Central European Journal of Operations Research (2020) 28:521-537
https://doi.org/10.1007/s10100-019-00650-z

S.I.: DYNAMIC OPTIMIZATION IN MANAGEMENT AND
ECONOMICS ()

Check for
updates

On the dynamics of stock price bubbles: comments on a
model by Miao and Wang

Gerhard Sorger!

Published online: 18 September 2019
© The Author(s) 2019

Abstract

We consider the model by Miao and Wang (Am Econ Rev 108:2590-2628, 2018), in
which endogenous collateral constraints may generate stock price bubbles. Whereas
Miao and Wang (2018) characterize the local dynamics around stationary equilibria
only under the assumption of risk neutral households, we extend this characterization
to the case of risk aversion.

Keywords Stock price bubbles - Risk aversion - Local stability analysis

1 Introduction

Miao and Wang (2018) develop a theory of rational stock price bubbles that rests on
endogenous credit constraints. The main results of the paper are derived under the
assumption that the households are risk neutral, whereas for the case of risk averse
households only the characterization of stationary equilibria is conducted.! The pur-
pose of the present note is to fill this gap, i.e., to provide a complete analysis of the
local dynamics in a version of the model with risk averse households.

This paper was presented at the symposium on the occasion of the award of the “Wissenschaftspreis der
Osterreichischen Forschungsgemeinschaft” to Gustav Feichtinger. The paper is dedicated to Gustav,
whom I thank for his support and guidance during the early stages of my career. I acknowledge valuable
comments by two anonymous referees.
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1 Regarding the model with risk averse households, Miao and Wang (2018) write in Appendix D: “We
are unable to derive analytical results for local dynamics because the equilibrium system contains five
equations, but it is straightforward to derive numerical solutions.”
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The model by Miao and Wang (2018) is a notable contribution for various reasons.
First of all, it shows that endogenous credit constraints can generate bubbles that are
consistent with the transversality condition at infinity. More specifically, because the
presence of a bubble relaxes the credit constraints for firms, the bubble component
of the asset price does not have to grow at the rate of interest. Second, the model
by Miao and Wang (2018) directly addresses bubbles on markets for common stock,
whereas most of the previous literature has dealt with bubbles on intrinsically useless
assets. The fact that the assets under consideration are productive ones opens the door
for an important and intuitively plausible feedback mechanism. If the stock price of a
company contains a positive bubble component, the firm’s assets have a higher value
than in a bubbleless equilibrium. Since the firm can use these assets as collateral, it is
able to obtain more credit which, in turn, allows the firm to invest more. Thus, and this
is the third notable feature of the model, the bubbly equilibrium features higher capital
and more output than the bubbleless one, i.e., there is a crowding-in effect. Miao and
Wang (2012, 2014) have already extended their theory to economies with idiosyncratic
productivity shocks, multiple production sectors, and endogenous growth.

The rest of this paper is organized as follows. In Sect. 2 we present the basic model
with risk averse households. Section 3 analyzes competitive equilibria: stationary
equilibria are characterized in Sect. 3.1, whereas the local dynamics around these
stationary equilibria are studied in Sect. 3.2. To overcome the difficulties mentioned
by Miao and Wang (2018) (see Footnote 1 above), we use the output market clearing
condition to express the real interest rate as a function of the aggregate capital stock and
the two components of the stock price (Tobin’s marginal Q and the bubble component).
This eliminates aggregate consumption from all equilibrium conditions except for the
Euler equation. Consequently, we are left with a three-dimensional system of ordinary
differential equations which is analytically tractable. The analysis demonstrates that
the results about the local dynamics that have been derived by Miao and Wang (2018)
for the economy with risk neutral households carry over to the case of risk averse
households. Finally, Sect. 4 concludes the paper.

2 Model formulation

Time is modeled as a continuous variable on the time domain R;. We consider an
economy that is populated by households and firms. Firms use the input factors capital
and labor to produce a single output good. The latter can be used for consumption
and for investment and it serves as numeraire good. Households are endowed with
labor and they own the firms. Firms own their capital and rent labor services from
households. There a two assets in the economy: bonds, which are available in zero net
supply, and firm equity.

2.1 Households

There exists a unit interval of identical and infinitely-lived households. The represen-
tative household is endowed with one unit of labor per period and it owns equal shares
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of all firms. Furthermore, it has the time-preference rate p > 0 and the instantaneous
utility function

= —1

M(C)= ﬁ 1f97él,
Inc ifo =1,

where 6 > 0is the inverse of the elasticity of intertemporal substitution. The household
maximizes its lifetime utility

+00
/ e Pu(c(t)) de
0

subject to the budget constraint

b(t) + p(1)$(t) + c(t) = r(t)b(t) + d(t)s(t) + w(r)
and the initial conditions

s(0)=1 and b(0) =0.

The choice variables of the household are its consumption rate c(¢), share holdings
s(t), and bond holdings b(#). On the other hand, the household takes the variables p(t),
r(t), d(t), and w(t) as given. These variables denote the time-¢ share price, interest
rate, dividend payment per share, and the wage rate, respectively.

Absence of arbitrage requires that

_d+pw)

ro p(t)

holds for all 7. We denote total financial wealth of the representative household at time
t by a(t), that is,

a(t) =b(t) + p)s(t).
Using this notation, we can rewrite the flow budget constraint from above as
a(t)y =r@®)a(t) +w) —c(t). €))

It is well known that the behavior of the representative household is completely
described by constraint (1), the initial value a(0), the Euler equation

) r@—p

ct)y 6 7 @
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and the transversality condition

lim e~ Jor®dsgpy = 0. 3)

t——+00

Note that a(0) = p(0) is the stock market value of all firms at time 0. Thus, even if
the representative household takes this initial value as given, a(0) is not an exogenous
parameter of the model but an endogenously determined variable.

2.2 Firms

There exists a unit interval of infinitely-lived firms, which produce output from cap-
ital and labor. The firms own their capital and they rent the labor services from the
households. Consider any individual firm j € [0, 1]. Output of firm j is given by

yi(6) = kj()*€; ()", 4)

where k;(7) and £;(¢) denote the time-7 input quantities of capital and labor, respec-
tively. The firm can choose its employment £ () > 0 at any point in time. Investment,
however, is assumed to be lumpy. Formally, we assume that firm j can invest only at
discrete instants of time ¢; 1, ¢; 2, . . ., Where (tj,n):{jf is a Poisson process with arrival
rate ». We choose the unit of time in such a way that A = 1.2 The investment opportu-
nities are independent across firms. Denoting by & the rate of capital depreciation and
by i;(t) the (lumpy) investment at time ¢, it follows that firm j’s capital stock evolves
according to

ki(t) = —8k;(t) ®)
fort ¢ {tj,ln=1,2,...} and
limk;(s) =kj(t) +i;(t) (6)
SN\t
fort € {tj,|ln = 1,2,...}. Thus, we assume that the function k; is piecewise

continuously differentiable with jump discontinuities at the investment opportunities
and that it is continuous from the left everywhere. Finally, we assume that all firms
are initially endowed with k > 0 units of capital.

Firms maximize their shareholder value. The maximal stock market value of firm
J when it owns k units of capital at time s is

+o00 .
V (k,s) = max ]ES[/ e~ Jir@dr [v;() —w®)e,; ()] dt

Ljn
_ Z e—fv r(f)dfij(tj’n):|,

{nltjnzs}

2 This normalization implies that the time-preference rate p and the depreciation rate é have to be interpreted
relative to the Poisson arrival rate. The results for the model without the normalization A = 1 can therefore
be obtained by replacing p and § by p/2 and 8/, respectively.
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where the maximum is taken over employment and investment subject to constraints
(4)—(6), the initial condition k(s) = k, and the control constraints £;(t) > 0 and

—kj(t) <ij(t) = V(§k;(1), 1)

for all ¢.

According to its definition, V (k, s) is the expected and discounted value of the
firm’s future profits. The constraint £ (t) > O restricts employment to be non-negative
and the constraint i;(t) > —k;(t) says that disinvestment is possible but that the
capital stock of the firm must remain non-negative. The crucial constraint is i (f) <
V(&k;(t), t), which is interpreted as a collateral constraint. The parameter & satisfies
0 < & < 1. Firms cannot raise additional equity and are therefore forced to finance
their investments via loans. We do not model the credit market explicitly but simply
assume that financial frictions or asymmetric information imply that the investment
of firm j must not exceed the stock market value of a hypothetical firm owning the
fraction £ of firm j’s current capital stock.?

The Hamilton—Jacobi—Bellman equation (HJB equation) for the above optimization
problem is*

r@)Vikj,t) — Valkj, t)

= max {KS 5 — () = Vilky, 08k + [V + 15,0 = V. 0 — i1}

Carrying out the maximization with respect to labor input in the HIB equation yields

0 — -« l/ak_ 7
J—[m] j @)

Substituting this back into the HIB equation, the latter simplifies to

r@Vikj,t) — Valkj, t)
l—«
w(t)

(I-a)/a
= max Ot|: i| kj—V](kj,l‘)5kj—i—V(kj—l—ij,I)—V(kj,l)—ij

Given the structure of this equation, we conjecture a linear affine value function of the
form V(k;,t) = Q(t)k; + q(z). The variable Q(z) denotes the value of capital inside
the firm at time 7, i.e., Q(¢) is Tobin’s marginal Q. The variable ¢ (¢) describes those
components of the firm’s value that do not originate from its capital stock. For this
reason, an equilibrium with g (¢) # 0 is said to contain a bubble. If ¢(¢) = 0, then it
follows that Q(#) coincides with Tobin’s average Q.

3 For further explanations of the constraint i ; (1) < V(§k; (2), t) we refer to Miao and Wang (2018). They
interpret (1 — &)k ; () as an efficiency loss that occurs when the lender takes over the firm or, alternatively,
as a default cost including, for example, legal expenses.

4 Recall that we have normalized the arrival rate of investment opportunities, A, by 1. The bracketed term
V(kj +ij,t) — V(kj, 1) — i; in the HIB equation is multiplied by this arrival rate. The maximization in
the HIB equation is over ¢j > 0andoveri; € [—kj, V(Skj, 1)].
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With the linear specification of the optimal value function introduced above, the
HIJB equation turns into

r([QMk; +q1)] — Q(W)k; — (1)

l—a (l1—a)/a
= max [oe |: o ] kj — Q(t)dk;

+[Q() — 11

—kj <ij <&EQ(t)k; +Q(f)}

l—a (l1—a)/a ‘
@ [ 0 ] kj 41— (148)0@)k, ifO) < 1,
- 1 — (l1—a)/a
a[ w(z()x] ki —8Qnk; +10@) — 1IEQMk; +q®)] if Q@) = 1.

The optimal investment rate is given by

i= —k;j if Q) <1, ®)
! EQOkj +q@) if Q1) > 1.

In the case where Q(¢) = 1 holds, the investment rate is not uniquely pinned down
by the above maximization problem and any value i; € [—k;,§Q(t)k; + q(¢)] is
possible. Since the HIB equation has to hold for all # and all &; it follows that

1 -« (1—a)/a
_ [1+8+r(t)]Q(t)—1—a[w(t)i| ifO@) <1,
o) = (1—a)/a
l_
[r (1) +810(1) — £QN[Q(M) — 1] —a [ w(t‘)’} it o = 1,
©)
. _ r(t)q(t) if Q@) <1,
90 =1 1)) — [0() — lg() if Q1) = 1. (10

The behavior of the firms is completely described by Eqs. (4)—~(10) along with the
initial condition k(0) = k.

2.3 Aggregation and market clearing
Defining the aggregate variables y(f) = fol yj()dj, k() = fol kj(t)dj, (1) =

fol Li(t)dj, and i(t) = fol ij(t)dj and recalling that the arrival rate for investment
opportunities has been normalized to 1, it follows from (4)—(8) that

1 -« (l—a)/a .

y() = [—} k(t) = k()*e@) ™%, (11)
w(t)

k@) =i@t) — 8k(1), (12)
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1 -« 1/a
£(t) = [W} k(t), (13)
. . —k(1) if Q@) < 1,
i = {EQ(t)k(t) +q@) if Q) > 1. (14

The markets for labor services, output, and assets clear if

) =1, (15)
(&) =c@) +i(), (16)
a(t) = V(k(t), 1) +b(t) = Q()k(t) +q(t). (17)

In the last of these equations we have used the assumption that bonds are available in
zero net supply.

Finally, we have to make sure that households keep their firms running. This will
be the case if the market value of the firms held by the representative household is at
least as large as the market value of the capital installed in those firms. Since the value
of capital outside the firms is equal to 1 and since the representative household owns
equal shares of all firms, this means that V (k(¢), t) = Q(¢)k(t) + q(¢t) > k(¢) has to
hold. A sufficient condition for this inequality is that

Q) =1 and ¢(r) =0 (18)

are satisfied for all ¢.}

3 Equilibrium analysis

A family of functions (c, a, k, ¢, y,i,r, w, Q, q) is called an equilibrium from kif it
satisfies conditions (1)=(3) and (9)—(18) for all  and if k(0) = k holds. A family of
constant functions (c, a, k, ¢, y,i,r, w, Q, q) is called a stationary equilibrium if it
satisfies (1)—(3) and (9)—(18) for all . An equilibrium or a stationary equilibrium is
called non-degenerate if y(t) > 0, k() > 0, and c(¢) > 0 hold for all .

According to Walras’ law, one of the market clearing conditions or budget con-
straints is redundant. Therefore, we shall disregard the flow budget equation (1) in the
following analysis. Using (17) it follows that (3) holds if

lim e~ Jor@ds ok (r) = Jim e for®dsy iy — 0. (19)

t—+00

Finally, we note that (11), (13), and (15) together imply that

w(t) = (1 —a)k®)”, (20)

5 The inequalities in (18) are of course not necessary for V (k(t),t) > k(t) to hold. Neither do we know
whether the linear specification of the value function V' is the only one that is consistent with equilibrium.
We follow Miao and Wang (2012, 2014, 2018) by considering only those equilibria with linear value
functions satisfying (18).
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y(t) = k()® (21)

hold. Consequently, we can combine (9) and (18) to obtain
O@t) = [r(t) +810(1) —£Q(NOH[Q (1) — 1] — ak(1)* ™" (22)
3.1 Non-degenerate stationary equilibria

In the present subsection we characterize and compare all non-degenerate stationary
equilibria of the economy under consideration.

Theorem 1 (a) A non-degenerate stationary equilibrium satisfying Q(t) = 1 exist if
and only if € > 8 holds. This stationary equilibrium is given by°

1/(1—a)
un=m=<“ ) ,

p+9
ol a \Y/10
man () ()
p+34 p+06
@) = 0« =1,
qt) =g« =0,
r(t) =ry,=p.

(b) A non-degenerate stationary equilibrium satisfying Q(t) > 1 and q(t) = 0 exist
if and only if ¢ < § holds. This stationary equilibrium is given by

aE 1/(1-a)
kt)=ko= | —— ,
"=k [Mp+éJ
a/(1—a)
c(t):coz(l— as )[ ot ] ,
p+&)8(p+8&)
8
0@)= Qo= g,
q(t) =qo =0,
r(t) =ro = p.

(c) A non-degenerate stationary equilibrium satisfying Q(t) > 1 and q(t) > 0 exist
if and only if € < 8/(1 + p) holds. This stationary equilibrium is given by’

o 1/(1-a)
k = k. =
©) =k [u+pm1—@p+m] ’

6 Here and in the rest of the theorem we only state the equilibrium values for k(7), c(t), Q(t), g(t), and
r(t). The equilibrium values of the remaining variables can easily be computed from the stated values and
the equilibrium conditions.

7 The subscript 4+ in the following formulas indicates that in this stationary equilibrium ¢(¢) is positive,
whereas the subscript ¢ in part (b) of the theorem meant that ¢ (¢) = 0.
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al o o/(1—a)
ct)=cyr=1|1- ,
[ (1+,0)[(1—§)p+3]}[(1+,0)[(1—$),0+5]]
0() = 04 = 1+p,

a 1/(—a)
= =[5 — 1 )
q(t) =q+ =[5 —&( +p)]|:(l+p)[(1—£j)p+8]i|

r(t) =ry =p.

Proof First we observe that the Euler equation (2) implies that in every non-degenerate
stationary equilibrium the interest rate is given by r(¢) = p.

(a) Suppose now that Q(#) = 1 holds for all 7. In this case (10) shows that () = 0
must hold for all 7 and (22) implies that k(1) = [a/(8 + p)]"/ =% From (12) we
obtain i () = 6k(z) > 0 so that (16) and (21) lead to

o 065 o ﬂl/(l_c‘)
(1) = k(1) —Sk(f)=<1_5+p> <5+P> .

The collateral constraint says thati () = dk(t) < V(£k(t)) = £k(¢) and it follows
that § < & must hold. Finally, we observe that the transversality conditions in (19)
hold trivially because of the constancy of k(¢), Q(t), and ¢(¢) and because of
r(t) =p > 0.

(b) Suppose that Q(¢#) > 1 and g(¢r) = 0 hold. From Egs. (12) and (14) it follows
that k(¢) = 0 or Q(t) = §/& must hold. The former case is not consistent with
the non-degeneracy of the stationary equilibrium and is therefore discarded. The
latter case requires the parameter restriction & < §. Substituting r(¢) = p and
Q(t) = §/¢ into Eq. (22), we obtain

1/(—a)
k(1) = [L} .
3(p+§&)

Now we can use conditions (12), (16), and (21) to compute

K sko = |1 %8 L
‘B=h- 0_[ _p+sH8<p+s)] |

Non-negativity of investment and the validity of the transversality conditions in
(19) can be shown in the same way as in part (a).

(c) Finally, assume that Q(¢) > 1 and ¢(¢) > 0 are satisfied. It follows from (10) and
r(t) = p that Q(¢) = 1 + p holds. Substituting this value along with r(¢) = p
into (22) we obtain

a ]1/(1a)

k(t) = [
I+ +p0—8)]
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Note that the restriction £ < §/(1 + p) stated in the theorem implies trivially that
& < (1+38+ p)/(1+ p) holds which, in turn, is equivalent to

I+ o8+ p0—=8]>4. (23)

This shows that the above value for k() is well defined and positive. Substituting
the values for Q(¢) and k(¢) into (12) and (14) we obtain

a ]1/(1—a)

=[5 —&(1
q@) =1[6 —§( +p)]|:(1+p)[5+/0(1—§)]

The constraint g (¢) > 0 implies that £ < §/(1 + p) is satisfied. By substituting
the above values into Eq. (16) we obtain

L) o a/(1-0)
S S
T+ +pd=81]1LA+ L+ pd—-8)]

Using (23) it is straightforward to see that c(¢) is strictly positive. The non-
negativity constraint on investment as well as the transversality conditions in (19)
hold for the same reasons that have already been mentioned above. O

The following lemma describes how the stationary equilibria listed in Theorem 1
depend on the parameter &. We also demonstrate that the capital stock in all non-
degenerate stationary equilibria is lower than the Golden Rule capital stock, which is
given by kOR = (/8)1/(1-®),

Lemma 1 (a) It holds that
max {ky, ko, k+} < kOR.

(b) It holds that ko and cq are strictly increasing with respect to & € (0, §).

(c) It holds that k4 and c are strictly increasing with respect to & € (0,6/(1 + p)).
(d) If& =1, then it follows that ko = k4 and cy = c4.

(e) If& < 1, then it holds that kg < ky and ¢y < c4+.

Proof (a) The inequalities k, < kOR, ko < kOR, and k. < kOR follow immediately
from Theorem 1 and the parameter restrictions p > 0, & € (0, 1), and @ € (0, 1).

(b) It is obvious from Theorem 1(b) that kg is strictly increasing with respect to .
Defining the function g : Ry — R by g(k) = k% — 8k it holds that co = g (ko).
Moreover, we have g/(k) = ak®~! —§ > 0 for all k € (0, kOR) and it follows
therefore that g is strictly increasing on the interval (0, k<O®). Combining these
observations and the fact that the function g is independent of &, one can see that
cp is strictly increasing with respect to &.

(c) Part (c) of the lemma is obvious from Theorem 1(c) and c+ = g(k4).

(d) This part is obvious from Theorem 1(b, c).
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(e) Let us define the parameter & = 1 + 8/p and note that max{1,8/(1 + p)} < &
holds. Furthermore, we define the functions kg : [0, &) > Randxy : [0,&) — R
by

§

R

and

1
1+ )1 =&)p+38]"

k4 (§) =

respectively. Both of these functions are continuously differentiable and strictly
increasing, ko is strictly concave, and k. is strictly convex. Finally, we have
k0(0) =0 < k4(0), ko(1) = k4 (1), and ko (§/(1 + p)) = k+(8/(1 + p)). These
properties imply that the graphs of ko and « 4 intersect only in the points & = 1 and
& =6§/(1 4 p) and that kg(§) < k(&) holds for all £ € (0, min{1, §/(1 + p)}).
The proof of part (e) is completed by noting that kg = [ako(£)]/1~9, ky =
[ (€)1 079, co = g(ko), and ¢y = g(ky). o

Figure 1 illustrates the results stated in Theorem 1 and Lemma 1 for the parameter
values « = 1/3,8 = 2/3, and p = 1. Note that the parameter values are such that
8/(1+4 p) = 1/3 < 1 holds, such that the bubbly stationary equilibrium does not exist
for £ = 1. Indeed, there exist two non-degenerate stationary equilibria (one of which
is bubbly) whenever £ is smaller than §/(1 + p) = 1/3.

InFig. 2 we show the situation when §/(1+4p) > 1. More specifically, the parameter
valuesare = 1/3,8§ =3,and p = 1. Since § <l and§ > 1 + p > 1 is satisfied, it

k
0.0

0.08 -

0.06

T
=)

004 k.

0.02

f . . | . . . ! . . . 1 . . . 1 . . . 1 é‘
0.2 0.4 0.6 0.8 1.0
Fig. 1 Capital stocks in the stationary states foroo = 1/3,§ =2/3,and p =1
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0.2 0.4 0.6 0.8 1.0
Fig.2 Capital stocks in the stationary states fora = 1/3,8 =3,and p = 1

follows from Theorem 1(a) that there exists no non-degenerate stationary equilibrium
with Q(¢) = 1. Inevery non-degenerate stationary equilibrium the collateral constraint
is binding.

An interesting special case is £ = 1, because we have kg = k4 and cp = ¢4 despite
the factthat Qo =6 > 1+ p = Q+and gy =0 < (6 — 1 — p)kr = g+. In this
case it holds furthermore that Qoko + qo0 = Q+k+ + g+. In other words, the two
stationary equilibrium allocations as well as their supporting price systems coincide,
but the stock market price of firms can be interpreted to be bubbleless (go = 0) or to
have a positive bubble component ¢4 > 0.

3.2 Local dynamics

In this subsection we study the local dynamics around the stationary equilibria
(ko, co, Qo qo, ro) and (k+, c4+, QO+, g+, r+). We focus on these two stationary equi-
libria because they are the ones for which the collateral constraint is binding.

In the first step we reduce the equilibrium conditions to a system of three differential
equations. To this end, recall that Qg > 1 and Q4 > 1 are satisfied, which implies
that locally at both stationary equilibria under consideration it holds that Q(¢) > 1.
The equilibrium dynamics are therefore described by

k() = £Q(Ok(1) + q (1) — 8k(0), (24)
¢@t) = [r(1) — ple() /0, (25)
0(1) =[r(1) +810() —EQMIQ () — 1] — ak()*", (26)
q@) =r(n)gq () —[Q@) — 1lg(@), 27)
c(t) = k@ —§QOK(1) —q(@). (28)
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Equation (24) follows from (12) and (14), Eq. (25) is just a repetition of the Euler
equation (2), Eq. (26) follows from (22), Eq. (27) follows from (10), and Eq. (28)
combines (14), (16), and (21). Conditions (24)—(28) are the five equations referred to
by Miao and Wang (2018) in their Appendix D; see Footnote 1 of the present paper.

Lemma 2 In every equilibrium, in which Q(t) > 1 holds for all t, the interest rate
satisfies r(t) = R(k(t), Q(t), q(t)), where the function R is given by

Rk, Q,q)
_ lp—afl8 —£(1 + QIK + abk*"'q — 5(p +68) Ok —[p +6 —6(1 —§) Qg
k* —&(1—60)0k — (1 —6)q '

(29)

Proof Differentiating Eq. (28) with respect to time # and using Eqgs. (24)—(27) to elimi-
nate the time derivatives k(7), ¢(¢), Q(z), and ¢ (t) we obtain an equation that is linear in
the interest rate r (¢). Solving this equation we obtain r (t) = R(k(1), c(1), (), q())
with R defined by

R(k,c, Q,q)
_afE(1 + Q) — 81K + abqk®™! — 0&2 0k + pc — O[1 — (1 — £)Qlg
o c+0EQk+q) '

Using (28) once more to eliminate c(¢#) from the above expression it follows that
r(t) = R(k(t), Q(t), q(¢)) with R defined in (29). O

Using the above lemma, we can write the equilibrium dynamics as

k(@)
0() | = Fk®). Q). q(1)), (30)
q@)

where F : Ri > R? is defined by its three components

Fl'(k, Q,q) = £Qk +q — 8k,
F2(k, 0,q) = [R(k, Q,q) + 810 —£Q(Q — 1) — ak® ™!,
F3(k, Q,q) = Rk, Q,q)q — (Q — 1)g.

The Jacobian matrix of this system in a fixed point (k, Q, q) is

Jk, Q,q)
EQ—6 £k 1
=| RO+a(l—a)k* 2 RQ+p+8—£2Q—1) R3Q ,
Rig Rag — g Ryg+1+p—0

where we have used the fact that R(k, O, ¢) = p holds for every stationary equilibrium
and where we have omitted the arguments of the partial derivatives of R for simplicity.
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In the following two theorems we characterize the eigenvalues of the Jacobian matrix
J(k, Q, q) at the two stationary equilibria.

Theorem 2 Suppose that & < § is satisfied. The eigenvalues of the Jacobian matrix
J(ko, Qo, qo) are

1+10_8/$7 )"15 )\'25
where A1 and Ay are the roots of the quadratic polynomial

Po(r) = A% — A8 Ra(ko, Q0. q0)/& + p + & — §]
—8R1 (ko, Qo, q0)ko — (1 — )EKT".

The eigenvalues L1 and Ly are real and of opposite signs.

Proof Since gy = 0 and Q¢ = §/& we have

0 Eko 1
J(ko, Q0. q0) = | SR1/E +a(l — )k SRyJE+p+E—8  SR3/E
0 0 1+ p —8/&

This proves immediately that one of the eigenvalues is 1 + p —§/& and that the remain-
ing two eigenvalues are the roots of Py(A), which is the characteristic polynomial of
the upper-left 2 x 2 submatrix of J(ko, Qo, go). To prove the last statement of the
theorem it suffices to show that

Po(0) = =8 Ri(ko, Qo, goYko — (1 —a)Ekg™" < 0
holds. Using Theorem 1(b) and Lemma 2 it is straightforward to verify that

8 —a)(p+E){p +E[1 —a(l —0)]}koco

Po®) = @€ (co + 80ko)?

’

which is obviously negative for all feasible parameter values. O

Theorem 3 Supposethaté < §/(1+p) is satisfied. The Jacobian matrix J (k+, Q+, q+)
has exactly one stable eigenvalue.

Proof Using QO+ = 1 + p we obtain

J(kt, O+, q+)
E(l+p) =38 Ehy 1
= [ RO +p) +a =k Ra(1+p)+p+8—E1+2p) Ru(1+p)
Riq+ R3qy —q+ Raq+

The characteristic polynomial of this matrix has the form
Pi(z) = —2° + Daz* + Diz + Dy,
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where

1
D, = Z{ousza + 00+ (1+ p)(1 — E)[p2(1 — &) — afE(1 +2p)]
+5[af(1 — 2&) + ,02(1 +ad) (1 -8 +p(l—a—&+aéE+ab(3— 45))]},

Dy = l{53[1 +p —a(l + pb)]
A

+o(1+p)2(1 = £)E[a(1 — £)(O — p +2p0) + (1 + p)E]
+82[p% (2 — 36 — af — 300 + 4abE) — (1 — a?)E

+p(2 — 46 + a’E —a — 2a6 + 3ab§)]

+8(1 4 p)[(1 — @)E” — p(§ + 208 — aE® — 0’ + 076> — 387
+ab — dabE + 3abE?)]

+8(1+ p)p*[1 — 38 +3&% — a(1 — £)(26 +260 — 595)]},
=)+ =50+ p)6+ p( -§)]

Do = ) {1 —a)é

+oll+p+8—&6(14+ p)]},

and
A=48[1l—a(l =0)]+p[l+p+35—-E61+p)]
The assumption & < §/(1 + p) implies that

A >0,
d+p(1-§)>0,
Ad-—a)§+pll+p+5-60+p)]>0.

Hence, it follows that Dy < 0, which proves that P has at least one negative real
root. It also follows that there cannot be two stable roots (counting multiplicities). To
complete the proof of the theorem it is therefore sufficient to rule out that there are
three stable roots.

From the results in Strelitz (1977) and Weisstein (undated) it follows that P has
three stable roots if and only if Do < 0, D1 < 0, D> < 0, and Do + D1 D, > 0. Itis
therefore sufficient to prove that D, > 0 holds which, because of A > 0, is equivalent
to Do A > 0. It will be convenient to write Do A = h(a, 0, & ).8 First of all note that
h(a, 0, &) is linear with respect to o and that

8 Dependence of Dy A on the remaining parameters § and p is not important for the following argument,
which is why we do not include these parameters as arguments of the function /4.
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h(0.0.8) = p(1 +p)A =[5 +p(1 =] =0

holds. Since @ € (0, 1) is satisfied, it is sufficient to prove that i(1, 0, &) is non-
negative. It holds that

h(1,0,€) = p> + p>(1 48 4 80) + ps6 (3 + 8) + 86(1 + 8)
—[20° + (1 +28)0 + B +48)p0 + (2 + 8)p*(1 + 0)]&
+(1 4+ p)(p> +26p + 0)&2,

and
h(1,0,8) = p*(1 = &) + (1 — £)(1 + p)].

We observe that 2(1, 6, ) is linear with respect to 6 and that the assumption £(1 +
p) < & implies that 2(1, 0, &) > 0 holds. Consequently, it is sufficient to prove that
ha(1, 0, &) is positive. We have

ho(1,0,8) = 82(1 + p) +8[1+3p — (0* +4p +2)E] — (1 +3p +20)E(1 — &).

The function &> (1, 8, &) is independent of 6 (because of linearity of i (1, 6, &) with
respect to 0) and it is a strictly convex quadratic function of &. This quadratic function
attains its minimum at

143p4+2p>+ 82 +4p+ p?)
2(1 +3p +2p2)

é:

and it holds that & > /(14 p). This implies that (1, 0, £) is strictly decreasing with
respectto & € (0,8/(1 + p)). Since hy(1,6,5/(1 + p)) = dp(1 + p) > 0 it follows
that i, (1, 0, &) > 0 holds for all feasible parameter values. This completes the proof
of Dy > 0. O

4 Discussion

We have shown that the results from Miao and Wang (2018) on the dynamics locally
around stationary equilibria in an economy with risk neutral households carry over to
the case of risk averse households. More specifically, if the fraction £ of capital that can
be pledged as collateral is sufficiently high, only a bubbleless stationary equilibrium
exist and it is saddle point stable. If the parameter & falls below a certain threshold
value, a bubbly stationary equilibrium bifurcates from the bubbleless one. In the course
of this bifurcation the bubbly equilibrium inherits the saddle point stability whereas the
bubbleless stationary equilibrium becomes indeterminate. The situation is therefore
completely analogous to that in the overlapping generations model of Tirole (1985):
the distinction between & being above or below the threshold in the present paper
corresponds to the distinction between the bubbleless steady state capital stock being
below or above the Golden Rule capital stock in Tirole (1985).

@ Springer



On the dynamics of stock price bubbles: comments on a model... 537

The stability properties derived in Miao and Wang (2018) and the present paper
imply that there exist equilibria converging to the stationary ones, no matter whether
they contain bubbles or not. Since the stationary equilibrium capital stocks are smaller
than the Golden Rule capital stock (see Lemma 1), all those convergent equilibria
are dynamically efficient. In the model of Tirole (1985), on the other hand, existence
of bubbly equilibria is only possible if the bubbleless equilibrium is dynamically
inefficient.
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