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Abstract
We introduce a feasible corrector–predictor interior-point algorithm (CP IPA) for solv-
ing linear optimization problems which is based on a new search direction. The search
directions are obtained by using the algebraic equivalent transformation (AET) of the
Newton systemwhich defines the central path. TheAETof theNewton system is based
on the map that is a difference of the identity function and square root function. We
prove global convergence of the method and derive the iteration bound that matches
best iteration bounds known for these types of methods. Furthermore, we prove the
practical efficiency of the new algorithm by presenting numerical results. This is the
first CP IPA which is based on the above mentioned search direction.
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1 Introduction

Karmarkar (1984) presented the first projective IPA for solving LO problems with
polynomial-time complexity. After that, several results related to this theory have been
published. The theory and practice of IPAs can be found in monographs written by
Roos et al. (1997),Wright (1997), Ye (1997) andNesterov andNemirovski (1994). The
IPAs for LO can be classified in multiple ways. One way to classify these algorithms is
based on the step length. In this way, we can distinguish between short- and long-step
IPAs. In theory, short-update algorithms give usually more efficient theoretical results
with simpler analysis, while in practice, the large-step versions perform generally
better. Another way to categorize the IPAs is related to feasibility of the iterates, hence,
we can consider feasible and infeasible IPAs. Another type of IPAs that have proven
to be efficient in practice are predictor–corrector IPAs. These algorithms consist of
iterations using two types of steps, one predictor step and one or more corrector steps.
For further details on classification of different IPAs see Illés and Terlaky (2002), Roos
et al. (1997), Wright (1997) and Ye (1997).

The determination of the search directions plays a key role in the theory of IPAs.
The most widely used technique for obtaining the search directions is based on barrier
functions. By considering self-regular functions, Peng et al. (2002) reduced the theo-
retical complexity of large-step IPAs. Darvay (2002) introduced a new technique for
finding search directions in case of these algorithms, namely the algebraic equivalent
transformation of the system which defines the central path. Central path has been
introduced independently by Sonnevend (1985, 1986) and by Megiddo (1989). The
importance of the central path in the literature of IPAs can be highlighted by the fact
that it is unique, see Roos et al. (1997), Terlaky (2001), Wright (1997) and Ye (1997).
Sonnevend (1985, 1986) proved that the central path led to a unique optimal solution
called the analytic center. General idea of IPA is to approximately trace the central
path and to compute an interior point, called ε-optimal solution, thatwell approximates
the analytic center. From an ε-optimal solution with small enough ε > 0, using the
so-called rounding procedure (Illés and Terlaky 2002; Roos et al. 1997), an optimal
solution can be computed in strongly polynomial time.

The function of AET is applied to both sides of the nonlinear equation of the system
that defines the unique central path. After the transformation the central path remains
unique, and the Newton’s method is applied to the transformed system in order to
determine the displacements. In the literature, the most widely used function for AET
is the identity map, namely in most of IPAs the central path has not been transformed.
In the papers of Darvay (2002, 2003) ψ(t) = √

t is used while in Darvay et al. (2016)
the authors introduced an IPA for LO based on the direction using a new function,
namely ψ(t) = t − √

t , where the domain is Dψ = ( 1
4 ,∞

)
. IPAs based on AET

(Darvay 2002, 2003; Darvay et al. 2016) achieve usually the best known iteration
bounds, alongside many other IPAs (Roos et al. 1997; Wright 1997; Ye 1997). Further
research is needed to investigate whether IPAs that use AETs are more efficient than
IPAs that are not. It would be also interesting to identify some class of LO problems
for which application of AET based IPA may be beneficial.

The first PC IPA has been independently developed by Mehrotra (1992) and Sonn-
evend et al. (1990). The PC IPAs consist of a predictor and several corrector steps in a
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main iteration. The aim of the predictor step is to approach the optimal solution of the
problem in a greedy way. The usual consequence of the greedy predictor step is that
the obtained strictly feasible solution no longer belongs to the given neighborhood
of the central path. The goal of the corrector steps is to return the iterate back to the
designated neighborhood. Mizuno et al. (1993) proposed the first PC IPA which uses
only one corrector step in a main iteration. Darvay (2005, 2009) introduced PC IPAs
for LO that are based on the AET technique and he used the function ψ(t) = √

t
with domain Dψ = (0,∞) in order to determine the transformed central path and
the modified Newton system. The unique solution of this system led to a new search
direction. Kheirfam (2016, 2015) proposed CP IPAs for convex quadratic symmetric
cone optimization and second-order cone optimization, respectively.

Before summarizing the structure and results of this paper, it is worthwhile to
mention that IPAs for LO have been extensively generalized to linear complementary
problems (LCPs) (Cottle et al. 1992; Illés et al. 2010a, b; Kojima et al. 1991; Lešaja and
Roos 2010; Potra and Sheng 1996; Yoshise 1996). There are several generalizations of
theMizuno-Todd-Ye PC IPA (Mizuno et al. 1993) from LO to sufficient LCPs like that
of Potra (2002), and Illés and Nagy (2007). Recently, Potra (2014) published a new PC
IPA for sufficient LCPs using wide neighborhood with optimal iteration complexity.
The AETmethod for determining search directions for IPAs has been also extended to
LCPs (Achache 2010; Asadi and Mansouri 2013; Kheirfam 2014; Wang et al. 2009)
and LCPs over symmetric cones (Asadi et al. 2017a, b; Mohammadi et al. 2015; Wang
2012).

In this paper, a new CP IPA for LO is introduced. We use the AET method for
the system which defines the central path that is based on the function ψ(t) = t −√

t . Newton’s method is then applied to the transformed system in order to find the
search directions. The analysis of the algorithm ismore complicatedwith this function.
Nevertheless, we were able to prove global convergence of the method and derive the
iteration bound that matches best-known iteration bound for these types of methods.
We also present some numerical results and we compare our CP IPA with the classical
primal-dual method, which is based on the same search direction and uses only one
step in each iteration.

The paper is organized as follows. In Sect. 2, the primal-dual LO problem and the
main concepts of the AET of the system defining the central path are given. In the
following section the new CP IPA is presented. Section 4 contains the analysis of the
proposed algorithm, while in Sect. 5 the iteration bound for the algorithm is derived. In
Sect. 6, we provide some numerical results that prove the efficiency of this algorithm.
in the last Section some concluding remarks are provided.

2 Preliminaries

Consider the LO problem in the standard form

(P) min {cT x : Ax = b, x ≥ 0},
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1126 Zs. Darvay et al.

and its dual problem

(D) max {bT y : AT y + s = c, s ≥ 0},

where A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn . We assume that the
interior-point condition (IPC) holds for both problems; that is, there exists (x0, y0, s0)
such that

Ax0 = b, AT y0 + s0 = c, x0 > 0, s0 > 0.

Using the self-dual embedding model presented by Ye et al. (1994), Roos et al. (1997)
andTerlaky (2001)we conclude that the IPC can be assumedwithout loss of generality.
In this case, the all-one vector can be considered as a starting point.

Under the IPC, finding an optimal solution of the primal-dual pair is equivalent to
solving the following system

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

xs = 0.
(1)

The main idea of primal-dual IPAs is to replace the third equation in (1), the so-called
complementarity condition for (P) and (D), by the perturbed equation xs = μe with
μ > 0. Hence, we obtain the following system of equations:

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

xs = μe.
(2)

It is proved in Roos et al. (1997) that there is a unique solution (x(μ), y(μ), s(μ)) to
the system (2) for any μ > 0, assuming the IPC holds. The set of all such solutions
constructs a homotopy path, which is called the central path (see Megiddo 1989;
Sonnevend 1986). If μ tends to zero, then the central path converges to the optimal
solution of the problem.

In what follows, we recall the AET introduced by Darvay et al. (2016) for LO that
leads to calculation of new search direction for IPAs. For this purpose, we consider
the continuously differentiable function ψ : R+ → R+, and assume that its inverse
ψ−1 exists. Note that the system (2) can be rewritten in the following form:

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

ψ
(

xs
μ

)
= ψ(e),

(3)

where ψ is applied componentwisely. Applying Newton’s method to system (3) for a
strictly feasible solution (x, y, s) produces the following system for search direction
(Δx,Δy,Δs)
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AΔx = 0,
AT Δy + Δs = 0,

s
μ
ψ

′( xs
μ

)
Δx + x

μ
ψ

′( xs
μ

)
Δs = ψ(e) − ψ

( xs
μ

)
.

(4)

Let

v =
√

xs

μ
.

Defining the scaled search directions as

dx := vΔx

x
, ds := vΔs

s
, (5)

one easily verifies that system (4) can be written in the form

Ādx = 0,
ĀT Δy

μ
+ ds = 0,

dx + ds = pv,

(6)

where Ā := A diag( x
v
) and pv := ψ(e)−ψ(v2)

vψ
′
(v2)

. For different ψ functions (see Darvay

2002, 2003; Darvay et al. 2016; Roos et al. 1997), one get different values for the
pν vector that lead to different search directions. Based on the idea of Darvay et al.
(2016) idea, we take ψ(t) = t − √

t , which gives

pv = 2(v − v2)

2v − e
. (7)

For analysis of our algorithm, we define a norm-based proximity measure δ(x, s;μ)

as follows:

δ(v) := δ(x, s;μ) = ‖pv‖
2

=
∥∥∥
v − v2

2v − e

∥∥∥, (8)

which has been considered for feasible IPAs for the first time in Darvay et al. (2016).
Considering (6) we have dT

x ds = 0. Thus, the vectors dx and ds are orthogonal. Using
(8) and v > 0, one can easily verify that

δ(v) = 0 ⇔ v = e ⇔ xs = μe.

Hence, the value of δ(v) can be considered as an appropriate measure for the dis-
tance between the given triple (x, y, s) and (x(μ), y(μ), s(μ)). Moreover, note that
if ψ(t) = t then pv = v−1 − v and we obtain the standard proximity measure
δ(v) = 1

2‖v − v−1‖ given in Roos et al. (1997). From ψ(t) = √
t it follows that
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pv = 2(e − v), thus δ(v) = ‖e − v‖, which was discussed in Darvay (2002, 2003).
Let

qv = dx − ds . (9)

Then, the orthogonality of the vectors dx and ds implies

‖pv‖ = ‖qv‖.

As an effect of this relation, we can also express the proximity measure using qv , thus

δ(x, s;μ) = ‖qv‖
2

.

Furthermore,

dx = pv + qv

2
and ds = pv − qv

2
,

thus

dx ds = p2v − q2
v

4
, (10)

holds.
The lower and upper bounds on the components of the vector v are given in the

following lemma.

Lemma 1 [cf. Lemma 2 in Kheirfam (2018)] If δ := δ(v), then

1

2
+ 1

4ρ(δ)
≤ vi ≤ 1

2
+ ρ(δ), i = 1, . . . , n,

where ρ(δ) = δ +
√

1
4 + δ2.

3 Corrector–predictor algorithm

In this section, we present a CP path-following algorithm for LO problems based on
Darvay et al.’s idea. For this purpose, we define an τ -neighborhood of the central path
as follows:

N (τ ) := {(x, y, s) : Ax = b, AT y + s = c, x > 0, s > 0, δ(x, s;μ) ≤ τ },

where 0 < τ < 1. The algorithm begins with a given strictly feasible primal-dual
solution (x0, y0, s0) ∈ N (τ ). If for the current iterate (x, y, s), nμ > ε, then the
algorithm calculates a new iterate by performing corrector and predictor steps. In the
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corrector step, we define v =
√

xs
μ
, Ā = A diag( x

v
) and we obtain the scaled search

directions dx and ds by solving (6) with pv given in (7), namely

Ādx = 0,
ĀT Δy

μ
+ ds = 0,

dx + ds = 2(v−v2)
2v−e .

(11)

Newton directions of the original system (4), i.e., Δx = x
v

dx ,Δs = s
v

ds can be
expressed easily and the corrector iterate is obtained by a full-Newton step as follows:

(x+, y+, s+) := (x, y, s) + (Δx,Δy,Δs).

In the predictor step, we define

v+ =
√

x+s+
μ

, Ā+ = Adiag
( x+

v+
)
,

and we obtain the search directions d p
x and d p

s by solving the following system:

Ā+d p
x = 0,

ĀT+
Δp y
μ

+ d p
s = 0,

d p
x + d p

s = −2v+.

(12)

Note that the right-hand side of the system (12) is inspired by the predictor step
proposed in Darvay (2005). Similarly to Δx and Δs, we define Δpx = x+

v+ d p
x ,Δps =

s+
v+ d p

s and the predictor iterate is obtained by

(x p, y p, s p) := (x+, y+, s+) + θ(Δpx,Δp y,Δps),

where θ ∈ (0, 1
2 ) and also μp = (1 − 2θ)μ. At the beginning of the algorithm, we

assume that (x0, y0, s0) ∈ N (τ ). We would like to determine the values of τ and θ

in such a way that after a corrector step (x+, y+, s+) ∈ N (ω(τ)) (where ω(τ) < τ

will be defined later) and after a predictor step (x p, y p, s p) ∈ N (τ ). The algorithm
repeats corrector and predictor steps alternatively until xT s ≤ ε is satisfied. A formal
description of the algorithm is given in Fig. 1.

4 Analysis of the algorithm

The following technical lemma introduced by Wright (1997), is a generalization of
Lemma C.4 (first u−v Lemma) in Roos et al. (1997). We will use it to estimate the
norm of the product of scaled search directions.
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1130 Zs. Darvay et al.

Corrector− predictor path following interior− point algorithm
Input :

Accuracy parameter 0;
update parameter 0 < θ < 1

2 (default value θ = 1
5
√
n
);

proximity parameter τ(default value τ = 1
4 );

assume that for (x0, y0, s0) the IPC holds; μ0 = (x0)T s0

n ;
suppose that δ(x0, s0;μ0) ≤ τ.

begin
x := x0; y := y0; s := s0; μ := μ0;

while xT do
begin
solve (11) and set (x+, y+, s+) = (x, y, s) + (Δx, Δy, Δs);
solve (12) and set (xp, yp, sp) = (x+, y+, s+) + θ(Δpx, Δpy, Δps);
μp := (1 − 2θ)μ;
x := xp; y := yp; s := sp; μ := μp;

end
end

Fig. 1 The algorithm

Lemma 2 [Lemma 5.3 in Wright (1997)] Let u and v be two arbitrary vectors in R
n

with uT v ≥ 0. Then

‖uv‖ ≤ 1

2
√
2
‖u + v‖2.

In the following two sections, we will analyse the predictor and the corrector steps
in detail, respectively. Note that the first step performed by the algorithm is in fact a
corrector step.

4.1 The predictor step

The next lemma will prove the strict feasibility after a predictor step.

Lemma 3 Let (x+, y+, s+) be a strictly feasible primal-dual solution obtained after
a corrector step and μ > 0. Furthermore, let 0 < θ < 1

2 , and

x p = x+ + θΔpx, y p = y+ + θΔp y, s p = s+ + θΔps,

denote the iterates after a predictor step. Then (x p, y p, s p) is a strictly feasible primal-
dual solution if

h(δ+, θ, n) :=
[
1

2
+ 1

4ρ(δ+)

]2
−

√
2θ2n

1 − 2θ

[
1

2
+ ρ(δ+)

]2
> 0,

where δ+ := δ(x+, s+;μ).
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Proof For each 0 ≤ α ≤ 1, denote x p(α) = x+ +αθΔpx and s p(α) = s+ +αθΔps.
Therefore, using the third equation in (12), we obtain

x p(α) s p(α) = x+s+

(v+)2

(
v+ + αθd p

x
) (

v+ + αθd p
s
)

= μ
[
(v+)2 + αθv+ (

d p
x + d p

s
) + α2θ2d p

x d p
s

]

= μ
[
(1 − 2αθ)(v+)2 + α2θ2d p

x d p
s

]
. (13)

From (13), it follows that

min

[
x p(α)s p(α)

(1 − 2αθ)μ

]
= min

[
(v+)2 + α2θ2

1 − 2αθ
d p

x d p
s

]

≥ min
(
(v+)2

) − α2θ2

1 − 2αθ

∥∥d p
x d p

s
∥∥∞

≥ min
(
(v+)2

) − θ2

1 − 2θ

∥∥d p
x d p

s
∥∥∞

≥
[
1

2
+ 1

4ρ(δ+)

]2
− θ2

2
√
2(1 − 2θ)

∥
∥d p

x + d p
s
∥
∥2

=
[
1

2
+ 1

4ρ(δ+)

]2
− 4θ2

2
√
2(1 − 2θ)

∥
∥v+∥

∥2

=
[
1

2
+ 1

4ρ(δ+)

]2
− 4θ2

2
√
2(1 − 2θ)

n∑

i=1

(v+)2i

≥
[
1

2
+ 1

4ρ(δ+)

]2
−

√
2θ2n

1 − 2θ

[
1

2
+ ρ(δ+)

]2

= h(δ+, θ, n) > 0.

The second inequality is due to the fact that f (α) := α2θ2

1−2αθ
ismonotonically increasing

with respect to α; that is, f (α) ≤ f (1). The third inequality follows from Lemmas 1
and 2. The second equality can be derived from the third equation of (12). The inequal-
ity before the last line follows from the upper bound given in Lemma 1.

The above inequality implies that x p(α)s p(α) > 0, for all 0 ≤ α ≤ 1. Therefore,
x p(α) and s p(α) are not changing sign on 0 ≤ α ≤ 1. Since x p(0) = x+ > 0
and s p(0) = s+ > 0, thus we conclude that x p(1) = x+ + θΔpx = x p > 0 and
s p(1) = s+ + θΔps = s p > 0 and the proof is complete. ��

We define

v p =
√

x ps p

μp
. (14)
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1132 Zs. Darvay et al.

It follows from (13), with α = 1, that

(
v p)2 = (

v+)2 + θ2

1 − 2θ
d p

x d p
s , (15)

and

min
(
v p)2 ≥ h(δ+, θ, n). (16)

Lemma 4 Let (x+, y+, s+) be a strictly feasible primal-dual solution and μp = (1−
2θ)μ with 0 < θ < 1

2 . Moreover, let h(δ+, θ, n) > 1
4 and assume that (x p, y p, s p)

denotes the iterate after a predictor step. Then v p > 1
2e and

δ p := δ(x p, s p;μp) ≤
√

h(δ+, θ, n)
[
3δ2 +

√
2θ2n

1−2θ

[ 1
2 + ρ(δ+)

]2]

2h(δ+, θ, n) + √
h(δ+, θ, n) − 1

.

Proof Since h(δ+, θ, n) > 1
4 , from (16) we have min

(
v p

)2 ≥ 1
4 , which yields v p >

1
2e. Moreover, from Lemma 3 we deduce that the predictor step is strictly feasible;
x p > 0 and s p > 0. Now, by the definition of proximity measure, we have

δ p := δ(x p, s p;μp) =
∥∥∥
v p − (v p)2

2v p − e

∥∥∥ =
∥∥∥

v p

(2v p − e)(e + v p)

(
e − (v p)2

)∥∥∥

≤ v
p
min

(2v p
min − 1)(v p

min + 1)

∥∥e − (v p)2
∥∥

≤
√

h(δ+, θ, n)

2h(δ+, θ, n) + √
h(δ+, θ, n) − 1

∥∥e − (v p)2
∥∥

=
√

h(δ+, θ, n)

2h(δ+, θ, n) + √
h(δ+, θ, n) − 1

∥
∥∥e − (v+)2 − θ2

1 − 2θ
d p

x d p
s

∥
∥∥

≤
√

h(δ+, θ, n)

2h(δ+, θ, n) + √
h(δ+, θ, n) − 1

[∥∥e − (v+)2
∥∥ + θ2

1 − 2θ

∥∥d p
x d p

s
∥∥
]
, (17)

where the first two inequalities are due to Lemma 5.2 in Darvay et al. (2016) and (16),
respectively. The last equality follows from (15) and the last inequality is due to the
triangle inequality.

We will give an upper bound for
∥
∥e−(

v+)2 ∥
∥. Using the definition of v+ =

√
x+s+

μ

and Eq. (10), we have

∥∥∥e − (
v+)2∥∥∥ = ‖(v + dx )(v + ds) − e‖

= ‖v2 + v (dx + ds) − e + dx ds‖
≤ ‖v2 + vpv − e‖ +

∥∥∥∥
p2v − q2

v

4

∥∥∥∥ . (18)
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Moreover, the third equation of system (11) yields

v2 + vpv − e = v2 + 2v2(e − v)

2v − e
− e = (v − e)2

2v − e

≤ (v − e)2v2

(2v − e)2
= p2v

4
. (19)

Using (18), (19) and the fact that ‖x2‖ ≤ ‖x‖2, we have
∥∥∥e − (

v+)2∥∥∥ ≤ ‖pv‖2
4

+ ‖pv‖2
4

+ ‖qv‖2
4

≤ 3δ2. (20)

Thus, using (20) and Lemmas 1 and 2, we obtain

∥∥e − (v+)2
∥∥ + θ2

1 − 2θ

∥∥d p
x d p

s
∥∥ ≤ 3δ2 + θ2

2
√
2(1 − 2θ)

‖d p
x + d p

s ‖2

= 3δ2 +
√
2θ2

1 − 2θ

∥
∥v+∥

∥2

≤ 3δ2 +
√
2θ2n

1 − 2θ

[1
2

+ ρ(δ+)
]2

.

Substitution of this bound into (17) yields the desired inequality. ��

4.2 The corrector step

In this subsection, we deal with the corrector step. One can observe that the algorithm
presented in Fig. 1 performs a full-Newton step as a corrector step, which can be
obtained in the same way as the one presented in the primal-dual algorithm of Darvay
et al. (2016). Thus, for the analysis of this case the lemmas proved in Darvay et al.
(2016) can be applied. The next lemma gives a condition for strict feasibility of full-
Newton step.

Lemma 5 [Lemma 5.1 in Darvay et al. (2016)] Let δ := δ(x, s, μ) < 1 and assume
that v ≥ 1

2e. Then, x+ > 0 and s+ > 0.

In the next lemma we show local quadratic convergence of the Newton process.

Lemma 6 [Lemma 5.3 in Darvay et al. (2016)] Suppose that δ := δ(x, s, μ) < 1
2 and

v ≥ 1
2e. Then, v+ > 1

2e and

δ+ := δ(x+, s+;μ) ≤ 9 − 3
√
3

2
δ2.

The following lemma gives an upper bound of the duality gap after a corrector step.
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Lemma 7 [Lemma 5.4 in Darvay et al. (2016)] Let δ := δ(x, s, μ) < 1
2 and v ≥ 1

2e.
Then

(x+)T s+ ≤ μ

(
n + 1

4

)
.

In the next subsection, we analyse the update of the duality gap after a main iteration
of the algorithm.

4.3 The effect on duality gap after a main iteration

The purpose of the algorithm is to reduce the produced duality gap of the primal-dual
pair. Therefore, in order to measure this reduction, in the next lemma we give an upper
bound for the gap obtained after performing an iteration of the algorithm.

Lemma 8 Suppose that δ := δ(x, s, μ) < 1
2 and v ≥ 1

2e. Moreover, let 0 < θ < 1
2 .

Then

(x p)T s p ≤ μp
(

n + 1

4

)
.

Proof Using (14) and (15), we obtain

(x p)T s p = μpeT (v p)2 = (1 − 2θ)μeT
[
(v+)2 + θ2

1 − 2θ
d p

x d p
s

]

= (1 − 2θ)(x+)T s+ + μθ2(d p
x )T d p

s

≤ μ(1 − 2θ)
(
n + 1

4

) = μp
(

n + 1

4

)
, (21)

where the inequality is due to Lemma 7 and (d p
x )T d p

s = 0. This completes the
proof. ��

4.4 Determining appropriate values of parameters

In this section, we want to fix the parameters τ and θ with suitable values, which
guarantee that after a main iteration, the proximity measure will not exceed τ .

Let (x, y, s) ∈ N (τ ) be the iterate at the start of a main iteration with x > 0 and
s > 0 such that δ = δ(x, s;μ) ≤ τ < 1

2 . After a corrector step, by Lemma 6, we have

δ+ ≤ 9 − 3
√
3

2
δ2.

It is obvious that the right-hand side of the above inequality ismonotonically increasing
with respect to δ, and this implies that

δ+ ≤ 9 − 3
√
3

2
τ 2 =: ω(τ). (22)
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Following the predictor step and the μ-update, by Lemma 4, we have

δ p ≤
√

h(δ+, θ, n)
[
3δ2 +

√
2nθ2

1−2θ

[ 1
2 + ρ(δ+)

]2]

2h(δ+, θ, n) + √
h(δ+, θ, n) − 1

, (23)

where δ+ and h(δ+, θ, n) are defined as in Lemma 3. It can be easily verified that
h(δ+, θ, n) is decreasing with respect to δ+, so h(δ+, θ, n) ≥ h(ω(τ), θ, n). Let us

consider the function f (t) =
√

t
2t+√

t−1
, for t > 1

4 . From f
′
(t) < 0, it follows that f

is decreasing, therefore

f
(
h(δ+, θ, n)

) ≤ f
(
h(ω(τ), θ, n)

)
. (24)

Using (22), (23), (24) and the fact that ρ is increasing with respect to δ+, we obtain

δ p ≤
√

h(ω(τ), θ, n)
[
3τ 2 +

√
2nθ2

1−2θ

[ 1
2 + ρ(ω(τ))

]2]

2h(ω(τ), θ, n) + √
h(ω(τ), θ, n) − 1

, (25)

when h(ω(τ), θ, n) > 1
4 . If we take τ = 1

4 and θ = 1
5
√

n
, then δ p < τ and

h(δ+, θ, n) > 1
4 . It should be mentioned, that the iterates after the corrector steps

are in the N (ω(τ)) neighbourhood, while the iterates after the predictor steps are in
the N (τ ) neighbourhood.

5 Iteration bound

The next lemma gives an upper bound for the number of iterations produced by the
algorithm.

Lemma 9 Let (x0, y0, s0) be a strictly feasible primal-dual solution, μ0 =
(
x0

)T
s0

n and
δ(x0, s0, μ0) ≤ τ . Moreover, let xk and sk be the iterates obtained after k iterations.

Then,
(
xk

)T
sk ≤ ε for

k ≥ 1 +
⌈

1

2θ
log

5
(
x0

)T
s0

4ε

⌉

.

Proof From Lemma 8, it follows that

(xk)T sk ≤ μk
(

n + 1

4

)
<

5

4
(1 − 2θ)k−1μ0n = 5

4
(1 − 2θ)k−1(x0)T s0.

This means that (xk)T sk ≤ ε holds if

5

4
(1 − 2θ)k−1

(
x0

)T
s0 ≤ ε.
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If we take logarithms, we get

(k − 1) log(1 − 2θ) + log
5
(
x0

)T
s0

4
≤ log ε.

Since log(1 + ξ) ≤ ξ , ξ > −1, using ξ = −2θ , we obtain that the above inequality
holds if

−2θ(k − 1) + log
5
(
x0

)T
s0

4
≤ log ε.

This proves the lemma. ��
Using the above result follows the main result of our paper.

Theorem 1 Let τ = 1
4 and θ = 1

5
√

n
. Then, the corrector–predictor interior point

algorithm given in Fig. 1 is well defined and the algorithm requires at most

O

(
5
√

n log
5(x0)T s0

4ε

)

iterations. The output is a strictly feasible primal-dual solution (x, y, s) satisfying
xT s ≤ ε.

It is worth mentioning that this CP algorithm has advantages compared to the one-
step method presented in Darvay et al. (2016), because in the case of the one-step
algorithm θ = 1

27
√

n
, which is smaller than the value of θ used by us. Hence, this

paper leads to a slightly better complexity result.

6 Numerical results

In order to demonstrate the efficiency of our CP algorithm we implemented it in
the C++ programming language (Darvay and Takó 2012) in such a way to be able
to compare it with the primal-dual (PD) method proposed in Darvay et al. (2016).
To do so, we made some changes in the algorithm. In case of both algorithms, we

used the normalized duality gap xT s
n to obtain the value of the barrier parameter μ

in the next iterate. In the implementation of the PD algorithm, we multiplied the
normalized duality gap by σ = 0.95 in order to be able to reduce the value of μ in
each iterate and to maintain the short-step strategy of the method. As it is usual in
the case of the implementation of predictor–corrector algorithms, for our CP variant
we applied Mehrotra’s (1992) heuristics to get the value of μ for the corrector step.
Our CP algorithm performed one corrector and one predictor step in each iteration.
After calculating the search direction, we determined the maximal step size to the
boundary of the feasible region. We reduced the obtained step by multiplying it by the
parameter ρ = 0.5. For both algorithms, we set the value of the proximity parameter
ε to 10−5. We tested both algorithms on two set of problems. The first set contains
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Table 1 Number of iterations of the algorithms for the randomly generated problems

Maximum size Avg. It. CP Avg. CPU CP Avg. It. PD Avg. CPU PD

10 × 10 23.2 0.1649 269.8 1.6773

20 × 20 24.8 0.4636 294.5 4.253

50 × 50 28.7 2.824 317.2 28.1405

Table 2 Number of iterations of
the algorithms for problems
from Netlib

Problem Nr. It. CP CPU CP Nr. It. PD CPU PD

afiro 53 3.618 646 39.208

adlittle 86 51.362 >1000 >564.819

blend 72 58.961 571 442.728

sc50a 56 16.006 529 134.543

sc50b 56 15.785 491 125.298

sc105 63 138.865 555 1175.96

sc205 80 1161.56 507 7413.31

scagr7 88 344.113 640 2170.95

recipe 92 1352.36 >1000 >14,863.5

randomly generated problemswithmaximum size 50×50.We generated ten problems
ofmaximum size 10×10, 20×20 and 50×50, respectively. In each case, we calculated
the average number of iterations (Avg. It.) and CPU times (Avg. CPU) in seconds.
The obtained results are presented in Table 1.

The second set of problems on which we tested the algorithms was chosen from the
Netlib test collection (Gay 1985). The number of iterations (Nr. It.) and CPU times
(CPU) in seconds are summarized in Table 2.

Based on the obtained results for the two set of problems we conclude that our CP
algorithm outperforms the classical primal-dual method which uses the same search
direction.

7 Conclusions and future research

We proposed a CP IPA for LO.We used the AETmethod for the system which defines
the central path that is based on the function ψ(t) = t − √

t (Darvay et al. 2016).
We then applied Newton’s method to the transformed system in order to get the new
search directions. Furthermore, we presented the analysis of the proposed algorithm
and proved that the method finds an ε-optimal solution in polynomial time. To our best
knowledge, this is the first CP IPA where the function ψ(t) = t −√

t is used to derive
the search directions. The novelty of this paper consists of the techniques used in the
analysis of the algorithm. We had to assure that the components of v-vectors of the
scaled space are greater than 1

2 . We highlighted the practical efficiency of the method
by providing numerical results on the selected set of test problems from NETLIB. We
made a comparison between the number of iterations performed by our algorithm and
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the classical one-step method. We concluded that our algorithm is more efficient than
the classical one.

Future theoretical research direction includes extending our CP IPA tomore general
problems. The computational direction for further research includes implementation
with different functions ψ used for AET. We would like to compare the effect of
these functions on the computational results of the algorithms on quite large and well
selected LO test problems. Moreover, this kind of computational study might give
some insight into the good selection strategy of the target point of the search direction
for different LO problems. Ideal situation would be, if the algorithm could be able
to choose automatically among different ϕ functions depending on the structure of
the problem. Furthermore, such computational study on the effect of different AETs
could be based on the similar LO test set, like in the study of Illés and Nagy (2014)
for pivot algorithms.
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