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Abstract

In this paper we address a general Goal Programming problem with linear

objectives, convex constraints, and an arbitrary componentwise nondecreasing

norm to aggregate deviations with respect to targets. In particular, classical

Linear Goal Programming problems, as well as several models in Location

and Regression Analysis are modeled within this framework.

In spite of its generality, this problem can be analyzed from a geometrical

and a computational viewpoint, and a unified solution methodology can be

given. Indeed, a dual is derived, enabling us to describe the set of optimal

solutions geometrically. Moreover, Interior-Point methods are described which

yield an ε-optimal solution in polynomial time.

Keywords: Goal Programming, Closest points, Interior point methods,

Location, Regression.
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1 Introduction

1.1 Goal Programming

The origins of Goal Programming date back to the work of Charnes, Cooper and

Ferguson [7], where an l1-estimation regression model was proposed to estimate

executive compensation. Since then, and thanks to its versatility and ease of use, it

has become the by far most popular technique for tackling (linear) multiple-objective

problems, as evidenced by the bulk of literature on theory and applications of the

field. See, e. g., [40, 41, 44, 45] and the categorized bibliography of applications

therein.

By a Non-Preemptive Goal Programming problem one usually means some par-

ticular instance of the following model: a polyhedron K ⊆ IRn is given as the set of

decisions; there exist m criteria matrices, C1, . . . , Cm, with Cj in IRn×nj ; each deci-

sion x ∈ K is valued according to criterion Cj by the vector C>j x, to be compared

with a given target set Tj ⊆ IRnj . With this, the deviation dj(x) of decision x with

respect to the target set Tj is defined as

dj(x) = inf
zj∈Tj

γj(C
>
j x− zj)

for some given norm γj, while the overall deviation at x is measured by

γ(d1(x), . . . , dm(x)),

where γ is a norm in IRm assumed to be monotonic in the nonnegative orthant IRm+

(see [4, 25]) i. e.

γ(u) ≤ γ(v) for all u, v ∈ IRm+ with 0 ≤ ui ≤ vi for all i = 1, . . . ,m.

Then, the solution(s) minimizing the overall deviation are sought. In other words,

one solves the convex program

inf
x∈K

γ(d1(x), . . . , dm(x)). (1)

As pointed out e. g. in [8, 39, 40], Non-Preemptive Goal Programming and

related models can be rephrased as minimum-distance problems. This follows from
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the previous formulation, since (1) is equivalent to

min γ(γ1(C>1 x− z1), . . . , γm(C>mx− zm))

s.t. x ∈ K,
zj ∈ Tj ∀ j = 1, . . . ,m.

(2)

Denoting by γ̃ the norm in IRn1 × . . .× IRnm defined as

γ̃(u1, . . . , um) = γ(γ1(u1), . . . , γm(um)),

problem (2) can be written as the minimum γ̃-norm problem

min γ̃(u1, . . . , um)

s.t. uj = C>j x− zj ∀j = 1, . . . ,m

(x, z) ∈ K ×∏1≤j≤m Tj

(3)

In many applications, each criterion Cj is assumed to be a vector cj ∈ IRn, so it

values x through the scalar c>j x; each target set Tj is then a subset of IR of one the

forms

Tj = [tj,+∞), (4)

Tj = (−∞, tj], (5)

Tj = {tj}, (6)

or, in Goal Range Programming [20], of the form

Tj = [tj, tj]. (7)

This corresponds to a goal constraint of type c>j x ≥ tj, c
>
j x ≤ tj, c

>
j x = tj, or

c>j x ∈ [tj, tj], respectively. In other words, one desires to have c>j x above tj, below tj,

exactly at tj, or between tj and tj, respectively.

Whereas the choice of the aggregating norm γ is crucial, (although, in applica-

tions, mostly reduced to the cases l1 or l∞) the choice of the norms γj to measure

deviations in the case nj = 1 ∀ j is irrelevant, and we can consider each γj to be

equal to the absolute value function. Then, the deviations take on the more familiar

form

dj(x) =



max
{
tj − c>j x, 0

}
if Tj = [tj,+∞),

max
{
c>j x− tj, 0

}
if Tj = (−∞, tj],

|c>j x− tj| if Tj = {tj},
max

{
tj − c>j x, 0

}
+ max

{
c>j x− tj, 0

}
if Tj = [tj, tj].
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From these expressions, it should become clear that target sets of type (7), (thus

also of type (6)) are used only for modeling convenience, since they can be derived

from sets of types (4) and (5): splitting criterion j into criteria j1, j2, and defining

T 1
j = [tj,+∞) and T 2

j = (−∞, tj], the deviation dj(x) is simply the sum of the

deviations with respect to T 1
j and T 2

j .

1.2 Examples

Applications of Goal Programming abound in the literature; see e. g. the list of 351

applications papers cited in [40]. However, the range of applicability of (1) is by no

means reduced to what is usually classified as Goal Programming: a vast series of

important models in different fields of Optimization can also be seen as particular

instances of (1), mainly from the perspective of minimum-distance problems. Some

of them are briefly discussed below.

Overdetermined systems of (in)equalities

If a system of linear equalities and inequalities

a>1 x ≥ b1

a>2 x ≥ b2

... ≥ ...

a>p x ≥ bp

a>p+1x = bp+1

... =
...

a>p+qx = bp+q

(8)

is infeasible, one can look for a so-called least infeasible solution, i. e. a point x∗

solving

min
x

γ(max(0, b1 − a>1 x), . . . ,max(0, bp − a>p x), |bp+1 − a>p+1x|, . . . , |bp+q − a>p+qx|)

for some norm γ monotonic in IRp+q+ . This is simply a Goal Programming problem in

which the vectors ai (i = 1, . . . , p+q) play the role of the criteria and the components

bi (i = 1, . . . , p+q) of the right hand side vector represent the targets, see Example 4

in Section 3.
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When only equalities appear in (8), one obtains the problem of solving an overde-

termined system of linear equations, classical in Approximation Theory [33, 43], or,

equivalently, the Linear Regression problem [42]. Usually, γ is assumed to be an lp

norm, mainly p = 2, (yielding the well-known Least Squares problem [3]) p = 1, or

p =∞ [1].

Multifacility location

In Continuous Location [29, 36], distances are usually measured by gauges. For

simplicity, we will consider throughout this paper only gauges γ of the form

γ(x) = inf{t ≥ 0 : x ∈ tB}

for some nonempty convex compact B ⊂ IRm (its unit ball) containing the origin

in its interior. In applications, this additional assumption is usually fulfilled, see,

e. g. [10, 29]. Observe that norms correspond to symmetric gauges. Moreover, since

the origin is assumed to be an interior point, the gauge takes always finite values.

See e. g. [17] for the case of gauges with values on IR+ ∪ {+∞}.
Let F be a nonempty finite set and let ∅ 6= E ⊆ F ×F . Then (F,E) is a directed

graph. Following e. g. [13, 27], F represents the set of facilities (some of which may

have fixed locations in IRn), whereas E represents the interactions between these

facilities.

For each edge e := (f, g) ∈ E, let γe be a given gauge in IRn, which measures

the cost of the interaction between facility f and facility g. Let γ be a gauge in IRE

monotonic in the non-negative orthant.

For a nonempty closed convex set K ⊆ (IRn)F , consider the optimization problem

inf
(xf )f∈F∈K

γ((γ(f,g)(xf − xg))(f,g)∈E). (9)

The most popular instance of (9) is the continuous minisum multifacility location

problem, see [36, 46, 47] and the references therein. There, the node set F is

partitioned into two sets A and V , representing respectively the fixed and the free

locations, and a family (af )f∈A ∈ (IRn)A of fixed locations is given. The feasible

region K is then defined by

K =
{
x = (xf )f∈F ∈ (IRn)F | xf = af for all f ∈ A

}
, (10)
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while the gauge γ is taken as the l1 norm, so that one minimizes the sum of all

interactions between the facilities,

inf
xf=af ∀f∈A

∑
(f,g)∈E

γ(f,g)(xf − xg). (11)

Let J(F,E) be the incidence matrix of the graph (F,E), i. e. J(F,E) ∈ IRE×F is the

matrix in which the row e := (f, g) ∈ E has zeroes in all its positions except in the

position f , where the entry is 1, and in position g, where the entry is −1. Moreover,

define the matrix C by C := J(F,E) ⊗ In, the Kronecker product of J(F,E) with the

unit matrix In ∈ IRn×n.

Let γ be the gauge in (IRn)E defined by

γ : u := (ue)e∈E 7−→ γ(u) := ‖(γe(ue))e∈E‖1

=
∑
e∈E

γe(ue).

Then, problem (11) can also be written as

min γ(Cx) = γ(((Cx)e)e∈E)

s.t x ∈ K ⊆ (IRn)F ,
(12)

which is a particular instance of (1).

A similar representation can be obtained for the continuous minimax multifacility

location problem [24], in which expression (12) holds for γ defined by

γ : u := (ue)e∈E 7−→ γ(u) := ‖(γe(ue)e∈E)‖∞
= max

e∈E
γe(ue)

General monotone gauges γ have been suggested by Durier [9, 10]. In the latter

paper, he introduced problems with fixed costs, which can also be accommodated

within this framework. Indeed, for

inf
(xf )f∈F∈K

γ
(
(ω(f,g) + γ(f,g)(xf − xg))(f,g)∈E

)
with a given vector (ωe)e∈E ∈ IRE with non-negative components, one may write

inf
(xf )f∈F∈K

γ
(
(γ̂(f,g)(ω(f,g), xf − xg))(f,g)∈E

)
,
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where each γ̂e is a gauge in IR× IRn defined by

γ̂e(ω, z) = |ω|+ γe(z).

With this, again an expression of type (12) is obtained.

Our aim is to study a generalized version of Problem (1) under some mild as-

sumptions on the feasible set K, namely, K will be assumed to be an asymptotically

conical set. To do this, we have structured the remaining of the paper as follows: In

Section 2 the concept of asymptotically conical set is introduced, and some elemen-

tary properties are discussed. Then, in Section 3, the problem under study, (P ), is

formally defined, and its dual is derived. In Section 4, the existence of primal and

dual optimal solutions is studied in detail, giving, in particular, sufficient conditions

for the attainment of the optimal value. Then, an Interior-Point method is described

in Section 5, yielding a unified methodology for solving problems which, until now,

were solved by different (some not polynomial) techniques.

2 Asymptotically Conical Sets and their Proper-

ties

In what follows, for given nonempty subsets S1, S2 of IRn, we mean by S1 + S2 the

algebraic sum of S1 and S2,

S1 + S2 = {s ∈ IRn | s = s1 + s2 for some s1 ∈ S1, s2 ∈ S2}

When S1 is a singleton, S1 = {s1}, we will write s1 + S2 to represent {s1}+ S2.

Definition 1 A nonempty set S ⊆ IRn is said to be asymptotically conical if it

admits a representation of the form

S = M + E, (13)

for some compact convex set M and some closed convex cone E. In such a case, the

pair (M,E) is an asymptotically conical representation ( a. c. r.) of S.

The optimization problem addressed in this paper will have an asymptotically

conical set as feasible set, (see Section 3). Here we take a quick look at the basic

properties of such class of sets.
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Denote by K∞ the recession cone of K,

K∞ = {y ∈ IRn : K + y ⊆ K} ,

see Theorem 8.1 in [37]. We now have the following properties.

Property 1 If (M,E) is an a. c. r. of K then

K∞ = E. (14)

Property 2 Let (M1, E1), (M2, E2) be a. c. r. of the asymptotically conical sets

K1, K2 ⊆ IRn. Then,

1. (M1 ×M2, E1 × E2) is an a. c. r. of the asymptotically conical set K1 ×K2.

2. (M1 +M2, E1 + E2) is an a. c. r. of the asymptotically conical set K1 +K2.

Property 3 Let A be an affine transformation of the form A(x) = Ax + b with a

matrix A and a vector b. Then, (AM + b, AE) is an a.c.r. of A(K).

Remark 4 Compact sets, polyhedra, affine spaces, and cones are asymptotically

conical. Although each of these classes is closed under intersections, this is not the

case of the whole class of asymptotically conical sets. Indeed, take e. g. the fol-

lowing asymptotically conical sets in IR3: S1 =
{

(x1, x2, x3)> | x2
3 ≥ x2

1 + x2
2, x3 ≥ 0

}
and S2 =

{
(x1, x2, x3)> | x1 = 1

}
, whereas, by Property 1, no a. c. r. for the hy-

perbola S1 ∩ S2 exists. Moreover, this example shows that the inverse image of an

asymptotically conical set under an affine mapping is not necessarily asymptotically

conical. 2

Denoting for each cone S ⊆ IRn by S∗ its dual cone,

S∗ = {x ∈ IRn | x>s ≥ 0 for all s ∈ S},

one then has

Property 5 Let (M,E) be an a. c. r. of K. Then, for any u ∈ IRn,

inf
x∈K

u>x =

 minx∈M u>x if u ∈ E∗,
−∞ else.

(15)
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3 The Problem Addressed and its Dual

The problem addressed in this paper has the form

inf g(x) := γ(Cx+ c) + d>x,

s. t. x ∈ K,
(P )

where γ is a gauge in the IRm, C is a matrix in IRm×n, c ∈ IRm and d ∈ IRn are

vectors, and K = M + E ⊆ IRn is a nonempty asymptotically conical set with

a. c. r. (M,E).

Observe that, in particular, problem (P ) contains as instances all the examples

discussed in Section 1.2. Moreover, the case K = IRn has been addressed in [26],

whereas the case d = 0 leads to the so-called gauge- or homogeneous program,

addressed, among others in [17, 12, 19, 21].

In these references, duals are derived and Slater-type assumptions are made to

link primal and dual optimality. We show below and illustrate by examples how the

knowledge of an a. c. r. can be successfully used to address duality questions and

to design efficient algorithms as well.

A dual for (P ) can easily be derived using minmax theorems as basic tool. Indeed,

one has

inf
x∈K

γ(Cx+ c) + d>x = inf
x∈K

sup
γ◦(u)≤1

(
u> (Cx+ c) + d>x

)
(16)

= sup
γ◦(u)≤1

u>c+ inf
x∈K

(
u>C + d>

)
x, (17)

= sup
γ◦(u) ≤ 1,

C>u+ d ∈ E∗

u>c+ min
x∈M

(
u>C + d>

)
x (18)

where (16) follows from the representation of a gauge as the support of its polar unit

ball, see Theorem 14.5 of [37], and (17) follows from the Minimax Theorem stated as

Corollary 37.3.2 in [37] and the fact that γ◦, the dual gauge of γ, has compact level

sets (recall that we are assuming that gauges γ has the origin in its interior, which

guarantees the compactness of its dual ball). Finally, (18) follows from Property 5.

Denoting by δ∗S the support of the set S ⊆ IRn,

δ∗S(x) = sup
{
x>y | y ∈ S

}
,
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the chain of equalities above yields

inf γ(Cx+ c) + d>x = max u>c− δ∗M(−C>u− d)

s.t. x ∈M + E s.t. C>u+ d ∈ E∗

γ◦(u) ≤ 1

(19)

From this equivalence, we will call the optimization problem in the right-hand

side of (19) the dual (D) of problem (P ), and we have already shown that (P ) and

(D) have identical optimal value.

Before exploring further the relations between (P ) and (D) we now present some

particular instances of (P ), whose corresponding dual (D) has a simple (explicit)

form.

Example 1 Let γ̃ be a gauge in IRn, let x0 ∈ IRn and let M = {x ∈ IRn | γ̃(x−x0) ≤
r} for some constant r ≥ 0. Since, by definition of dual gauges,

min
{(
u>C + d>

)
x | γ̃(x− x0) ≤ r

}
=
(
u>C + d>

)
x0 − rγ̃◦(−C>u− d),

we get the dual

max u>c+
(
u>C + d>

)
x0 − rγ̃◦(−C>u− d)

s.t. C>u+ d ∈ E∗

γ◦(u) ≤ 1.

(20)

Example 2 Setting K = IRn and M = {0}, we have E = IRn and E∗ = {0}. Hence,

the dual (D) takes the form

max u>c

s.t. C>u+ d = 0,

γ◦(u) ≤ 1.

This dual has been derived in [26] using the same idea but lengthier arguments, see

their Theorem 1, Remark 4 and Remark 5. 2

Example 3 Given two asymptotically conical sets K1, K2 in IRn, with respective

a. c. r. K1 = M1 + E1, K2 = M2 + E2 and a gauge γ in IRn, formula (19) provides
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an alternative expression for the distance δγ(K1, K2) between K1 and K2. Indeed,

since

δγ(K1, K2) = inf {γ(x1 − x2) | x1 ∈ K1, x2 ∈ K2}

= inf {γ(Cx) | x ∈ K} ,

for K := K1 ×K2 and C = (In,−In) and In the n× n identity matrix, one gets

δγ(K1, K2) = max
u∈E∗1∩(−E∗2 )∩B◦

(
min

x1∈M1,x2∈M2

u>(x1 − x2)
)

= max
u∈(E∗1∩(−E∗2 )∩B◦)

min
x∈M1−M2

u>x

where B◦ is the unit ball of the gauge γ◦. When K1 is an affine manifold, K1 =

{p0} + E1 for some vector space E1 ⊆ IRn, and K2 is a cone, thus having ({0}, K2)

as a. c. r. decomposition, we get

δγ(K1, K2) = max
{
u>p0 | u ∈ E∗1 ∩ (−E∗2) ∩B◦

}
This expression yields a simple characterization for K1 ∩K2 6= ∅. Indeed, for any γ

one has that K1 ∩K2 6= ∅ iff δγ(K1, K2) ≤ 0 (see Corollary 17), thus

K1 ∩K2 6= ∅ iff u>p0 ≤ 0 ∀u ∈ E∗1 ∩ (−E∗2) ∩B◦

iff u>p0 ≤ 0 ∀u ∈ E∗1 ∩ (−E∗2)

iff p0 ∈ − (E∗1 ∩ (−E∗2))∗

2

The following result will be useful to rephrase the dual (D) if the gauge γ in use

is a composite gauge:

Lemma 6 Let γ1, . . . , γk be gauges in IRm1 , . . . , IRmk , and let γ̃ be a gauge in IRk,

monotone in IRk+. The gauge γ in IRm1 × · · · × IRmk defined by

γ(u1, . . . , uk) = γ̃(γ1(u1), . . . , γk(uk)) (21)

has as dual the gauge γ◦ with

γ◦(u1, . . . , uk) = γ̃◦(γ◦1(u1), . . . , γ◦k(uk)).
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Proof: Let x := (x1, . . . , xk) ∈ IRm1 × . . . × IRmk . Since γ̃ is monotone in IRk+, by

definition of a dual gauge one has

γ̃◦(γ◦1(x1), . . . , γ◦k(xk))

= max


k∑
j=1

αjγ
◦
j (xj) : α ∈ IRk+, γ(α) = 1


= max


k∑
j=1

αju
>
j xj : α ∈ IRk+, γ(α) = 1, γj(uj) = 1∀j


= max


k∑
j=1

(αjuj)
>xj : α ∈ IRk+, γ(α1γ1(u1), . . . , αkγk(uk)) = 1


= max


k∑
j=1

(αjuj)
>xj : α ∈ IRk+, γ(γ1(α1u1), . . . , γk(αkuk)) = 1

 .
With the change of variables αjuj = ωj (j = 1, . . . , k), we get

γ̃◦(γ◦1(x1), . . . , γ◦k(xk)) = max


k∑
j=1

(ωj)
>xj : γ(γ1(ω1), . . . , γk(ωk)) = 1


= (γ̃(γ1(x1), . . . , γk(xk)))

◦

2

This lemma yields a very simple dual for gauges of the form (21):

Corollary 7 Let Ci ∈ IRmi×n (i = 1, . . . , k) be matrices and define the matrix C

by C> :=
(
C>1 , C

>
2 , . . . , C

>
k

)
. Let ci ∈ IRmi (i = 1, . . . , k) be vectors and set c> :=

(c>1 , . . . , c
>
k ). Moreover, let γ be defined as in (21) and let K be asymptotically conical

with a. c. r. (M,E). Then (D) admits the form

max
k∑
j=1

u>j cj + min
x∈M

x>

 k∑
j=1

C>j uj + d


s.t.

k∑
j=1

C>j uj + d ∈ E∗

γ̃◦(γ◦1(u1), . . . , γ◦k(uk)) ≤ 1

We illustrate the power of our strategy for deriving the dual by applying it to

two problems previously addressed in the literature, as discussed in the following

examples.
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Example 4 We consider the flow problem of [28]. Let (F,E) be a directed graph.

Associate with each arc e ∈ E a lower bound le and an upper bound ue on its

capacity, le ∈ [−∞,+∞), ue ∈ (−∞,+∞]. Associate with each node f ∈ F its

demand df ∈ IR. Flows on (F,E) are vectors x in IRE; a flow x is said feasible if it

satisfies both flow conservation,

∑
f : (f,g)∈E

x(f,g) −
∑

f : (g,f)∈E
x(g,f) = dg ∀g ∈ F (22)

and boundedness,

xe ≥ le

xe ≤ ue
∀e ∈ E. (23)

When no feasible flow exists, McCormick proposed in [28] to consider (22)-(23)

as goal constraints and to solve the corresponding problem (1) for γ equal to the

(weighted) l1, l∞, and l2 norm.

We first reformulate (23) as distance constraints following (2):

xe ∈ [le,+∞)

xe ∈ (−∞, ue]
∀e ∈ E. (24)

Then, the problem can be written as

min γ


 ∑
f : (f,g)∈E

x(f,g) −
∑

f : (g,f)∈E
x(g,f) − dg


g∈F

, (xe − ue)e∈E ,
(
xe − le

)
e∈E


s.t. ue ∈ (−∞, ue] ∀e ∈ E,

le ∈ [le,+∞) ∀e ∈ E,

or

min γ


 ∑
f : (f,g)∈E

x(f,g) −
∑

f : (g,f)∈E
x(g,f) − dg


g∈F

, (xe − ue)e∈E ,
(
xe − le

)
e∈E


s.t.

(
x, u, l

)
∈ {((0)e∈E, (ue)e∈E, (le)e∈E)}+

(
IRE × IRE− × IRE+

)
. (25)

Associate dual variables π := (πg)g∈F , π+ := (π+
e )e∈E, and π− := (π−e )e∈E with

the three blocks of components in (25). Since, in the a. c. r. of (25), one has

(
IRE × IRE− × IRE+

)∗
= {0}E × IRE− × IRE+,
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one obtains the dual

max
∑
g∈F

πg(−dg) + min
x=0,u=u,l=l

∑
e∈E

(−π+
e )ue +

∑
e∈E

(−π−e )le

s.t. π+
e ≥ 0 ∀e ∈ E,

π−e ≤ 0 ∀e ∈ E,

π+
e + π−e = πf − πg ∀e := (f, g) ∈ E,

γ◦(π, π+, π−) ≤ 1,

i. e.

max −
∑
g∈F

πgdg −
∑
e∈E

π+
e ue −

∑
e∈E

π−e le

s.t. π+
e ≥ 0 ∀ e ∈ E,

π−e ≤ 0 ∀ e ∈ E,

π+
e + π−e = πf − πg, ∀ e := (f, g) ∈ E,

γ◦(π, π+, π−) ≤ 1,

an expression which includes the particular cases derived in [28]. 2

As another application, we derive the dual of the quite general unconstrained

multifacility location problem (9) introduced in Section 1.2.

Example 5 With the notation as used in (9), for K defined in (10), one has that

K∞ =
∏
f∈F

Kf ,

where Kf = {0} ⊂ IRn if f ∈ A and Kf = IRn if f /∈ A. Then, one obtains the

dual

max
∑
f∈A

a>f

 ∑
h: (f,h)∈E

u(f,h) −
∑

h: (h,f)∈E
u(h,f)


s.t.

∑
g: (f,g)∈E

u(f,g) −
∑

g: (g,f)∈E
u(g,f) = 0 ∀f /∈ A,

γ◦((γ◦e (ue))e∈E) ≤ 1,

which covers most of the instances previously addressed in the literature, e. g. [16,

19]. 2
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4 Existence of Primal and Dual Solutions

In this section we study the finiteness and attainment of the optimal value v of

problems (P ) and (D).

Theorem 8 Let B◦ be the polar of the unit ball B of γ. The following statements

are equivalent.

1. (P ) (and (D)) have finite optimal value.

2. For all y ∈ K∞ one has γ(Cy) + d>y ≥ 0.

3. d ∈ (K∞)∗ − C>B◦.

Proof: Denote by g∞ the recession function of g and let y ∈ IRn. For arbitrary

x ∈ IRn we have that

g∞(y) = sup
λ>0

g(x+ λy)− g(x)

λ

= lim
λ→+∞

g(x+ λy)− g(x)

λ

= lim
λ→+∞

γ(C(x+ λy) + c) + d>(x+ λy)− γ(Cx+ c)− d>x
λ

= γ(Cy) + d>y, (26)

where the second equation is due to Theorem 8.5 of [37] and the last equation follows

because of the homogeneity of γ. If (P ) has a finite optimal value, then Part 2 is

a consequence of (26) and Theorem 27.1 (parts (a) and (i)) of [37]. Conversely,

if Condition 2 holds, we have for any a. c. r. (M,E) of K and for any x ∈ K,

x = xM + xE with xM ∈M , xE ∈ E = K∞, that

γ(Cx+ c) + d>x = γ(CxM + CxE + c) + d>xM + d>xE

≥ γ(CxE) + d>xE − γ(−CxM − c) + d>xM

≥ min
xM∈M

(
−γ(−CxM − c) + d>xM

)
> −∞,

showing that Condition 1 holds.

The equivalence between Condition 1 and Condition 3 follows from (19) and (14).

2
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Remark 9 Conditions 2 and 3 do not imply Condition 1 for sets K which are not

asymptotically conical. As a simple counterexample, take K = {x = (x1, x2)> ∈
IR2 | x2 ≥ x2

1}, let C be the 1 × 2 matrix C = (1, 0), d := (2, 0)>, c := (0), and let

γ(s) = |s| for all s ∈ IR. Then K∞ is the ray expanded by the vector (0, 1)>, and

thus γ(Cx) + d>x = 0 for all x ∈ K∞. Hence, condition 2 holds. Moreover,

(K∞)∗ = {(x1, x2)> | x2 ≥ 0},

thus, taking u = 0 ∈ B◦, one obtains d ∈ (K∞)∗ − C>B◦, and Condition 3 holds

also. However, γ(C(−n, n2)>+ c) + d>(−n, n2)> = −n for every natural n, thus the

optimal value of (P ) is −∞. 2

The duality scheme previously described enables us to easily characterize the

(possibly empty) set of optimal solutions of (P ) in terms of any optimal solution ū

of (D). See also Theorem 1 of [17] for the case of polyhedral feasible set K, or

Theorem 1. 1 of [19] for related constraint qualification assumptions. One has

Theorem 10 Let one of the equivalent conditions of Theorem 8 hold. Then,

1. The set of optimal solutions of (D) is not empty.

2. Let x̄ be feasible for (P ) and ū feasible for (D). Then x̄ is optimal for (P ) and

ū is optimal for (D) iff the pair (x̄, ū) is a saddle-point for the problem

inf
x∈K

sup
γ◦(u)≤1

u> (Cx+ c) + d>x. (27)

Proof: By (19), under the assumptions of Theorem 8, the dual (D) consists of the

minimization of the continuous function u 7→ u>c + minx∈M x>(C>u + d) over the

nonempty compact set {u | C>u + d ∈ E∗, γ◦(u) ≤ 1}. Thus an optimal solution ū

for (D) always exists.

For Part 2, observe that, under the assumptions of Theorem 8 and (19), the

saddle value exists and is finite. Hence, saddle points exist, cmp. e. g. Theorem 4.2.5.

in [23]. Moreover, the set of saddle points coincides with the cartesian product of

the set of optimal solutions for (P ) and (D), as asserted. 2

For a nonempty set S and x̄ ∈ S ⊆ IRm, let NS(x̄) denote the normal cone of S

at x̄,

NS(x̄) =
{
y ∈ IRm | y>(x− x̄) ≤ 0 for all x ∈ S

}
.



Version as of December 3, 2000 17

The characterization of optimal solutions of (P ) as part of saddle points yields the

following.

Theorem 11 Let (M,E) be an a. c. r. of K. The feasible point x̄ := x̄M + x̄E,

x̄M ∈M , x̄E ∈ E, is optimal for (P ) iff there exists a point ū ∈ IRm satisfying

γ◦(ū) ≤ 1,

C>ū+ d ∈ E∗ ∩ −NM(x̄M),

x̄>E
(
C>ū+ d

)
= 0,

Cx̄+ c ∈ NB◦(ū).

In that case, such a ū is an optimal solution for (D).

Proof: By Theorem 10, x̄ is optimal for (P ) iff there exists ū optimal for (D) such

that the pair (x̄, ū) is a saddle point. In other words, x̄ is optimal for (P ) iff there

exists some ū ∈ IRm satisfying

C>ū+ d ∈ E∗, (28)

γ◦(ū) ≤ 1, (29)

γ(Cx̄+ c) + d>x̄ = ū>(Cx̄+ c) + d>x̄, (30)

= ū>c+ inf
xM∈M,xE∈E

ū>C(xM + xE) + d>(xM + xE). (31)

But (30) holds iff

Cx̄+ c ∈ NB◦(ū).

Moreover, for vectors u satisfying (28), it follows from Property 5 that

inf
x∈K

u>Cx+ d>x = min
xM∈M

u>CxM + d>xM ,

and thus condition (31) is equivalent (for vectors ū satisfying (28)) to

ū>Cx̄M + d>x̄M = min
xM∈M

ū>CxM + d>xM , (32)

ū>Cx̄E + d>x̄E = 0.

Since (32) is equivalent to

C>ū+ d ∈ −NM(x̄M),
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the result follows. 2

Note that the conditions derived in [10] and [11] for the single-facility location

model (see Subsection 1.2) are special cases of the ones derived in the last theorem.

Remark 12 Let x = xM + xE (xM ∈ M , xE ∈ E) be primal feasible and let u

be dual feasible. Additionaly, let γ(Cx + c) = u>(Cx + c) and let δ∗M(−C>u −
d) = −xM(C>u + d). (Note that these two additional conditions are equivalent to

u ∈ ∂γ(Cx + c) and xM ∈ ∂δ∗M(−C>u− d).) A simple calculation then shows that

x>E
(
C>u+ d

)
is the dual gap with respect to the feasible points x and u.

Remark 13 If K∞ is a linear space then K∗∞ = K⊥∞, thus the complementary

condition (u>C + d>)xE = 0 in Theorem 11 is redundant.

We have shown in Theorem 10 that primal and dual optimal solutions (when

they exist!) are related with each other as saddle point solutions of (27). However,

the existence of optimal solutions for (P ) is not guaranteed when (P ) has a finite

optimal value. Since in applications E = {0} usually does not hold (see Section 1),

a deeper analysis is required. This is the purpose of the rest of the section.

For certain instances of (P ), the non-emptiness and compactness of the set

of optimal primal solutions can be derived by ad-hoc procedures, as done, e.g., in

[5, 6, 34]. For the general situation we have the following.

Theorem 14 If all nonzero y ∈ K∞ satisfy γ(Cy) + d>y > 0, then

1. The set of optimal solutions is nonempty, convex, and compact.

2. Let (M,E) be an a. c. r. of K and suppose E 6= {0}. Let

L ≥ max
x∈M

(
γ(−Cx− c)− d>x

)
,

v ≥ min
x∈K

(
γ(Cx+ c) + d>x

)
,

r ∈
]
0, min

e∈E,‖e‖2=1
γ(Ce) + d>e

]
,

where ‖ · ‖2 denotes the Euclidean norm. Then, any optimal solution xM + xE

for (P ) with xM ∈M and xE ∈ E satisfies

‖xE‖ ≤
v + L

r
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Proof: Part 1 follows from the fact that, under these assumptions, (g + δK) is

coercive and thus level bounded. See, e. g., [2].

To show Part 2, let xE ∈ E be given with ‖xE‖ > (v + L)/r and let xM ∈ M .

The triangle inequality now shows that

γ(CxM + CxE + c) + d>xM + d>xE ≥

≥ γ(CxE) + d>xE − γ(−CxM − c) + d>xM

= ‖xE‖
(
γ

(
C

1

‖xE‖
xE

)
+ d>

xE
‖xE‖

)
+ d>xM − γ(−CxM − c)

>
v + L

r

(
γ (CxE/‖xE‖) + d>

xE
‖xE‖

)
− L

≥ v,

contradicting its optimality. 2

Remark 15 In Theorem 1 of [26], it is assumed that C is a p × q matrix (q < p)

with rank q, K = IRq, and 0 ∈ C>int(B◦) + d, where int denotes the interior. This

is clearly stronger than the assumption in Theorem 14. Indeed, for any e ∈ K∞,

one of the two following conditions hold:

max
u∈B◦

e>(C>u+ d) > 0, (33)

e>(C>u+ d) = 0 ∀u ∈ B◦. (34)

If (33) holds, then

γ(Ce) + d>e > 0,

whereas if (34) holds, then

d+ C>B◦ ∈ {e}⊥,

which, since C>B◦ has full dimension, implies that e = 0. Hence, γ(Ce) + d>e > 0

for all nonzero e ∈ K∞. 2

When the condition in Theorem 14 is dropped, non-emptiness of the set of op-

timal solutions cannot be guaranteed in general, even for the case of polyhedral

recession cone K∞. This is shown in the following example.

Example 6 Let C = (1, 0)>, d = (−1), c = (0, 1)>, the feasible set K = [0,+∞) =

K∞, and let γ be the Euclidean norm in the plane. Then,

γ(Cx+ c) + d>x =
√
x2 + 1− x,
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which is always non-negative, but tends to zero when x grows to infinity. Hence, no

optimal solution exists. 2

The case d = 0 (in fact the common one in applications) simplifies the analysis

since then the objective function of (P ) is bounded below. However, this does not

guarantee the attainment of the optimal value, as shown in the following example.

Example 7 Let K = {(x1, x2, x3) : x2
3 ≥ x2

1 + x2
2, xi ≥ 0, i = 1, 2, 3} and let C be

the matrix  1 0 −1

0 −1 0

 .
Let c = (0, 1)>, d = 0, and let γ be the Euclidean norm. Then,

γ(Cx+ c) + d>x = γ(x1 − x3, 1− x2).

Since the system  x1 = x3

x2 = 1

has no solution on K, the objective function value is strictly positive on K. However,

for the feasible sequence {(n, 1,
√

1 + n2)}n the objective value tends to zero, showing

that the infimum (zero) is not attained. 2

In spite of this negative result, a geometrical condition can be given to guarantee

the attainment of the optimal value for d = 0:

Theorem 16 Let d = 0. The following conditions are equivalent.

1. (P ) attains its optimal value for each c ∈ IRm.

2. The set CK is closed.

Proof: Assume Condition 1 and suppose CK is not closed. Then there exist a

vector v∗ and a sequence {xj}j ⊆ K such that

lim
j
Cxj = v∗ /∈ CK. (35)

However, this would imply that, for c = −v∗, the objective function value is al-

ways strictly positive but converging to zero for the feasible sequence {xj}j. This

contradicts the assumption.
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Conversely, if Condition 2 holds, then, formulating (P ) as the problem

min γ(y)

s.t. y ∈ CK + c

one immediately obtains that (P ) amounts to finding the point in the closed set

CK + c closest to the origin, which always admits an optimal solution. 2

Corollary 17 Let K1, K2 be asymptotically conical sets such that inf{γ(x−y) | x ∈
K1, y ∈ K2} = 0. Then, K1 ∩K2 6= ∅.

Proof: The set K := K1 × K2 is asymptotically conical, see Property 2. Let

C = (In,−In), where In is the n× n identity matrix. Then CK = K1 −K2, which

is asymptotically conical as well, see Property 2, thus it is closed. By Theorem 16,

the problem

inf
x∈K

γ(Cx)

attains its infimal value (zero), which means that some x exists in K1 ∩K2. 2

5 Solving the Problem Efficiently

The aim of this section is to show how the structure of (P ) can be exploited to derive

polynomial time interior-point schemes for solving the problem at hand. While the

actual development of new methods for the general case falls outside the scope of this

paper, the discussion below shows that particular instances of the general problem

can be solved by interior-point methods of various types (e. g. primal, primal-dual,

short-step, long-step, etc.), provided that self-concordant barriers for the unit ball

of the gauge γ and M as well as for the cone E are given.

For instance, consider the primal problem (P ) restated in the form

min s+ t,

s. t. (Cx+ c, s) ∈ epi(γ),

d>x ≤ t,

x ∈ K

and let B be the unit ball of the gauge γ. Then epi(γ) is the conic hull of this unit

ball, i. e.

epi(γ) = {(y, λ) ∈ IRm+1 | y ∈ λB; λ ≥ 0}.
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The reformulated problem has therefore a linear objective function, a conic con-

straint, and a convex constraint of a rather special structure, which makes it easily

exploitable for interior-point methods.

As a simple example, we might use the standard primal path-following algorithm

from Nesterov and Nemirovskii [31]. For this, we need not only a starting point in

the interior of a compact set of feasible points, but also a lower bound on the

asymmetry coefficient of this starting point. The asymmetry coefficient a(x,G) of a

point x lying in the strict interior of a convex compact set G is defined as

a(x,G) := sup{α ≥ 0 | x+ α(x−G) ⊆ G}.

Denoting by γG−x the gauge with unit ball G − x, one immediately obtains from

the definition that

a(x,G) =
(

max
y∈G−x

γG−x(−y)
)−1

. (36)

Let B1 and B2 be the unit balls of the `1 and `2 norm, respectively, and suppose

that we are given constants r1, r2 > 0 such that x + r1B1 ⊆ G and G ⊆ x + r2B2

holds. Then,

a(x,G) ≥
(

max
y∈r2B2

γr1B1(−y)
)−1

=
r1

r2

(
max
y∈B2

γB1(−y)
)−1

=
r1

r2

√
n

(37)

follows with some easy calculations.

Suppose now that we are given a self-concordant barrier bB for the unit ball B

with self-concordancy parameter ϑB ≥ 1 and a self-concordant barrier bK for the

set K with self-concordancy parameter ϑK ≥ 1.

If an a.c.r K = M +E for K is known, the latter barrier will usually be written

as bK = bM + bE, where bM is a barrier for the compact set M , while bE is the

corresponding barrier for the cone E.

Theorem 4 from [18] tells us that it is relatively easy to construct a self-con-

cordant barrier for the epigraph of γ explicitly. Indeed, such a barrier takes the

form

b+(x, t) = βbB(x/t)− αϑB ln t,

where α, β > 0 are explicitly given constants, depending only on ϑB. Both constants

are of magnitude O(1). Moreover, b+ has a self-concordancy parameter of order

O(ϑB).
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Let there be given a point y ∈ int(K). In the next step, we have to assume

that we know a bound r̃ > 0 such that for every solution x ∈ K of our primal

problem the relation ‖x‖2 ≤ r̃ holds. See Theorem 14 for methods for constructing

such r̃ in particular cases. Moreover, we assume that r̃ is chosen in such a way that

‖y‖2 + 1 ≤ r̃. Define now

%P := γ(Cy + c) + d>y + 3

and

GP := {(x, s, t) ∈ IRn+2 |x ∈ K, ‖x‖2 ≤ r̃, (Cx+c, s) ∈ epi(γ), d>x ≤ t, s+t ≤ %P}.

Obviously, GP is a convex compact set. With u := γ(Cy + c) + 1 and v := d>y + 1

we have that the point ŷ := (y, u, v) is in the strict interior of GP . Moreover,

bP (x, t) := b+(Cx+ c, t) + bK(x)− ln(r̃2 − ‖x‖2
2)− ln(t− d>x)− ln(%P − s− t)

is a self-concordant barrier for GP with self-concordancy parameter

ϑP := O(1)ϑB + ϑK + 3 = O(ϑB + ϑK)

(see [31, Proposition 5.1.1 and 5.1.2]). This means that we can opt to solve the

problem

min s+ t

s. t. (x, s, t) ∈ GP

with an interior-point method, using ŷ as a starting point.

Lemma 18 Let ei be the ith euclidean unit vector (i = 1, . . . , n) in the IRn. Let δK >

0 be such that y + δKei, y − δKei ∈ K for all i = 1, . . . , n and denote by ci ∈ IRm,

i = 1, . . . , n, the columns of the matrix C. Define

rP := min{1, δK , 1/γ(ci), 1/γ(−ci), 1/|di| : i = 1, . . . , n}

and

R :=
(
r̃2 + (%P + r̃‖d‖2)2 + (max{|%P |, r̃‖d‖2})2

)1/2
.

It then follows that

a(ŷ, GP ) ≥ rP

2
√
n+ 2R

.
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Proof: First, let (x, s, t) ∈ GP . It then follows that ‖x‖2 ≤ r̃, 0 ≤ s, and −r̃‖d‖2 ≤
t ≤ %P . As a consequence, we have s ≤ %P + r̃‖d‖2. This means that

‖(x, s, t)‖2
2 = ‖x‖2

2 + s2 + t2 ≤ r̃2 + (%P + r̃‖d‖2)2 + (max{|%P |, r̃‖d‖2})2

Therefore,

GP ⊆ ŷ + 2RB2,

where B2 is the unit ball of the 2-norm in IRn+2.

Second, with the ith euclidean unit vector ei ∈ IRn we have for all z ∈ IRn that

γ(C(z + rP ei) + c) ≤ γ(Cz + c) + 1 and γ(C(z − rP ei) + c) ≤ γ(Cz + c) + 1 for

i = 1, . . . , n. Moreover, d>(y + rP ei) ≤ v as well as d>(y − rP ei) ≤ v (i = 1, . . . , n).

This means that ŷ + rPB1 ⊆ GP , where B1 is the unit ball of the `1 norm in IRn+2.

The result follows with (37). 2

With the last lemma, it is easy to see that Stage 1 of the standard primal path-

following algorithm from [31] takes

O(
√
ϑP (lnϑP + lnn+ lnR− ln rP ))

iterations, while Stage 2 of this method takes

O(
√
ϑP (lnϑP + ln(1/ε) + ln(%P + 2r̃‖d‖2)))

iterations to achieve ε-accuracy.

Bounding rP , ϑB, and ϑK depends on the nature of the actual data at hand. We

will consider typical examples of goal programming problems in Section 5.1.

Note that the dual problem in the formulation (20) can be treated in the same

way as the primal one, provided that there are known self-concordant barriers

for M◦, B◦, and E∗. A latter one can, at least in principle, be constructed from a

self-concordant barrier for E, see Section 2.4.1 in [31]. One just has to change the

maximization problem into an equivalent minimization problem and add one slack

variable s ∈ IR for the constraint (−C>u− d, s) ∈ epi(γ̃◦).

Another possibility is to consider a primal-dual reformulation of the problem.

Assume M has non-empty interior, and let x0 ∈ int(M) be given. Define the gauge γ̃

by its unit ball: γ̃ := γM−x0 . Example 1 now shows that

min γ(Cx+ c) + γ̃◦(−C>u− d) + d>x− (Cx0 + c)>u− d>x0
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s.t. x ∈M + E,

C>u+ d ∈ E∗

γ◦(u) ≤ 1.

is the primal-dual reformulation of problem (P ) with objective function value 0.

Note that this again is a problem of the same type as (P ).

Other algorithms, especially long-step methods, can be derived when more knowl-

edge is available about the problem structure. As a trivial example, if K as well as B

is polyhedral, the problem reduces to a linear one, for which methods of higher effi-

ciency then the one depicted above are readily available. (See also Examples 9, 10,

and 11 in the next subsection.) Other possibilities include the cases in which the

cones E and epi(γ) appearing in the problem formulation are direct sums of cones of

positive semidefinite symmetric real matrices and cones of the form epi(‖ · ‖2). (See

Example 8 in the next subsection.) The standard barriers for these cones are self-

scaled, allowing for especially efficient algorithms, cmp. [32]. Note, however, that

the use of a p-norm with p 6= 2 (an important case in applications [36]) does not

allow for a self-scaled cone, and that a self-dual formulation for the corresponding

problem is not readily at hand. Indeed, interior-point methods proposed up to now

for this class of problems do not use a self-dual formulation, see [47] and Example 12

in the next subsection.

5.1 Particular Cases

In this section we take a quick look at how self-concordant barriers for the unit balls

of typical gauges encountered in applications can be easily derived. Some of these

cases have already been discussed in [15], in the context of interior point algorithms

applied to specific location problems similar to the one discussed in Subsection 1.2.

Example 8 (cp. Proposition 5.4.2 and 5.4.3 in [31]) If γ is the euclidean norm, a

self-concordant barrier with self-concordancy parameter ϑB = 1 for the unit ball of γ

is given by bB(x) := − ln(1 − ‖x‖2
2). Likewise, if the unit ball of γ is an ellipsoid,

B = {x ∈ IRn | x>Qx ≤ 1}, where Q is a positive definite n × n-matrix, a self-

concordant barrier with self-concordancy parameter ϑB = 1 is given by bB(x) :=

− ln(1−x>Qx). In both cases, the tedious general construction of a self-concordant
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barrier for epi(γ) can be avoided by noting that b+(x, t) = − ln(t2 − x>Qx) is a

self-concordant barrier for this cone with self-concordancy parameter ϑ+
B = 2. Note

that epi(‖ · ‖2) is just the standard second-order cone, while b+ is the corresponding

self-scaled barrier for this cone, see [32]. 2

Example 9 Let γ be a polyhedral gauge whose unit ball is given by a set of k linear

inequalities: B = {x ∈ IRn | Ax ≤ g}, A ∈ IRk×n, g ∈ IRk. Of course, the standard

logarithmic barrier bB(x) = −∑k
i=1 ln(gi − a>i x) for the polytope B can be used to

define b+
B(x, t) = −∑k

i=1 ln(git−a>i x), a self-concordant barrier for the epigraph of γ

with self-concordancy parameter ϑ+
B = k. 2

Example 10 Let γ be a gauge, A ∈ IRn×n be a regular matrix and c ∈ IRn be a

vector with γ◦(A>c) < 1. Then γ̃(x) := γ(Ax) + c>x defines a gauge [35]. Gauges

defined like this have important applications in location science, see, e. g., [35, 14].

It is easy to see that the unit ball of γ̃ is given by (c+A>(B◦))◦. However, finding

a barrier for this unit ball does not seem to be so easy. On the other hand, finding

a self-concordant barrier for epi(γ̃) is simple, as long as such a barrier for the unit

ball B of γ is given. Let b be such a barrier with self-concordancy parameter ϑB

and let b+ be a barrier for epi(γ) with self-concordancy parameter ϑ+
B (note that we

have ϑ+
B = O(ϑB), according to [18]). Then,

b̃+(x, t) := b+(Ax, t− c>x)− ln t

is a barrier for the epigraph of γ̃ with self-concordancy parameter ϑ̃+ = ϑ+
B+1. This

is a simple application of Proposition 5.1.1 and 5.2.5 from [31]. 2

Example 11 Suppose that we are given k gauges γi (i = 1, . . . , k) and we want

to use the gauge γ defined by γ(x) := maxki=1 γi(x). If Bi is the unit ball of γi

(i = 1, . . . , k), it is easy to see that B =
⋂k
i=1 Bi is the unit ball of γ. Given self-

concordant barriers bi for the unit balls Bi with self-concordancy parameter ϑi, we

have that bB :=
∑k
i=1 bi is a self-concordant barrier for B with self-concordancy

parameter ϑB =
∑k
i=1 ϑi. 2

Example 12 We are now considering the case that γ is a p-norm with p ∈]1,∞[.

By introducing slack variables for the inequalities describing the unit ball B of γ,
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we can consider the set

B̂ := {(x, y, z) ∈ IR3n | −yi ≤ xi ≤ yi, 0 ≤ yi, y
p
i ≤ zi (i = 1, . . . , n),

n∑
i=1

zi ≤ 1}

Using Proposition 5.3.1 from [31], we see that

b̂(x, y, z) := −
n∑
i=1

(ln(yi−xi)+ln(yi+xi)+ln yi+ln zi+ln(z
1/p
i −yi))− ln

(
1−

n∑
i=1

zi

)

is self-concordant barrier for B̂ with self-concordancy parameter ϑ̂ = 6n + 1. Of

course, covering B is achieved by b(x) := b̂(x, y, z). Constructing a barrier for the

conic hull of B̂ is now straightforward, see also [15].

The construction of a starting point lying in the strict interior of the set of feasible

points and the estimate of the asymmetry of this point can be done as shown in

Section 5 and is discussed in more detail in [15]. 2

Example 13 Let γ be a gauge as in (21). Using the fact that γ̃ is monotonic, it is

sufficient to consider the set

B̂ = {(u1, t1, . . . , uk, tk) ∈ IRm1+1 × · · · × IRmk+1 | γi(ui) ≤ ti (i = 1, . . . , k),

γ̃(t1, . . . , tk) ≤ 1}.

Obviously, to construct a self-concordant barrier for the set B̃, one can use self-

concordant barriers b+
i with self-concordancy parameter ϑ+

i for the cones epi(γi)

and a self-concordant barrier b̃ with self-concordancy parameter ϑ̃ for the unit ball

of γ̃ to define

b̂(u1, t1, . . . , uk, tk) := b̃(t1, . . . , tk) +
k∑
i=1

b+
i (ui, ti),

a self-concordant barrier for B̂ with self-concordancy parameter ϑ̃+
∑k
i=1 ϑ

+
i . 2

6 Conclusions

In this paper we have addressed a generalization of the basic Non-Preemptive Lin-

ear Goal Programming model, which includes its variants (Range or Interval Pro-

gramming) as well other important optimization problems in areas as diverse as

Continuous Location or Regression Analysis.
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Duality is used as a tool for describing the set of optimal solutions geometrically,

and is derived here by using well-known minimax theorems.

A unified solution methodology is proposed, yielding ε-optimal solutions of the

primal or the dual problem in polynomial time.
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