Skip to main content
Log in

Synthesis algorithms for the reliability analysis of processing systems

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

Reliability is naturally one of the most important properties of processing systems, still there is no general method that is capable of simultaneously considering the reliability during the design procedure. Consequently, the optimality of the decisions in process design cannot be guaranteed. The main reason of the lack of general method is that the process design and the reliability engineering are based on different types of mathematical modelling tools. While process design traditionally considered as mixed-integer optimization, reliability engineering is based on probability theory, therefore, a general modelling tool is required that can conveniently cover these two areas. In the present work, it has been shown that the formerly developed combinatorial approach to process network synthesis, the so-called P-graph framework, can conveniently cover and integrate these two areas. The method for reliability analysis of processing systems is general and can effectively analyze complex, highly interconnected networks. Furthermore, the reliability analysis method given here can be embedded to process design tools. A formerly unavailable formula, the system reliability formula has also been defined for processing networks. The focus of the present work is on structures of processing systems, all statements and algorithms are general and proved. The solutions of challenging real problems are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

n :

Number of operating units

\(p_i\) :

Reliability of a unit

\(\varvec{p}\) :

Reliability vector

\(x_i\) :

Functionality of a unit (binary)

X :

State of a system (binary vector)

U :

Set of structurally operational subnetworks

\(\hat{r}\) :

Reliability of the system

P :

Set of products in a PNS problem

R :

Set of raw materials in a PNS problem

O :

Set of operating units in a PNS problem

\([y_0,y_1]\) :

Directed path on graph

L :

Set of combinatorially feasible subnetworks

\(\varPsi \) :

Operability function of a system

\(\varOmega \) :

Set of all subnetworks of the network

\(\wp \) :

Power set

P(U):

Probability of event U

PNS:

Process network synthesis

MIP:

Mixed integer programming

References

  • Birolini A (2007) Reliability engineering. Springer, Heidelberg

    Google Scholar 

  • Brendel MH, Friedler F, Fan LT (2000) Combinatorial foundation for logical formulation in process network synthesis. Comput Chem Eng 24(8):1859–1864

    Article  Google Scholar 

  • Chang L, Song J (2007) Matrix-based system reliability analysis of urban infrastructure networks: a case study of MLGW natural gas network. In: Proceedings of the 5th China-Japan-US trilateral symposium on lifeline earthquake engineering. Haikou (China)

  • Chang SE, Eguchi RT, Seligson HA (1996) Estimation of the economic impact of multiple lifeline disruption: Memphis light, gas and water division case study. Technical Report NCEER-96-001, National Center for Earthquake Engineering Research (NCEER), Buffalo (NY)

  • Friedler F, Tarjan K, Huang YW, Fan LT (1992a) Combinatorial algorithms for process synthesis. Comput Chem Eng 16:S313–S320

    Article  Google Scholar 

  • Friedler F, Tarjan K, Huang YW, Fan LT (1992b) Graph-theoretic approach to process synthesis: axioms and theorems. Chem Eng Sci 47(8):1973–1988

    Article  Google Scholar 

  • Friedler F, Tarjan K, Huang YW, Fan LT (1993) Graph-theoretic approach to process synthesis: polynomial algorithm for maximal structure generation. Comput Chem Eng 17(9):929–942

    Article  Google Scholar 

  • Friedler F, Varga JB, Fan LT (1995) Decision-mapping: a tool for consistent and complete decisions in process synthesis. Chem Eng Sci 50(11):1755–1768

    Article  Google Scholar 

  • Friedler F, Varga JB, Feher E, Fan LT (1996) Combinatorially accelerated branch-and-bound method for solving the MIP model of process network synthesis. In: State of the art in global optimization. Springer, Boston, pp 609–626

  • Friedler F, Fan LT, Imreh B (1998) Process network synthesis: problem definition. Networks 31(2):119–124

    Article  Google Scholar 

  • Kim Y, Kang WH (2013) Network reliability analysis of complex systems using a non-simulation-based method. Reliab Eng Syst Saf 110:80–88

    Article  Google Scholar 

  • Klemeš J, Friedler F, Bulatov I, Verbanov P (2010) Sustainability in the process industry integration and optimization. McGraw-Hill, New York

    Google Scholar 

  • Kocis GR, Grossmann IE (1989) A modelling and decomposition strategy for the minlp optimization of process flowsheets. Comput Chem Eng 13(7):797–819

    Article  Google Scholar 

  • Kumamoto H, Tanaka K, Inoue K (1997) Efficient evaluation of system reliability by Monte Carlo method. IEEE Trans Reliab 26(5):311–315

    Article  Google Scholar 

  • Papoulias SA, Grossmann IE (1983) A structural optimization approach in process synthesisI: utility systems. Comput Chem Eng 7(6):695–706

    Article  Google Scholar 

  • Peters MS, Timmerhaus KD, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill, New York

    Google Scholar 

  • Prowell SJ, Poore JH (2004) Computing system reliability using Markov chain usage models. J Syst Softw 73(2):219–225

    Article  Google Scholar 

  • Rausand M, Arnljot HO (2004) System reliability theory: models, statistical methods, and applications. Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Friedler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacs, Z., Orosz, A. & Friedler, F. Synthesis algorithms for the reliability analysis of processing systems. Cent Eur J Oper Res 27, 573–595 (2019). https://doi.org/10.1007/s10100-018-0577-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-018-0577-0

Keywords

Navigation