + 2) = 2r − s − 1 ≥ 0 if and

only if r ≥ s+1
2 , which holds.

5. T2 − B1 = r − (s + 1 − r) = 2r − s − 1 ≥ 0.
6. D3 − B4 = (2r − 3s + 2rs − 2) − (4s − 2r − 3rs + 3) = 4r − 7s + 5rs − 5 > 0

if and only if r > 7s+5
5s+4 .

7. T4 + D3 − B2 > B4 + D3 − B2 = 0, by Lemmas 3.4 and 4.1.
8. 2D1 − s = 2 (s + 1) (r − 1) − s = 2r − 3s + 2rs − 2 > 0 holds if r > 3s+2

2s+2 ,
which is true.

9. T4 + D1 − 1 = (r − 1) + (s + 1) (r − 1) − 1 = 2r − s + rs − 3 > 0 if and only
if r > s+3

s+2 .

10. T4 + T2 − s = (r − 1) + r − s = 2r − s − 1 ≥ 0 since r ≥ s+1
2 . �	
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4 Algorithm FinalCases

First the loads are zero. The actual loads of themachines will be denoted as Lm (m = 1
or m = 2) just before assigning the next job. Thus, for example, if L1 denotes the
actual load of the first machine, then after assigning a job to this machine, the new
load will again be denoted by L1.

Here we define a subalgorithm, which works (and will be applied) only if the next
job can be assigned to a machine whose increased load will be within some safe set.
We call the algorithm FinalCases. We will say, for the sake of simplicity, that
some step is executed if the condition of this step is satisfied and the actual job is
assigned at this step. Otherwise we say that the step is only examined. In other words,
entering some step, it is examined whether the condition of the step is fulfilled or not.
If yes, the step is executed. If not, the step is not executed. Moreover, for the sake of
simplicity, if some step is not executed, we do not write “else if” in the description of
the algorithm; if it turns out that the condition of some step is not satisfied, then the
algorithm simply proceeds with examining the next step.

Theorem 6 Suppose that some of Steps 1 to 5 of AlgorithmFinalCases is executed.
Then all subsequent jobs are also scheduled by this algorithm, and the competitive
ratio is not violated.

Proof 1. Suppose that Step 1 is executed. Then the load L2 of the fast machine M2
will be not more than T1 = rs, thus we do not violate the competitive ratio r by
the fast machine. On the other hand, the final load of the fast machine is at least
B1 = s+1−r , because we assigned job xi toM2. Applying SUM ≤ s+1, the final
load L1 of the slow machine M1 cannot be more than r , since L1 = SUM− L2 ≤
(s + 1) − (s + 1 − r) = r , which means that the competitive ratio is not violated
by the slow machine either.

2. Now suppose that Step 2 is executed. The proof is almost the same as for Step 1.
The load of M1 does not exceed T2, so the competitive ratio is not violated by
the slow machine. Moreover the final load of the slow machine is L1 ≥ B2 =
s + 1 − sr , thus L2 ≤ SUM − L1 ≤ (s + 1) − B2 = sr = T1, and we are
done.

3. Suppose that Step 3 is executed. After assigning xi to M2, B3 ≤ L2 ≤ T3 holds.
Then we possibly assign several jobs to M1. We claim that the increased load of M1
cannot remain below B2. Indeed, assume that it stays below B2. Then B2 < 1 from
Lemma 5.2, and also T3

s = r−1 < 1 from the rightmost estimation in Lemma 2.1.
Hence the makespan would be strictly less than OPT = 1; a contradiction. Thus
there must arrive a job that ends the loop, i.e. some job x j with L1 + x j ≥ B2.
At this point the algorithm goes back to Step 1. We claim that with this job x j the
condition of Step 1 or Step 2 is satisfied, so the algorithm will assign all remaining
jobs as explained above, and does not violate the competitive ratio.
Suppose that the conditionofStep2 is not satisfied, i.e., L1+x j /∈ S2. Togetherwith
the previously satisfied condition L1 + x j ≥ B2, we deduce that L1 + x j > T2,
from which it follows that x j > D2. We show that in this case the condition
of Step 1 is already fulfilled. Indeed, for the lower bound we have L2 + x j >

B3 + D2 = B3 + D1 = B1 (where from left to right we applied the condition

123



172 G. Dósa et al.

Algorithm 1: FinalCases
Data: current loads L1, L2 for machines M1, M2; index i of current job xi

1 if L2 + xi ∈ S1 then
L2 := L2 + xi // assign job xi to M2

L1 := L1 + ∑N
j=i+1 x j // assign all subsequent jobs to M1

stop // no more jobs, terminate

2 if L1 + xi ∈ S2 then
L1 := L1 + xi // assign job xi to M1

L2 := L2 + ∑N
j=i+1 x j // assign all subsequent jobs to M2

stop // no more jobs, terminate

3 if L2 + xi ∈ S3 and L1 < B2 then
L2 := L2 + xi // assign job xi to M2
while L1 + xi+1 < B2 do

i := i + 1 // next job
L1 := L1 + xi // assign job xi to M1

i := i + 1 // next job
goto Step 1

4 if L1 + xi ∈ S4 and L2 < B3 then
L1 := L1 + xi // assign job xi to M1
while L2 + xi+1 < B3 do

i := i + 1 // next job
L2 := L2 + xi // assign job xi to M2

i := i + 1 // next job
if L2 + xi ∈ S1 or L1 + xi ∈ S2 or L2 + xi ∈ S3 then

goto Step 1

while L2 + xi < B1 do
L2 := L2 + xi // assign job xi to M2
i := i + 1 // next job

goto Step 1

5 if L2 + xi ∈ S5 and L1 ≤ B4 then
L2 := L2 + xi // assign job xi to M2
while L1 + xi+1 < B4 do

i := i + 1 // next job
L1 := L1 + xi // assign job xi to M1

i := i + 1 // next job
if L2 + xi ∈ S1 or L1 + xi ∈ S2 or L2 + xi ∈ S3 or L1 + xi ∈ S4 then

goto Step 1

while L2 + xi < B1 do
L2 := L2 + xi // assign job xi to M2
i := i + 1 // next job

goto Step 1

return // back to the main program, if used as subroutine

of Step 3, the definitions of D1 and D2, and Lemma 3.3), while for the upper
bound we have L2 + x j ≤ T3 + x j = s(r − 1) + x j = sr − s + x j = T1 −
s + x j ≤ T1 (where from left to right we applied the condition of Step 3, the
definitions of T3 and T1, and the inequality x j ≤ s due to the fact that longer jobs
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would exceed OPT = 1 even on the fast machine). So we are entering Step 1 or
Step 2.

4. Suppose that Step 4 is executed. After assigning xi to M1, B4 ≤ L1 ≤ T4 holds.
Then we possibly assign several jobs to M2. We claim that the increased load
of M2 cannot remain below B3. Indeed, assume that it stays below B3. Then
L1 ≤ T4 = r − 1 < 1 from Lemma 2.1, moreover B3

s < B1
s < 1, where we use

Lemmas 4.2 and 5.2. Hence the makespan would be strictly less than OPT = 1;
a contradiction. Thus there must arrive a job that ends the loop, i.e., some job x j
with L2 + x j ≥ B3.
If L2 + x j is in S1, or L1 + x j is in S2, or L2 + x j is in S3, we go back to Step 1. If
Step 1 or Step 2 is executed, we are done. Otherwise the condition of Step 3 will
be examined. We know that the condition L2 + x j ∈ S3 is fulfilled. Observe that
the second condition of Step 3, i.e. L1 ≤ B2 also holds, since L1 ≤ T4 still holds
and we have T4 < B2 from Lemma 4.1. Thus Step 3 is executed, and we are done.
Nowassume that noneof the conditions L2+x j ∈ S1, L1+x j ∈ S2, or L2+x j ∈ S3
is satisfied. Let us consider the size of the actual job, x j . Since L2 + x j ≥ B3
(from the choice of x j ), but L2 + x j is not in S3, we deduce that L2 + x j > T3.
Hence together with L2 < B3 (also from the choice of x j ) it follows that x j > D3.
Then, using L1 ≥ B4, we get L1 + x j > B4 + D3 = B2 by Lemma 3.4. Since
L1 + x j is not in S2, we also deduce that L1 + x j > T2 holds. On the other hand,
the actual load L1 of M1 is at most T4. Thus x j > T2 − L1 ≥ T2 − T4 = 1,
where the equality comes from Lemma 3.2. Suppose that L2 + x j > T1. Then
x j > T1 − T3 = s (by the first part of Lemma 3.2) would follow, which would
violate the value of OPT, because even the faster machine M2 can process this
job within this makespan. Hence L2 + x j ≤ T1. Together with the fact that L2 +
x j /∈ S1, we have that L2 + x j < B1. At this point x j is assigned to M2 by the
algorithm.
Now several subsequent jobs may be assigned to M2, while the load of M2 remains
below B1. But, similarly to the previous steps, there must arrive a further job xk
that would exceed B1. Indeed, assume that no such jobs exists. Then L1 ≤ T4 =
r − 1 < 1 (by Lemma 2.1) and L2 ≤ B1 < s (by Lemma 5.2), so the makespan
would stay below OPT = 1; a contradiction. Thus the assignment of jobs to M2 is
stopped, and the algorithm goes back to Step 1.
We claim that one of Step 1 or Step 2will be executed. If Step 1 is not executed, then
L2 + xk /∈ S1 and L2 + xk > B1 from the previous loop. Together, L2 + xk > T1.
Since L2 < B1, we obtain xk > T1 − L2 > T1 − B1 = D1. Then we get
L1+ xk > B4+D1 > B4+D3 by Lemma 5.1, and B4+D3 = B2 by Lemma 3.4,
hence L1+xk > B2. Assume that Step 2 is not executed either. Then L1+xk /∈ S2.
Hence L1 + xk > T2. From this is follows that xk > T2 − L1 ≥ T2 − T4 = 1,
because L1 ≤ T4 is still true and we have T2 − T4 = 1 (from Lemma 3.2). Then
there are two jobs, say xk and x j , which are both bigger than 1, thus both have
to be assigned to the fast machine in the optimal schedule. Therefore we have
OPT > 2

s , and
2
s > 1 (from 2 > s), which is a contradiction.

5. Finally, suppose that Step 5 is executed.We assignfirst the actual job to themachine
M2 and then we assign jobs to the machine M1 until L1 + xi < B4. Observe that
L1 cannot remain below B4. Assume the opposite. Then L1 ≤ B4 < B2 < 1 by
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Lemma 5.2. Moreover, L2 ≤ T5 < B1 < s by Lemma 2.1. Hence the makespan
would be strictly less than OPT = 1; a contradiction. Thus there must arrive a job
that ends the loop, i.e., some job x j with L1 + x j ≥ B4.
If any of the four conditions L1 + x j ∈ S4, or L1 + x j ∈ S2, or L2 + x j ∈ S3, or

L2+x j ∈ S1 is satisfied, we go back to Step 1. Note that at thismoment L1 < B4 < B2
and L2 ≤ T5 < B3 (applying Lemma 4). Hence it follows that some of Step 1 – Step 4
must be executed, andwe are done. Therefore, suppose that none of the four conditions
is satisfied. Let us consider the size of x j .

Since L1+x j ≥ B4 (from the choice of x j ), but L1+x j is not in S4, we deduce that
L1 + x j > T4. Hence together with L1 < B4 (also from the choice of x j ) it follows
that x j > D4. Then L2 + x j > B5 + D4 = B3, applying L2 ≥ B5 and Lemma 3.4.
Since L2 + x j is not in S3, it follows that L2 + x j > T3. Together with L2 ≤ T5,
we get x j > T3 − T5. Then L1 + x j > (B2 − T3 + T5) + (T3 − T5) = B2, applying
L1 ≥ 0 ≥ B2 − T3 + T5 (Lemma 5.3). On the other hand, we know that L1 + x j is
not in S2, thus it follows that L1 + x j > T2. Consequently, using Lemma 3.2, we get
y > T2 − T4 = 1.

We know that L2+x j is not in S1. Suppose that L2+x j > T1. Then x j > T1−L2 >

T1 − T3 = s would follow, applying Lemma 3.1, and L2 ≤ T5 < T3 by Lemma 4.1; a
contradiction. Therefore at this point we assign x j to machine M2, and the increased
load of M2 is strictly bigger than T3 and strictly smaller than B1.

Now several subsequent jobs may be assigned to M2, while the load of M2 remains
below B1. There must arrive a job, say xk , such that L2 + xk ≥ B1. Indeed, assume
that it stays below B1. Since we know that L1 ≤ T4, we conclude similarly to the proof
of the previous point that this would lead to a makespan strictly less than 1 = OPT; a
contradiction.

At this point the algorithm goes back to Step 1.We claim that either Step 1 or Step 2
will be executed. If Step 1 is not executed, then L2+xk > T1, since L2+xk ≥ B1. This
together with L2 < B1 implies that xk > D1. Therefore we get L1 + xk > D1 > B2,
by Lemma 5.1. If Step 2 is not executed either, which means that L1 + xk /∈ S2 and
hence L1 + xk > T2, then xk > T2 − L1 ≥ T2 − B4 > T2 −T4 = 1, where we applied
L1 < B4, B4 < T4 (by Lemma 4.1), and T2 − T4 = 1 (by Lemma 3.2).

Summarizing our analysis, we have two jobs, x j and xk , both greater than 1, thus
both have to be assigned to the fast machine in the optimal schedule. Therefore we
have OPT > 2

s , and
2
s > 1 (from 2 > s), which is a contradiction. Therefore Step 1

or Step 2 has to be executed and we are done. �	
We have seen that Algorithm FinalCases solves the problem (does not violate

the competitive ratio) if some step of the algorithm is executed. The problem is that
it may happen—although only rarely—that no step can be executed because the con-
dition of no step is satisfied. We must take care about these remaining cases. For this
we define another algorithm in the next section.

We say that Algorithm FinalCases is executable if the condition of some step
is satisfied. Summarizing our previous investigations, if Algorithm FinalCases is
executable, then doing so we obtain a schedule which does not violate the competitive
ratio.
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5 Algorithm InitialCases

In order to handle the case where Algorithm FinalCases is not executable, we now
give the algorithm InitialCases that calls FinalCases as a subroutine.

Algorithm 2: InitialCases
1 L1 := 0, L2 := 0 // both machines are empty
i := 1 // start with first job
while L2 + xi < B5 do

L2 := L2 + xi // assign job xi to M2
i := i + 1 // next job

call Algorithm FinalCases
2 L2 := L2 + xi // assign job xi to M2

j := i + 1 // next job
while L2 + x j < B3 do

L2 := L2 + x j // assign job x j to M2

j := j + 1 // next job

call Algorithm FinalCases
3 L1 := L1 + x j // assign job x j to M1

k := j + 1 // next job
while L2 + xk < B3 do

L2 := L2 + xk // assign job xk to M2
k := k + 1 // next job

call Algorithm FinalCases
4 L2 := L2 + xk // assign job xk to M2

� := k + 1 // next job
while L2 + x� < B1 do

L2 := L2 + x� // assign job x� to M2
� := � + 1 // next job

call Algorithm FinalCases

For proving that Algorithm InitialCases is r -competitive in the considered
interval, we still need one more claim as below.

Lemma 7 Suppose that machine M1 is empty (i.e., L1 = 0), and that the load L2 of
machine M2 is at most B5. If x is a job whose size satisfies x /∈ S2 and L2 + x /∈ S1,
then x ≤ T3 − B5.

Proof Assume that x > T3 − B5. Since T3 − B5 ≥ B2 (by Lemma 5.3), it follows
that x > B2. Recall that there is no job assigned to M1 so far. Since x /∈ S2, we obtain
x > T2 ≥ B1 (where the last estimation was shown in Lemma 5.5). From x > B1 it
then follows that L2 + x > L2 + B1 ≥ B1. Together with L2 + x /∈ S1, we deduce
that L2 + x > T1. Hence x > T1 − L2 ≥ T1 − B5 > T1 − T3 = s = s · OPT (by
Lemma 4.2 and Lemma 3.2). This is a contradiction, since no job can be bigger than
s · OPT. �	
After this, we state the next theorem.

Theorem 8 Algorithm InitialCases is r-competitive for any q6 ≤ s ≤ √
3.
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Proof 1. If Algorithm FinalCases is called in Step 1 and there all jobs are
assigned to machines (in Step 1 and Step 2 of Algorithm FinalCases), then
FinalCases terminates and all jobs are within the safe sets, so the competitive
ratio of r is not exceeded.
At the end of Step 1, let us denote the actual job by xi . It holds that L2+xi ≥ B5, and

before xi came, L2 was below B5. Algorithm FinalCases was called at the end of
Step 1, but none of the conditions of the five Steps 1–5 in Algorithm FinalCases
was actually true (i.e., FinalCases was not executable). In particular, Step 5 of
FinalCases was not executed. Since L1 = 0 (machine M1 is empty), and B4 > 0
(fromLemma 4.1), it thus follows that L2+xi > T5. Together with L2 < B5 it follows
from Lemma 3.6 that xi > T5 − B5 = B4. Note that at this point still there is no job
assigned to M1. Since xi is not assigned to M1 (as FinalCaseswas not executable),
in particular, Step 4 of FinalCases is not executable. Since L2 < B5 < B3 (from
Lemma 4.2), it means that L1 + xi /∈ S4. From xi > B4 (see above) it then follows
that xi > T4.

Suppose that xi > B3 holds (fromwhich we derive a contradiction). Then it follows
that xi > T3−B5, because otherwise, if xi ≤ T3−B5, then T3 ≥ xi +B5 > xi +L2 >

xi > B3, hence L2 + xi ∈ S3. Since L1 = 0 < B2 (from Lemma 4.1), it follows
that Step 3 of Algorithm FinalCases would be executed; a contradiction. Hence
xi > T3−B5. Note that all assumptions of Lemma 7 are satisfied. Hence x1 ≤ T3−B5;
a contradiction. Therefore xi ≤ B3.

Thus we conclude from the previous two paragraphs that T4 < xi < B3.
Let us investigate how big the actual load of M2 would be, if xi was assigned

to this machine; that is, we want to estimate L2 + xi . We are going to show that
T5 < L2+xi < B3, by excluding all other possibilities. To prove the lower bound, note
that since the algorithm terminated thewhile-loop,wehave L2 < B5 and L2+xi ≥ B5.
As we argued above, we know that L2 + xi /∈ S5, hence we have L2 + xi > T5. To
prove the upper bound, we need to exclude two more cases (see also Fig. 2).

(a) Suppose that L2 + xi ∈ S3 = [B3, T3]. Since L1 = 0 ≤ B2 (by Lemma 4.1),
Step 3 of Algorithm FinalCases would have been executed; a contradiction.
Thus L2 + xi /∈ [B3, T3].

(b) Suppose that L2 + xi > T3. Then xi > T3 − L2 > T3 − B5 (since L2 < B5, see
above). Note that all assumptions of Lemma 7 are satisfied. Hence x1 ≤ T3 − B5;
a contradiction. Thus L2 + xi ≤ T3.

Consequently, T5 < L2 + xi < B3.

2. We enter Step 2. We assign xi to M2. From the analysis above we know that the
load L2 after this assignment is above T5 and below B3.

Then several jobs may come, and they are assigned to machine M2, while the load
L2 of M2 remains below B3. This termination point of the while-loop will come for
sure: otherwise we would have an empty machine M1, and the total load of all jobs,
all on machine M2, would be still below B3. Since B3 < B1 < s = s · OPT (by
Lemmas 5.2 and 4.2), this contradicts the assumption that the optimum value is OPT.

Let x j denote the job upon terminating the while-loop. Now we call Algorithm
FinalCaseswith this index j . Assume FinalCases is not executable (otherwise
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we are done). It holds that L2 < B3 and L2 + x j ≥ B3. Furthermore, L1 = 0 ≤ B2
(by Lemma 4.1), but Step 3 of Algorithm FinalCases was not executed, thus
L2 + x j /∈ S3. Consequently, L2 + x j > T3, and thus x j > D3. By Lemma 5.6 we
have D3 > B4. Since no job is assigned to M1, and Step 4 of FinalCases was not
executable, moreover L2 ≤ B3, we have that L1+x j = x j /∈ S4. From x j > D3 > B4
we deduce x j > T4.

The assumption of x j ≥ B2 will lead to a contradiction as follows. Since Step 2
of FinalCases was not executable, it holds that L1 + x j = x j /∈ S2, hence x j >

T2. In Lemma 5.5 we proved that T2 > B1, hence x j > B1. Since also Step 1 of
FinalCaseswas not executable, it holds that L2 + x j /∈ S1. From x j > B1 we thus
deduce that L2 + x j > T1. Thus we estimate x j > T1 − L2 > T1 − T3 = s, where the
second estimation uses L2 < B3 < T3 and the last inequality is due to Lemma 3.2.
Hence x j > s = s ·OPT, so job x j would be too large for an optimum value of OPT.

Summing up, we conclude that T4 < x j < B2 holds.

3. In Step 3 we assign x j to M1, and since this is the only job which has been assigned
to M1 ever, the load L1 of M1 is between T4 and B2.

Then again, several jobs may come, and they are assigned to machine M2, while the
load L2 of M2 remains below B3. This termination point of the while-loop will come
for sure: otherwise we would have machine M1with a load lower than B2 < 1 = OPT
by Lemma 5.2, and the load of L2 is below B3 < B1 < s = s · OPT by Lemma 5.2.
This contradicts the assumption that the optimum value is OPT.

Let xk denote the job upon terminating the while-loop. Now we call Algorithm
FinalCases with this index k. Assume that FinalCases is not executable (oth-
erwise we are done). In particular, Step 3 of FinalCases was not executable, and
since L1 ≤ B2, it follows that L2 + xk /∈ S3. Taking into account that L2 < B3 and
L2 + xk ≥ B3, it follows that L2 + xk > T3, hence xk > D3.

FromLemma5.7 it follows that x j+xk−B2 > T4+D3−B2 > 0, thus x j+xk > B2.
Since Step 2 of FinalCaseswas not executable, it means that L1 + xk = x j + xk /∈
S2, hence x j + xk > T2. Since L1 = x j ≤ B2, we have xk > D2 = D1 (by the
definition of D1 and D2).

Assume that L2 + xk ≥ B1. Since Step 1 of FinalCases was not executed, it
would follow that L2 + xk ≥ T1. Thus taking into account that L2 < B3, we obtain
the estimation xk ≥ T1 − L2 > T1 − B3 > T1 − T3 = s = s · OPT (by Lemma 4.2
and Lemma 3.2), which contradicts the optimality of value OPT. Thus L2 + xk < B1.

4. We start Step 4 with assigning xk to M2. Then the new load L2 is between T3 and
B1.

Then for the last time, several jobs may come, and they are assigned to machine M2,
as long as the load L2 of M2 remains below B1. The termination point of the while-
loop will come for sure: otherwise we would have a machine M1 with a load lower
than B2 < 1 = OPT (by Lemma 5.2), and the load of L2 is below B1 < s = s · OPT
by Lemma 5.8. This contradicts the assumption that the optimum value is OPT.

Let x� denote the job upon terminating the while-loop. We will show that now
FinalCases is executable, thus we are done. Assume the opposite: FinalCases
is not executable.
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At this point we have L2 < B1 and L2 + x� ≥ B1. Since FinalCases is
not executable, in particular, Step 1 of FinalCases was not executable, meaning
L2 + x� /∈ S1. Hence L2 + x� > T1, thus x� > D1.

Using x j > T4 from Step 2 above, we can estimate x j + x� > T4 +D1 > D1 > B2
using Lemmas 4.1 and 3.1. Since at this point only x j is assigned to M1, and Step 2
of FinalCases is not executable, that is L1 + x� = x j + x� /∈ S2, it also holds that
x j + x� > T2.

We summarize: xi , x j > T4, xk, x� > D2 = D1, moreover x j + xk > T2 and
x j + x� > T2.

Note that xk + x� > 2D1 > s = s ·OPT (by Lemma 5.8). So it follows that xk and
x� must be assigned to different machines in any optimum schedule, because even the
faster machine M2 cannot handle both jobs within a makespan of OPT.

First, consider an optimum schedule where xk is assigned to the slower machine
M1 and x� is assigned to the faster machine M2. Assume that xi is also assigned to M1.
Then we can estimate the load of this machine: L1 ≥ xk + xi > D1 + T4 > 1 = OPT
(by Lemma 5.9); a contradiction. Hence xi cannot be assigned to M1. Similarly, if we
assume that x j is assigned to M1, we can deduce the very same estimation. Hence also
x j cannot be assigned to M1. So both xi and x j must be assigned to the faster machine
M2.

Second, consider an optimum schedule where x� is assigned to the slower machine.
Then by repeating the same arguments as above, we can deduce that also in this case,
both xi and x j must be assigned to the faster machine M2.

Thus in any optimal schedule, both xi and x j are assigned to the fast machine M2,
and one of xk and x� is also assigned to the fast machine. Thus by Lemma 5.10 we
get s · OPT ≥ min{xi + x j + xk, xi + x j + x�)} = xi + min{x j + xk, x j + x�} >

T4 + min{T2, T2} = T4 + T2 ≥ s = s · OPT; a contradiction.
It follows that our assumptionwas false, i.e., when job x� is revealed,FinalCases

is executable. This completes the proof. �	

6 Conclusions

We gave a compound algorithm and showed that its competitive ratio equals the pre-

viously known lower bound for any speed s ∈ [ 5+
√
241

12 ,
√
3] ≈ [1.7103, 1.7321], i.e.

on the “wide” interval. Although the considered interval is in fact “not too wide”, we
applied new ideas, to be able to get the tight ratio here.

Our idea (as we described it also in the Introduction) in the algorithm design is as
follows. Instead of having a universal algorithm, we have two algorithms: one for the
“good cases” and another for the problematic cases. If the incoming job is good in
some sense for us, we assign it with the first algorithm. Otherwise, if the incoming job
is bad, we assign it by the second algorithm. (Of course, we make only one common
schedule, the next job is assigned by the rule of either the first, or the second algorithm,
but not both.) The good or bad status of the incoming job depends on its size, and on
the actual values of the loads of the machines as well.

If, at any time, a good job arrives, wewin against the adversary list, as we are able to
finish the schedule by the first algorithm, without violating the prescribed competitive
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ratio. And it turns out that in any sequence theremust come a good job. Itmeans that the
problematic cases are intermediate cases, and if we can “survive” these problematic
cases without making a bad decision (that would lead us to violate the competitive
ratio), sooner or later a good case must come.

Except for the narrow interval (which is approximately [1.6934, 1.6963]) where
the gap between the upper and lower bounds is very small, the question about the
tight value of the competitive ratio for our problem remains open for speeds between√

73+3
8 ≈ 1.443 and 5

3 . We think that the applied ideas can be helpful to get the tight
ratio (or a ratio which is close to the tight ratio), where the question is actually open.

We also performed computational experiments, which are consistent with our the-
oretical results. Among other details, these investigations can be found in Dósa et al.
(2015b).
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