Skip to main content
Log in

Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A scoring method based on paired comparison allowing multiple choice is investigated. We allow general log-concave probability density functions for the random variables describing the difference of the objects. This case involves Bradley–Terry models and Thurstone models as well. A sufficient condition is proved for the existence and uniqueness of the maximum likelihood estimation of the parameters in case of incomplete comparisons. The axiomatic properties of the method are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A (1992) Analysis of ordinal paired comparison data. Appl Stat 41(2):287–297

    Article  Google Scholar 

  • Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39(3/4):324–345

    Article  Google Scholar 

  • Bozóki S, Fülöp J, Rónyai L (2010) On optimal completion of incomplete pairwise comparison matrices. Math Comput Modell 52(1):318–333

    Article  Google Scholar 

  • Cattelan M (2012) Models for paired comparison data: a review with emphasis on dependent data. Stat Sci 27(3):412–433

    Article  Google Scholar 

  • Chebotarev PY, Shamis E (1998) Characterizations of scoring methodsfor preference aggregation. Ann Oper Res 80:299–332

    Article  Google Scholar 

  • Davidson RR (1970) On extending the Bradley–Terry model to accommodate ties in paired comparison experiments. J Am Stat Assoc 65(329):317–328

    Article  Google Scholar 

  • Ford LR (1957) Solution of a ranking problem from binary comparisons. Am Math Mon 64(8):28–33

    Article  Google Scholar 

  • González-Díaz J, Hendrickx R (2014) Paired comparisons analysis: an axiomatic approach to ranking methods. Soc Choice Welf 42(1):139–169

    Article  Google Scholar 

  • Mosteller F (1951) Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations. Psychometrika 16(1):3–9

    Article  Google Scholar 

  • Orbán-Mihálykó É, Mihálykó Cs, Koltay L (2017) A generalization of the Thurstone method for multiple choice and incomplete paired comparisons. Cent Eur J Oper Res. https://doi.org/10.1007/s10100-017-0495-6

  • Prékopa A (1973) Logarithmic concave measures and functions. Acta Sci Math 34(1):334–343

    Google Scholar 

  • Rubinstein A (1980) Ranking the participants in a tournament. SIAM J Appl Math 38(1):108–111

    Article  Google Scholar 

  • Rao PV, Kupper LL (1967) Ties in paired-comparison experiments: a generalization of the Bradley–Terry model. J Am Stat Assoc 62(317):194–204

    Article  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  Google Scholar 

  • Stern H (1990) A continuum of paired comparisons models. Biometrika 77(2):265–273

    Article  Google Scholar 

  • Stern H (1992) Are all linear paired comparison models empirically equivalent? Math Soc Sci 23(1):103–117

    Article  Google Scholar 

  • Thurstone LL (1927) A law of comparative judgement. Psychol Rev 34(4):273–286

    Article  Google Scholar 

  • Tutz G (1986) Bradley–Terry–Luce models with an ordered response. J Math Psychol 30(3):306–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Orbán-Mihálykó.

Appendix

Appendix

The proof of Theorem 1 follows the proof of the main theorem in Orbán-Mihálykó et al. (2017). The existence of a maximal value can be concluded from the fact that the log-likelihood function is continuous, has finite limits and is bounded in all variables \(m_{i,j}=m_{i}-m_{j}\)\(i=1,\ldots ,n-1,j=i+1,\ldots ,n.\) The lemmas and the theorems in the “Appendix” in Orbán-Mihálykó et al. (2017) remain true in case of general strictly log-concave p.d.f.-s. Nevertheless, Theorem 4 in Orbán-Mihálykó et al. (2017) utilizes the special form of the Gaussian p.d.f., therefore it can not be used in case of general p.d.f.-s. The statement is true for general cases but because of the general c.d.f.-s \(F_{i,j}\), a more general proof is needed. Now, we prove the following

Theorem 6

The function \(\quad H_{i,j}(x,y)=\log ( F_{i,j}(x)-F_{i,j}(y))\) is strictly concave on the set \(y<x\in {\mathbb {R}}\).

Proof

Let \(f_{i,j}\) denote the probability density function of \(F_{i,j}\). The set \(C=\{ (x,y)\mid y<x\in {\mathbb {R}}\} \subset {\mathbb {R}}^{2}\) is convex. We prove that the matrix

$$\begin{aligned} D^{i,j}=\left[ \begin{array} [c]{cc} d_{1,1}^{i,j} &{} d_{1,2}^{i,j}\\ d_{2,1}^{i,j} &{} d_{2,2}^{i,j} \end{array} \right] \end{aligned}$$
(44)

with entries

$$\begin{aligned}&d_{1,1}^{i,j}=f_{i,j}(x)\dfrac{\dfrac{\left( f_{i,j}\right) ^{\prime } (x)}{f_{i,j}(x)}\cdot \left( F_{i,j}(x)-F_{i,j}(y)\right) -f_{i,j} (x)}{\left( F_{i,ji,j}(x)-F_{i,j}(y)\right) ^{2}}, \end{aligned}$$
(45)
$$\begin{aligned}&d_{1,2}^{i,j}=d_{2,1}^{i,j}=\dfrac{f_{i,j}(x)\cdot f_{i,j}(y)}{\left( F_{i,j}(x)-F_{i,j}(y)\right) ^{2}}, \end{aligned}$$
(46)
$$\begin{aligned}&d_{2,2}^{i,j}=f_{i,j}(y)\dfrac{-\dfrac{\left( f_{i,j}\right) ^{\prime } (y)}{f_{i,j}(y)}\cdot \left( F_{i,j}(x)-F_{i,j}(y)\right) -f_{i,j} (y)}{\left( F_{i,j}(x)-F_{i,j}(y)\right) ^{2}} \end{aligned}$$
(47)

is negative definite on C.

First we show that

$$\begin{aligned} d_{1,1}^{i,j}<0. \end{aligned}$$
(48)

Let \(y\in {\mathbb {R}}\) and let us define

$$\begin{aligned} f_{i,j,y}(x)=\frac{\left( f_{i,j}\right) ^{\prime }(x)}{f_{i,j}(x)} \cdot \left( F_{i,j}(x)-F_{i,j}(y)\right) -f_{i,j}(x),\quad y\le x\in {\mathbb {R}} \end{aligned}$$
(49)

Due to the strictly log-concave property \(( \log f_{i,j}(x)) ^{\prime \prime }=( \frac{( f_{i,j}) ^{\prime }(x)}{f_{i,j}(x)}) ^{\prime }\le 0,\) moreover in every interval the strict inequality holds for some points, we get

$$\begin{aligned} \left( f_{i,j,y}^{\quad }\right) ^{\prime }(x)=\left( \frac{\left( f_{i,j}\right) ^{\prime }(x)}{f_{i,j}(x)}\right) ^{\prime }\left( F_{i,j} (x)-F_{i,j}(y)\right) \le 0,\quad y<x\in {\mathbb {R}}, \end{aligned}$$
(50)

We see that the function \(f_{i,j,y}(x)\) is monotone decreasing. If we take a point z from the interval (yx) for which \(f_{i,j,y}^{\quad ^{\prime } }(z)<0\) holds, then

$$\begin{aligned} f_{i,j,y}(x)<f_{i,j,y}(z)<f_{i,j,y}(y)=-f_{i,j}(y)<0. \end{aligned}$$
(51)

It implies

$$\begin{aligned} \frac{\partial ^{2}H_{i,j}(x,y)}{\partial x^{2}}=f_{i,j}(x)\cdot \frac{f_{i,j,y}(x)}{\left( F_{i,j}(x)-F_{i,j}(y)\right) ^{2}}<0. \end{aligned}$$
(52)

Now we investigate the determinant of the matrix containing the second order partial derivatives. Let \(x\in {\mathbb {R}}\) and consider

$$\begin{aligned} g_{i,j,x}(y)=-\left( \dfrac{\left( f_{i,j}^{\prime }\right) ^{\prime } (y)}{f_{i,j}(y)}\right) ^{\prime }(F_{i,j}(x)-F_{i,j}(y)-f_{i,j}(y),\quad x\ge y\in {\mathbb {R}} \end{aligned}$$
(53)

Now

$$\begin{aligned} \det (D^{_{i,j}})=\dfrac{f_{i,j}(x)f_{i,j}(y)}{\left( F_{i,j}(x)-F_{i,j} (y)\right) ^{4}}\cdot (f_{i,j,y}(x)g_{i,j,x}(y)-f_{i,j}(x)f_{i,j}(y)),\nonumber \\ \quad y<x\in {\mathbb {R}}. \end{aligned}$$
(54)

As

$$\begin{aligned} g_{i,j,x}^{\prime }(y)=-\left( \dfrac{f_{i.j}(y)}{f_{i,j}(y)}\right) ^{\prime }\left( F_{i,j}(x)-F_{i,j}(y)\right) \ge 0,\quad y\le x\in {\mathbb {R}} \end{aligned}$$
(55)

therefore \(g_{i,j,x}(y)\) is increasing. Take a point \(z\in (y,x)\) for which \(0<g_{i,j,x}^{\prime }(z),\)

$$\begin{aligned} g_{i,j,x}(y)<g_{i,j,x}(z)<g_{i,j,x}(x)=-f_{i,j}(x)<0,\quad y<x\in {\mathbb {R}}. \end{aligned}$$
(56)

(51) together with (56) imply the inequality

$$\begin{aligned} f_{i,j}\left( x\right) f_{i,j}\left( y\right)<f_{i,j,y}\left( x\right) g_{i,j,x}\left( y\right) ,\quad y<x\in {\mathbb {R}} \end{aligned}$$
(57)

consequently 0 < \(\det (D^{_{i,j}})\) holds. \(\square \)

The following Lemma is the pair of Lemma 6 in Orbán-Mihálykó et al. (2017).

Lemma 1

If \(0<c_{1}\) and \(0<c_{2}\), then \(G:{\mathbb {R}}^{2}\rightarrow {\mathbb {R}}^{2},\)

$$\begin{aligned} G_{i,j}(x,y)=c_{1}\log F_{i,j}\left( x\right) +c_{2}\log \left( 1-F_{i,j}(y)\right) \end{aligned}$$
(58)

is strictly concave.

Proof

The proof is technical, it is left to the reader. \(\square \)

The remaining parts of the proof do not rely on the special form of the cumulative distribution functions, therefore the lemmas can be applied in the general case, as well, hence the statement is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orbán-Mihálykó, É., Mihálykó, C. & Koltay, L. Incomplete paired comparisons in case of multiple choice and general log-concave probability density functions. Cent Eur J Oper Res 27, 515–532 (2019). https://doi.org/10.1007/s10100-018-0568-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-018-0568-1

Keywords

Navigation