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Abstract

This paper develops a polyhedral approach to the design, analysis, and computation of dy-
namic allocation indices for scheduling binary-action (engage/rest) Markovian stochastic projects
which can change state when rested (restless bandits (RBs)), based on partial conservation laws
(PCLs). This extends previous work by the author [J. Niño-Mora (2001): Restless bandits, partial
conservation laws and indexability. Adv. Appl. Probab. 33, 76–98], where PCLs were shown to
imply the optimality of index policies with a postulated structure in stochastic scheduling problems,
under admissible linear objectives, and they were deployed to obtain simple sufficient conditions
for the existence of Whittle’s (1988) RB index (indexability), along with an adaptive-greedy index
algorithm. The new contributions include: (i) we develop the polyhedral foundation of the PCL
framework, based on the structural and algorithmic properties of a new polytope associated with
an accessible set system (J, F ) (F -extended polymatroid); (ii) we present new dynamic allocation
indices for RBs, motivated by an admission control model, which extend Whittle’s and have a sig-
nificantly increased scope; (iii) we deploy PCLs to obtain both sufficient conditions for the existence
of the new indices (PCL-indexability), and a new adaptive-greedy index algorithm; (iv) we interpret
PCL-indexability as a form of the classic economics law of diminishing marginal returns, and char-
acterize the index as an optimal marginal cost rate; we further solve a related optimal constrained
control problem; (v) we carry out a PCL-indexability analysis of the motivating admission control
model, under time-discounted and long-run average criteria; this gives, under mild conditions, a
new index characterization of optimal threshold policies; and (vi) we apply the latter to present
new heuristic index policies for two hard queueing control problems: admission control and routing
to parallel queues; and scheduling a multiclass make-to-stock queue with lost sales, both under
state-dependent holding cost rates and birth–death dynamics.
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1 Introduction

This paper develops a polyhedral approach to the design, analysis, and computation of dynamic al-
location indices for scheduling binary-action (engage/rest) Markovian stochastic projects which can
change state when rested, or restless bandits (RBs). The work draws on and contributes to three
research areas which have evolved with substantial autonomy: (1) index policies in stochastic schedul-
ing; (2) monotone optimal policies in Markov decision processes (MDPs); and (3) polyhedral methods
in resource allocation problems. We next briefly discuss each area’s relevant background.

Index policies in stochastic scheduling

Stochastic scheduling (cf. [27]) is concerned with the dynamic resource allocation to competing, ran-
domly evolving activities. An important model class concerns the design of a scheduling policy for
optimal dynamic effort allocation to a collection of Markovian stochastic projects, which can be either
engaged or rested. Following Whittle [37], we shall call such projects restless bandits (RBs), and refer
to a corresponding multi-project model as a restless bandit problem (RBP). The term “project” is used
here in a lax sense, befitting the application at hand. Thus, a project may represent, e.g., a queue
subject to admission control, whose evolution depends on the policy adopted to decide whether each
arriving customer should be admitted into or rejected from the system.

Index policies are particularly appealing for such problems: an index νk(jk) is attached to the
states jk of each project k; then, the required number of projects with larger indices are engaged at
each time. The quest for models with optimal index policies drew major research efforts in the 1960s
and 1970s, yielding a classic body of work. This includes the celebrated cµ-rule [8] for scheduling a
multiclass M/G/1 queue, Klimov’s index rule [21] for the corresponding model with feedback, and the
Gittins index rule [14, 15] for the multiarmed bandit problem (MBP).

The MBP is a paradigm among such well-solved models, yielding unifying insights. In it, rested
projects do not change state, one project is engaged at each time, and a discounted criterion is
employed. The optimal Gittins index νk(jk) has an insightful interpretation. It was introduced in [14]
via a single-project subproblem, where at each time one can continue or abandon operation, earning in
the latter case a pension at constant rate ν; νk(jk) is then the fair passivity subsidy in state jk, i.e., the
minimum value of ν one should be willing to accept to rest project k. Gittins [15] further characterized
his index as the maximal rate of expected discounted reward per unit of expected discounted time, or
maximal reward rate, starting at each state.

As for the general RBP, its increased modeling power comes at the expense of tractability: it is
P-SPACE HARD [28]. The research focus must hence shift to the design of well-grounded, tractable
heuristic index policies. Whittle [37] first proposed such a policy, which recovers Gittins’ in the MBP
case, and enjoys a form of asymptotic optimality. See [36]. The Whittle index is also defined as a fair
passivity subsidy via a single-project subproblem, precisely as outlined above for the Gittins index.
The Whittle index policy prescribes to assign higher priority to projects with larger indices.

In contrast to the Gittins index, passive transitions cause the Whittle index to have a limited scope:
it is defined only for an indexable project, whose optimal active set (states where it should be engaged)
decreases as the passive subsidy grows. The lack of simple sufficient conditions for indexability hindered
the application of such index in the 1990s. An alternative index, free from such scope limitation, was
proposed in [3]. Regarding indexability, we first presented in [26] a tractable set of sufficient conditions,
based on the notion of partial conservation laws, along with a one-pass index algorithm.
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Monotone optimal policies in MDPs

In MDP applications intuition often leads to postulate qualitative properties on optimal policies. The
optimal action, e.g., may be monotone on the state. Thus, in a model for control of admission to a
queue, one might postulate that arriving customers should be accepted iff the queue length exceeds a
critical threshold. Establishing the optimality of such policies can lead to efficient special algorithms.

The most developed approach for such purpose is grounded on the theory of submodular functions
on lattices. See [32]. One must establish submodularity properties on the problem’s value function,
exploiting the dynamic programming (DP) equations, by induction on the finite horizon. Infinite-
horizon models inherit such properties. See, e.g., [17, Ch. 8] and [31, 1].

Related yet distinct qualitative properties are suggested by the indexability analysis of RB models,
given in terms of the monotonicity of the index on the state. Consider a queueing admission control
RB model, where the active action corresponds to shutting the entry gate, and the passive action
to opening it. The Whittle index would then represent a fair subsidy for keeping the gate open per
unit time; or, equivalently, a fair charge for keeping the gate shut per unit time, in each state. To be
consistent with the optimality of threshold policies (see above), the index should increase monotonically
on the queue length. Such requirement is critical when the index is used to define a heuristic policy
for related RBPs, such as those discussed in Section 8.

Yet we have found that, when such model incorporates state-dependent arrival rates, the Whittle
index can fail to possess the required monotonicity. See Appendix C. Such considerations motivate
us in this paper to develop extensions of the Whittle index which are consistent with a postulated
structure on optimal policies.

Polyhedral methods in resource allocation problems

The application of polyhedral methods to resource allocation originated in combinatorial optimization,
within the area of polyhedral combinatorics. See, e.g., [25]. Edmonds [11, 12] first explained the
optimality of the classic greedy algorithm —the simplest index rule for resource allocation— from
properties of underlying polyhedra, termed polymatroids, arising in the problem’s linear programming
(LP) formulation.

The application of LP to MDPs started with the LP formulation of a general finite-state and
-action MDP in [10, 23]. The seminal application of LP to stochastic scheduling is due to Klimov
[21]. He formulated the problem of optimal scheduling of a multiclass M/G/1 queue with feedback as
an LP, whose constraints represent flow conservation laws. He solved such LP by an adaptive-greedy
algorithm, giving an optimal index rule.

Coffman and Mitrani [7] formulated a simpler model —without feedback— as an LP, whose con-
straints formulate work conservation laws. These characterize the region of achievable (expected delay)
performance as a polymatroid, thus giving a polyhedral account for the optimality of the classic cµ
rule. The relation between conservation laws and polymatroids was clarified in [13, 30].

Tsoucas [33] applied work conservation laws to Klimov’s model, obtaining a new LP formulation
over an extended polymatroid (cf. [4]). His analysis was extended into the generalized conservation
laws (GCLs) framework in [2], giving a polyhedral account of the optimality of Gittins’ index rule for
the MBP and extensions. Approximate GCLs were deployed in [16] to establish the near-optimality
of Klimov’s rule in the parallel-server case. See [9] for an overview of such achievable region approach.

The theory of conservation laws was extended in [26], through the notion of partial conservation
laws (PCLs), which were brought to bear on the analysis of Whittle’s RB index. PCLs imply the
optimality of index policies with a postulated structure under admissible linear objectives. Their ap-
plication yielded the class of PCL-indexable RBs, where the Whittle index exists and is calculated by
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an extension of Klimov’s algorithm.

Goals, contributions, and structure

The prime goal of this paper is the development, analysis, and application of well-grounded extensions
of Whittle’s RB index, which significantly increase its scope. For such purpose, we shall deepen the
understanding of the PCL framework and its polyhedral foundation, which is the paper’s second goal.

The contributions include: (i) we develop the polyhedral foundation of the PCLs, based on prop-
erties of a new polytope associated with a set system (J, F ) (F -extended polymatroid); (ii) we present
new dynamic allocation indices for RBs, motivated by an admission control model, which extend Whit-
tle’s and have a significantly increased scope; (iii) we deploy PCLs to obtain both sufficient conditions
for the existence of the new indices (PCL-indexability), and a new adaptive-greedy index algorithm;
(iv) we interpret PCL-indexability as a form of the classic economics law of diminishing marginal re-
turns, and characterize the index as an optimal marginal cost rate; we further solve a related optimal
constrained control problem; (v) we carry out a PCL-indexability analysis of the motivating admission
control model, under time-discounted and long-run average criteria; this gives, under mild conditions,
a new index characterization of optimal threshold policies; and (vi) we apply the latter to present
new heuristic index policies for two hard queueing control problems: admission control and routing to
parallel queues; and scheduling a multiclass make-to-stock queue with lost sales.

The rest of the paper is organized as follows. Section 2 describes the motivating admission control
model, and introduces the new solution approach. Section 3 describes a general RB model, introduces
new indices, and formulates the issues to be resolved. Section 4 introduces F -extended polymatroids,
and studies their properties. Section 5 reviews the PCL framework. Section 6 applies PCLs to the
analysis of RBs, yielding sufficient indexability conditions and an index algorithm. Section 7 deploys
such results in the admission control model. Section 8 applies the new indices to present new policies
for two complex queueing control models. Section 9 ends the paper with some concluding remarks.
Three appendices contain important yet ancillary material.

2 Motivating problem: optimal control of admission to a birth–

death queue

This section discusses a model for the optimal control of admission to a birth–death queue, a funda-
mental problem which has drawn extensive research attention. See [24, 31, 1, 19, 6]. We shall use
the model to motivate our approach, by introducing a novel analysis grounded on an intuitive index
characterization of optimal threshold policies.

2.1 Model description

Consider the system portrayed in Figure 1, which represents a single-server facility catering to an
incoming customer stream, endowed with a finite buffer capable of holding n customers, waiting or
in service. Customer flow is regulated by a gatekeeper, who dynamically opens or shuts an entry gate
which customers must cross to enter the buffer; those finding a shut gate, or a full buffer, on arrival
are rejected and lost.

The state L(t), recording the number in system at times t ≥ 0, evolves as a controlled birth–death
process over state space N = {0, . . . , n}. While in state i, customers arrive at rate λi (being then
admitted or rejected), and the server works at rate µi.

We assume that holding costs are continuously incurred in state i at rate hi, and a charge ν is
incurred per customer rejection. Costs are discounted at rate α > 0.
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Entry gate

Figure 1: Control of admission to a single queue.

The system is governed by an admission control policy u, prescribing the action a(t) ∈ {0, 1} to
take at each time t. Policies are chosen from the class U of stationary policies, basing action choice
on the state. Given policy u and state j, we denote by u(j) ∈ [0, 1] the probability of taking action
a = 1 (shut the entry gate), so that 1 − u(j) is the probability of action a = 0 (open it). We shall
refer to a = 1 as the active action, and to a = 0 as the passive action; one may imagine that the
gate is naturally open, unless the gatekeeper intervenes to shut it. We shall adopt the convention that
u(n) ≡ 1, so that action choice is effectively limited to the set N{0,1} = {0, . . . , n − 1} of controllable
states. The single state in N{1} = {n} will be termed uncontrollable.

Denote by Eu
i [·] the expectation under policy u when starting at i. Let

vu
i = Eu

i

[∫ ∞

0
hL(t) e−αt dt

]
(1)

be the corresponding expected total discounted value of holding costs incurred, and let

bu
i = Eu

i

[∫ ∞

0
λL(t) a(t) e−αt dt

]
(2)

be the expected total discounted number of customer rejections. The cost objective is

vu
i (ν) = vu

i + ν bu
i .

The admission control problem is to find a policy minimizing such objective:

vi(ν) = min {vu
i (ν) : u ∈ U } . (3)

We shall refer to (3) as the ν-charge problem. By standard MDP results, there exists an optimal policy
that is both deterministic and independent of the initial state i.

Several variations of problem (3) have drawn extensive research attention, aiming to establish the
optimality of threshold policies (which shut the entry gate iff L(t) lies above a critical threshold), and
to compute and optimal threshold. See [24, 31, 6, 19, 1].
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2.2 Optimal index-based threshold policy

In contrast with previous analyses, we introduce next a novel solution approach grounded on the
following observation: one would expect that, under “natural” regularity conditions, as rejection
charge ν grows from −∞ to +∞, the subset S(ν) of controllable states where it is optimal to shut
the gate in (3) decreases monotonically, from N{0,1} to ∅, dropping states in the order n − 1, ..., 0,
consistent with threshold policies.

In such case, say that the ν-charge problem is indexable relative to threshold policies. Then, to
each state j ∈ N{0,1} there corresponds a unique critical charge νj under which it is optimal both to
admit and to reject a customer arriving in that state. Call νj the dynamic allocation index of state j.
Since

ν0 ≤ ν1 ≤ · · · ≤ νn−1,

such indices yield an optimal index policy for the ν-charge problem: shut the entry gate in state
j ∈ N{0,1} iff ν ≤ νj . The optimal rejection set is thus

S(ν) =
{

j ∈ N{0,1} : ν ≤ νj

}
, ν ∈ R. (4)

2.3 Combinatorial optimization formulation

The ν-charge problem (3) admits a natural combinatorial optimization formulation, which will play a
key role in our solution approach. Represent each stationary deterministic policy by the subset S of
controllable states where it takes the active action, and call it then the S-active policy, writing bS

i , vS
i ,

vS
i (ν). This gives a reformulation of ν-charge problem (3) in terms of finding an optimal active set:

vi(ν) = min
{

vS
i (ν) : S ∈ 2N{0,1}

}
.

Represent now the family of threshold policies by a set system (N{0,1}, F ), where F ⊆ 2N{0,1}
is

the nested family of feasible rejection sets given by

F = {S1, . . . , Sn+1} , (5)

with Sn+1 = ∅ and
Sk = {k − 1, . . . , n − 1}, 1 ≤ k ≤ n. (6)

We shall address and solve the following problems:

Problem 1: Give sufficient conditions on model parameters under which ν-charge problem (3) is
indexable relative to threshold policies, so that, in particular,

vi(ν) = min
{

vS
i (ν) : S ∈ F

}
, ν ∈ R.

Problem 2: Give an efficient algorithm for finding an optimal threshold policy/optimal active set;
or, equivalently, for constructing the indices νj.

3 RBs: optimality of index policies with a postulated structure

This section extends the approach outlined above to a general RB model.
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3.1 The ν-charge problem for a single RB

Consider the problem of optimal dynamic effort allocation to a single stochastic project modeled as
an RB, whose state X(t) evolves over discrete time periods t = 0, 1, . . . , through the finite state space
N . Its evolution is governed by a policy u, prescribing at each period t which of two actions to take:
active (engage the project; a(t) = 1) or passive (let it rest; a(t) = 0). Denote by U the class of
state-dependent, or stationary policies. A policy u ∈ U is thus a mapping u : N → [0, 1], where u(i)
(resp. 1 − u(i)) is the probability that action a = 1 (resp. a = 0) is taken in state i.

Taking action a in state i has two effects: first, cost ha
i is incurred in the current period, discounted

by factor β ∈ (0, 1); second, the next state changes to j with probability pa
ij . Write ha = (ha

i )i∈N and
Pa = (pa

ij)i,j∈N .

We shall partition the states as N = N{0,1} ∪ N{1}. Here, N{0,1} is the controllable state space,
where active and passive actions differ in some respect; and N{1} = N \ N{0,1} is the uncontrollable
state space, where there is no effective choice. We shall assume that policies u ∈ U take the active
action at uncontrollable states, i.e.,

u(i) ≡ 1, i ∈ N{1}.

Let vu
i be the expected total discounted value of costs incurred over an infinite horizon under policy

u, starting at i, i.e.,

vu
i = Eu

i

[
∞∑

t=0

h
a(t)
X(t) βt

]
.

Besides such cost measure, we shall consider the activity measure

bu
i = Eu

i

[
∞∑

t=0

θ1
X(t) a(t) βt

]
, (7)

where θ
1 = (θ1

j )j∈N > 0 is a given activity weight vector. A convenient interpretation results by
considering that the model is obtained via uniformization (cf. Appendix A) from a continuous-time
model, as that in Section 2. Suppose in the original model there is a distinguished event (e.g., rejection
of an arriving customer), which can only occur under the active action. Let θ1

j be the probability of
the event happening during a period in state j; then, bu

i is the expected total discounted number of
times such event occurs.

Incorporate further into the model an activity charge ν, incurred each time the active action is
taken and the distinguished event occurs. Note that ν corresponds to the rejection charge in the
previous section. The total cost objective is then

vu
i (ν) = vu

i + ν bu
i .

The ν-charge problem of concern is to find a policy minimizing such objective:

vi(ν) = min {vu
i (ν) : u ∈ U } . (8)

Again, there exists an optimal deterministic policy which is independent of i.

3.2 DP formulation and polynomial-time solvability

The conventional approach to tackle ν-charge problem (8) is based on formulating and solving its DP
equations, which characterize the optimal value function vi(ν):

vi(ν) =





min
a∈{0,1}

ha
i + ν θ1

i a + β
∑

j∈N

pa
ij vj(ν) if i ∈ N{0,1}

h1
i + ν θ1

i + β
∑

j∈N

p1
ij vj(ν) if i ∈ N{1}.

(9)
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In theory, problem (8) can be solved in polynomial time on the state space’s size |N |. This follows
from (i) the polynomial size of the standard LP reformulation of (9); and (ii) the polynomial-time
solvability of LP by the ellipsoid method.

In practice, however, solution of (9) through general-purpose computational techniques can lead
to prohibitively long running times when |N | is large. Furthermore, even if such solution is obtained,
it is not clear how it could be used to design heuristics for more complex models, where RBs arise as
building blocks.

3.3 Solution by index policies with a postulated structure

We next develop an index solution approach to the ν-charge problem, motivated by that outlined in
Section 2.2, which extends Whittle’s original approach in [37].

As in Section 2.3, ν-charge problem (8) admits a combinatorial optimization formulation. Associate
to every S ⊂ N{0,1} a corresponding S-active policy, which is active over states in S ∪N{1} and passive
over N{0,1} \S. Write vS

i , bS
i and vS

i (ν). The ν-charge problem is thus reformulated in terms of finding
an optimal active set:

vi(ν) = min
{

vS
i (ν) : S ∈ 2N{0,1}

}
. (10)

As before, we shall be concerned with establishing the existence of optimal policies within a pos-
tulated family, given by a set system (N{0,1}, F ). Here, F ⊆ 2N{0,1}

is the corresponding family of
feasible active sets. Let S ⊆ N{0,1}.

Definition 1 (F -policy). We say that the S-active policy is an F -policy if S ∈ F .

Thus, in the model of Section 2, the F -policies corresponding to the definition of F in (5) are pre-
cisely the threshold policies. We shall require set system (N{0,1}, F ) to be accessible and augmentable.
See Assumption 1 in Section 4.

We next define a key property of the ν-charge problem. Let S(ν) ⊆ N{0,1} be, as before, the
corresponding set of controllable states where the active action is optimal.

Definition 2 (Indexability). We say that the ν-charge problem is indexable relative to F -policies if,
as ν increases from −∞ to +∞, S(ν) decreases monotonically from N{0,1} to ∅, with S(ν) ∈ F for
ν ∈ R.

Under indexability, to each state j ∈ N{0,1} is attached a critical charge νj, and

S(ν) =
{

j ∈ N{0,1} : ν ≤ νj

}
∈ F , ν ∈ R.

Definition 3 (Dynamic allocation index). We say that νj is the dynamic allocation index of control-
lable state j ∈ N{0,1} relative to activity measure bu.

Remark 1. Definitions 2 and 3 extend Whittle’s [37] notion of indexability and his index, which are
recovered in the case N{0,1} = N , F = 2N , θ1

j = 1 for j ∈ N .

Regarding problems 1 and 2 in Section 2.1, in light of the above we shall address and solve them
as special cases of the following problems:

Problem 1: Give sufficient conditions on model parameters under which the ν-charge problem is
indexable relative to F -policies, so that, in particular,

vi(ν) = min
{

vS
i (ν) : S ∈ F

}
, ν ∈ R.

10



Problem 2: Give an efficient algorithm for finding an optimal F -policy; or, equivalently, for con-
structing the indices νj.

We shall solve such problems in Section 6, by casting them into the polyhedral framework developed
in Sections 4 and 5 below.

4 F -extended polymatroids: properties and optimization

This section introduces a new polytope associated with an accessible set system (J, F ), which gener-
alizes classic polymatroids and the extended polymatroids in [4, 2]. As we shall see, the problems of
concern in this paper can be formulated and solved as LPs over such polyhedra. Most proofs in this
section will remain close to those of analogous results for extended polymatroids. The exposition will
thus focus on the distinctive features of the new polyhedra. The reader is referred to [2] to fill the
details.

4.1 F -extended polymatroids

Let J be a finite ground set with |J | = n elements, and let F ⊆ 2J be a family of subsets of J . Given
a feasible set S ∈ F , let ∂−

F
S and ∂+

F
S be the inner and outer boundaries of S relative to F , defined

by
∂−

F
S = {j ∈ S : S \ {j} ∈ F} and ∂+

F
S = {j ∈ J \ S : S ∪ {j} ∈ F} ,

respectively. We shall require set system (J, F ) to satisfy the conditions stated next.

Assumption 1. The following conditions hold:
(i) ∅ ∈ F .
(ii) Accessibility: ∅ 6= S ∈ F =⇒ ∂−

F
S 6= ∅.

(iii) Augmentability: J 6= S ∈ F =⇒ ∂+
F

S 6= ∅.

We next introduce the notion of full F -string. Let π = (π1, . . . , πn) be an n-vector spanning J ,
so that J = {π1, . . . , πn}. Let

Sk = {πk, . . . , πn}, 1 ≤ k ≤ n. (11)

Definition 4 (Full F -string). We say that π is a full F -string if

Sk ∈ F , 1 ≤ k ≤ n.

We shall denote by Π(F ) the set of all full F -strings. Given coefficients bS ≥ 0 and wS
j > 0 for

j ∈ S ∈ F , consider the polytope P (F ) on R
J defined by

∑

j∈S

wS
j xj ≥ bS, S ∈ F \ {J}

∑

j∈J

wJ
j xj = bJ

xj ≥ 0, j ∈ J.

(12)

For each π ∈ Π(F ), let xπ = (xπ
j )j∈J be the unique solution to

wSk
πk

xπk
+ · · · + wSk

πn
xπn = bSk , 1 ≤ k ≤ n, (13)

11



Definition 5 (F -extended polymatroid). We say that P (F ) is an F -extended polymatroid if, for
each π ∈ Π(F ), xπ ∈ P (F ).

Remark 2.

1. Assumption 1 ensures the existence of a full F -string, hence P (F ) 6= ∅.

2. The extended polymatroids in [4, 2] correspond to the case F = 2J . Classic polymatroids are
further recovered when wS

j ≡ 1 for j ∈ S ∈ 2J .

4.2 LP over F -extended polymatroids

Consider the following LP problem over F -extended polymatroid P (F ):

vLP = min




∑

j∈J

cj xj : x ∈ P (F )



 . (14)

We wish to design an efficient algorithm for solving LP (14), for which we start by investigating
the vertices of P (F ). The next result gives a partial characterization, which is in contrast with the
complete one available for extended polymatroids.

Lemma 1. For π ∈ Π(F ), xπ is a vertex of P (F ).

Proof. The result follows from Definition 5, along with the standard algebraic characterization of a
polyhedron’s vertices.

Lemma 1 implies that, under some cost vectors c = (cj)j∈J , LP (14) is solved by a vertex of the
form xπ, so that

vLP = min




∑

j∈J

cj xπ

j : π ∈ Π(F )



 . (15)

We shall thus seek to solve the LP for a restricted domain of admissible cost vectors, for which an
efficient test for property (15) is available.

To proceed, consider the dual LP. By associating dual variable yS with the primal constraint for
feasible set S ∈ F , the latter is formulated as

vLP = max
∑

S∈F

bS yS (16)

subject to∑

S:j∈S∈F

wS
j yS ≤ cj , j ∈ J

yS ≥ 0, S ∈ F \ {J}

yJ unrestricted.

Note that, since P (F ) is a nonempty polytope, strong duality ensures that both the primal and the
dual LP have the same finite optimal value vLP.

12



ALGORITHM AG1(·|F )
Input: c
Output: (ADMISSIBLE, π, ν)

Initialization: let S1 := J

let yS1 := min

{
cj

wS1

j

: j ∈ ∂−
F

S1

}
;

choose π1 attaining the minimum above; let νπ1
:= yS1

Loop:
for k := 2 to n do

let Sk := Sk−1 \ {πk−1}

let ySk := min

{
1

wSk

j

[
cj −

k−1∑

l=1

ySl wSl

j

]
: j ∈ ∂−

F
Sk

}

choose πk attaining the minimum above; let νπk
:= νπk−1

+ ySk

end {for}

Cost admissibility test:
if νπ1

≤ · · · ≤ νπn then let ADMISSIBLE := TRUE else let ADMISSIBLE := FALSE

Figure 2: Adaptive-greedy algorithm AG1(·|F ) for LP over F -extended polymatroids.

4.3 Adaptive-greedy algorithm and allocation indices

This section discusses the adaptive-greedy algorithm AG1(·|F ), described in Figure 2, which we intro-
duced in [26]. It defines a tractable domain of admissible cost vectors, under which it constructs an
optimal index-based solution to dual LP (16).

The algorithm is fed with input cost vector c, and produces as output a triplet (ADMISSIBLE , π, ν).
Here, ADMISSIBLE ∈ {TRUE , FALSE} is a Boolean variable; π = (π1, . . . , πn) ∈ Π(F ) is a full F -
string; and ν = (νj)j∈J is an index vector. Since it runs in n steps, the algorithm will run in
polynomial time if, for S ∈ F , calculation of wS

j (j ∈ S) and membership test j ∈ ∂−
F

S are done in
polynomial time.

The algorithm has two new features relative to its counterpart for extended polymatroids (cf.
[4, 2]), recovered as AG1(·|2J ). First, the minimization in step k is performed over the set ∂−

F
Sk,

which is often much smaller than ∂−
2J Sk = Sk. Thus, in the model of Section 2, Sk = {k −1, . . . , n−1}

and ∂−
F

Sk = {k − 1}. Second, the algorithm ends with a cost admissibility test, checking whether the
generated index sequence is nondecreasing. We could instead have implemented such test by checking
at each step k whether νπk

< νπk−1
, in which case execution would be terminated.

Definition 6 (F -admissible costs). We say that cost vector c is F -admissible for LP (14) if algorithm
AG1(·|F ), when fed with input c, returns an output satisfying

νπ1
≤ νπ2

≤ · · · ≤ νπn . (17)

so that ADMISSIBLE = TRUE .

We call the set C (F ) of F -admissible c’s the F -admissible cost domain of LP (14).

Remark 3.

13



1. In the extended polymatroid case, we have C (2J ) = R
J .

2. It is readily verified that Definition 6 is consistent, i.e., the values of the outputs ADMISSIBLE
and ν do not depend on the tie-breaking order in the algorithm.

Definition 7 (Allocation index). We say the νj ’s are LP (14)’s allocation indices.

In the extended polymatroid case, such indices give an optimality criterion. See [2]. We next extend
such result. Let c ∈ C (F ). Suppose AG1(·|F ) is run on c, giving output (ADMISSIBLE, π, ν). Let

Sk be as in (11), and let yπ =
(
yπ,S

)
S∈F

be given by

yπ,S =





νπk
− νπk−1

if S = Sk, for some 2 ≤ k ≤ n

νπ1
if S = S1

0 otherwise.

(18)

Notice yπ,Sk , for 1 ≤ k ≤ n, is characterized as the unique solution to

wS1

πk
yS1 + · · · + wSk

πk
ySk = cπk

, 1 ≤ k ≤ n. (19)

The next result is proven as its extended polymatroid counterpart (cf. [2]).

Theorem 1 (Index-based objective representation and optimality criterion).

(a) LP (14)’s objective can be represented as

∑

j∈J

cj xj = νπ1

∑

j∈S1

wS1

j xj +
n∑

k=2

(νπk
− νπk−1

)
∑

j∈Sk

wSk

j xj ;

furthermore,

vπ =
∑

j∈J

cj xπ

j = νπ1
bS1 +

n∑

k=2

(νπk
− νπk−1

) bSk .

(b) If condition (17) holds, so that c ∈ C (F ), then xπ and yπ is an optimal primal-dual pair for
LPs (14) and (16). The optimal value is then

vLP = νπ1
bS1 +

n∑

k=2

(νπk
− νπk−1

) bSk . (20)

4.4 Allocation index and admissible cost domain decomposition

The allocation indices of extended polymatroids possess a useful decomposition property (cf. [2]),
which we extend next to F -extended polymatroids.

Suppose set system (J, F ) is constructed as follows. We are given m set systems (Jk, Fk), for
1 ≤ k ≤ m, satisfying Assumption 1, where J1, ..., Jm are disjoint. Let

J =
m⋃

k=1

Jk,

F =

{
S =

m⋃

k=1

Sk : Sk ∈ Fk, 1 ≤ k ≤ m

}
. (21)
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It is readily verified that set system (J, F ) also satisfies Assumption 1.
Suppose we are given bS ≥ 0 and wS

j > 0, for j ∈ S ∈ F , such that P (F ) defined by (12) is an

F -extended polymatroid. Then, Definition 5 implies that each Pk(Fk) on R
Jk (with bSk and wSk

jk
, for

jk ∈ Sk ∈ Fk) is an Fk-extended polymatroid.
We shall require coefficients wS

j to satisfy the following requirement.

Assumption 2. For 1 ≤ k ≤ m,

wS
jk

= wS∩Jk

jk
, S ∈ F , jk ∈ S ∩ Jk.

Given cost vector c = (cj)j∈J , let ck = (cjk
)jk∈Jk

for each k. Consider the corresponding LPs given
by (14) and

vk,LP = min




∑

jk∈Jk

cjk
xjk

: xk ∈ Pk(Fk)



 , (22)

having admissible cost domains C (F ) and C (Fk), respectively. Let ν = (νj)j∈J (resp. ν
k =

(νk
jk

)jk∈Jk
) be the index vector produced by the algorithm on input c (resp. ck).

We state next the decomposition result without proof, as this follows along the same lines as
Theorem 3’s in [2].

Theorem 2 (Admissible cost domain and index decomposition). Under Assumption 2, the following
holds:

(a) c ∈ C (F ) if and only if ck ∈ C (Fk) for 1 ≤ k ≤ m, i.e.,

C (F ) =
m∏

k=1

C (Fk).

(b) For 1 ≤ k ≤ m,
νjk

= νk
jk

, jk ∈ Jk.

Remark 4.

1. Theorem 2(a) shows that the admissible cost domain of LP (14) decomposes as the product of
the corresponding domains of the m LPs in (22). The F -admissibility test for c thus decomposes
into m simpler tasks, which can be performed in parallel.

2. Theorem 2(b) shows that the calculation of indices νj for LP (14) can also be decomposed into
m simpler parallel tasks, each involving the calculation of indices νk

jk
for the corresponding LP

in (22).

4.5 A new version of the index algorithm

We have found that the algorithm above does not lend itself well to model analysis. This motivates
us to develop the reformulated version AG2(·|F ), shown in Figure 3. This represents an extension of
Klimov’s [21] algorithm, recovered as AG2(·|2J ). We shall later apply AG2(·|F ) to calculate the RB
indices introduced in this paper. We remark that Varaiya et al. [34] first applied Klimov’s algorithm
to calculate the Gittins index for classic (nonrestless) bandits.
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ALGORITHM AG2(·|F ):
Input: c
Output: (ADMISSIBLE, π, ν)

Initialization: let S1 = J ; let νS1

j := cj/wS1

j , j ∈ J

choose π1 ∈ argmin
{

νS1

j : j ∈ ∂−
F

S1

}
; let νπ1

:= νS1
π1

Loop:
for k := 2 to n do

let Sk := Sk−1 \ {πk−1}

let νSk

j := ν
Sk−1

j +


w

Sk−1

j

wSk

j

− 1



[
ν

Sk−1

j − ν
Sk−1
πk−1

]
, j ∈ Sk

choose πk ∈ argmin
{

νSk

j : j ∈ ∂−
F

Sk

}
; let νπk

:= νSk
πk

end {for}

Cost admissibility test:
if νπ1

≤ · · · ≤ νπn then let ADMISSIBLE := TRUE else let ADMISSIBLE := FALSE

Figure 3: Adaptive-greedy algorithm AG2(·|F ) for LP over F -extended polymatroids.

The latter is based on the incorporation of coefficients cSk

j , recursively defined (relative to the full
F -string π being generated) by

cS1

j = cj , j ∈ S1 = J

cSk

j = c
Sk−1

j −
c

Sk−1
πk−1

w
Sk−1
πk−1

[
w

Sk−1

j − wSk

j

]
, j ∈ Sk, 2 ≤ k ≤ n,

(23)

which allows to simplify the expressions in AG1(·|F ). We shall further write

νSk

j =
cSk

j

wSk

j

, j ∈ Sk, 1 ≤ k ≤ n. (24)

From (23), it follows that the ratios νSk

j are characterized by the recursion

νS1

j =
cj

wS1

j

, j ∈ S1 = J

νSk

j = ν
Sk−1

j +


w

Sk−1

j

wSk

j

− 1



[
ν

Sk−1

j − ν
Sk−1
πk−1

]
, j ∈ Sk, 2 ≤ k ≤ n,

(25)

The next result gives the key relations between both algorithms. Let π and ν be produced by
algorithm AG1(·|F ) on input c, and let Sk be given by (11).

Lemma 2. For 1 ≤ k ≤ n and j ∈ Sk,

νSk

j =





cj

wS1

j

, if k = 1

νπk−1
+

cj − νπ1
wS1

j −
k−1∑

l=2

(
νπl

− νπl−1

)
wSl

j

wSk

j

, if k ≥ 2;
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furthermore,
νπk

= νSk
πk

. (26)

Proof. We proceed by induction on k. The case k = 1 follows from (23).
Assume now the result holds for k − 1, where k ≤ n, so that

ν
Sk−1

j = νπk−2
+

cj − νπ1
wS1

j −
k−2∑

l=2

(
νπl

− νπl−1

)
wSl

j

w
Sk−1

j

, j ∈ Sk−1,

and νπk−1
= ν

Sk−1
πk−1

. Then, applying the induction hypothesis and (23), yields the following: for j ∈ Sk,

νSk

j =
c

Sk−1

j − νπk−1

[
w

Sk−1

j − wSk

j

]

wSk

j

=

νπk−2
w

Sk−1

j + cj − νπ1
wS1

j −
k−2∑

l=2

(
νπl

− νπl−1

)
wSl

j − νπk−1

[
w

Sk−1

j − wSk

j

]

wSk

j

= νπk−1
+

cj − νπ1
wS1

j −
k−1∑

l=2

(νπl
− νπl−1

) wSl

j

wSk

j

.

Combining the last identity with (18)–(19), gives νπk
= νSk

πk
, completing the proof.

We are now ready to establish the main result of this section.

Theorem 3. Algorithms AG1(·|F ) and AG2(·|F ) are equivalent.

Proof. The result follows from Lemma 2 and the description of each algorithm.

4.6 Properties and interpretation of coefficients c
Sk

j , ν
Sk

j , and of indices νj

Given the central role that coefficients cSk

j , νSk

j and indices νj play in this paper, it is of interest to
discuss their properties and interpretation. Assume below that π, ν are produced by AG2(·|F ) on
input c ∈ C (F ).

The next result shows that the cSk

j ’s represent marginal, or reduced costs of LP (14). The proof
follows easily by induction, and is hence omitted.

Proposition 1. For 1 ≤ m ≤ n − 1,

vLP =
m∑

k=1

νπk

[
bSk − bSk+1

]
+

∑

j∈Sm+1

c
Sm+1

j xπ

j . (27)

Remark 5. Proposition 1 sheds further light on AG2(·|F ). Identity (27) shows that, once the first m
elements of optimal F -string π = (π1, . . . , πm, ·, . . . , ·) have been fixed, its construction proceeds by

optimizing the reduced objective
∑

j∈Sm+1
c

Sm+1

j xj .
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We next address the following issue. In step k of algorithm AG2(·|F ), the next element πk is
picked through a minimization over j ∈ ∂−

F
Sk, so that

νπk
= min

{
νSk

j : j ∈ ∂−
F

Sk

}
.

Hence, νπk
is a locally optimal marginal cost rate over j ∈ ∂−

F
Sk. We shall next show that νπk

is an
optimal marginal cost rate over the (typically larger) set Sk, i.e.,

νπk
= min

{
νSk

j : j ∈ Sk

}
.

We shall need the following preliminary result, easily proven by induction on m.

Lemma 3. For 1 ≤ m ≤ n,

νSm
πk

= νπm +
1

wSm
πk

k∑

l=m+1

(νπl
− νπl−1

) wSl
πk

, m ≤ k ≤ n.

We are now ready to establish the index characterization discussed above.

Proposition 2. For 1 ≤ m ≤ n, the index νπm is characterized as

νπm = min
{

νSm

j : j ∈ Sm

}
. (28)

Proof. By Lemma 3, we have, for m ≤ k ≤ n,

νSm
πk

= νπm +
1

wSm
πk

k∑

l=m+1

(νπl
− νπl−1

) wSl
πk

≥ νπm,

where the inequality follows from the index ordering (17).

4.7 Index characterization under monotone wS
j ’s

We have found that, in applications, coefficients wS
j are often nondecreasing on S.

Assumption 3. For j ∈ S ⊂ T , S, T ∈ F ,

wS
j ≤ wT

j .

This section shows that Assumption 3 implies interesting additional properties, including a new
index characterization. Let π, ν, Sk be as in Section 4.6.

Lemma 4. Under Assumption 3, the following holds:

(a) For 1 ≤ k ≤ n − 1,

νSk

j ≤ ν
Sk+1

j , j ∈ Sk+1.

(b) For 1 ≤ k < l ≤ n,

νπk
= νSk

πk
≤ νSk

πl
≤ ν

Sk+1
πl

≤ · · · ≤ ν
Sl−1
πl

≤ νSl
πl

= νπl
.
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Proof. (a) From (25) and (26), together with wSk

j − w
Sk+1

j ≥ 0, it follows that

νπk
≤ νSk

j =⇒ νSk

j ≤ ν
Sk+1

j .

Since the first inequality holds by Proposition 2, we obtain the required result.
(b) The result follows directly from part (a) and Proposition 2.

We next give the new index characterization referred to above.

Theorem 4. Under Assumption 3, the index νj is characterized as

νj = max
{

νS
j : j ∈ S ∈ {S1, . . . , Sn}

}
, j ∈ J.

Proof. The result follows directly from Lemma 4(b).

Remark 6. Theorem 4 characterizes the indices as maximal marginal cost rates relative to feasible sets.
This is to be contrasted with the result in Proposition 2.

4.8 A recursion for the wS
j ’s under symmetric marginal costs

Recall that the marginal costs cSk

j were defined relative to a given π ∈ Π(F ). This prevents us

from extending (23) into a definition of coefficients cS
j , for S ∈ F , since the order in which S is

constructed might lead to different values. Yet, in certain applications, including RBs (cf. Section 6),
such coefficients are symmetric.

Definition 8 (Symmetric marginal costs). We say that marginal costs are symmetric if the following
recursion gives a consistent definition of cS

j , for j ∈ S ∈ F :

cJ
j = cj , j ∈ J

c
S\{i}
j = cS

j −
cS

i

wS
i

[
wS

j − w
S\{i}
j

] (29)

Note that, under marginal cost symmetry, we can further define marginal cost rates νS
j , for j ∈ S ∈

F , by the natural extension of recursion (25). The next result shows that marginal cost symmetry,
under Assumption 3, is equivalent to satisfaction of a second-order recursion by the wS

j ’s, useful for
their calculation.

Proposition 3. Under Assumption 3, marginal costs are symmetric iff, for S ∈ F , i1 ∈ ∂−
F

S ∩∂−
F

(S \
{i2}), i2 ∈ ∂−

F
S ∩ ∂−

F
(S \ {i1}), and j ∈ S \ {i1, i2}, it holds that

w
S\{i1,i2}
j =

wS
i1

w
S\{i2}
i1

w
S\{i2}
j +

wS
i2

w
S\{i1}
i2

w
S\{i1}
j − wS

j

wS
i1

w
S\{i2}
i1

+
wS

i2

w
S\{i1}
i2

− 1

. (30)

Proof. The result follows by recursively calculating c
S\{i1,i2}
j in two different ways, using (29): through

the sequence S → S \ {i1} → S \ {i1, i2}, and through the sequence S → S \ {i2} → S \ {i1, i2}. Each

gives different expressions for c
S\{i1,i2}
j . Equating the coefficients of corresponding marginal cost terms

yields the stated identity.
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5 Partial conservation laws

This section reviews the partial conservation laws (PCLs) framework introduced in [26], emphasizing
its grounding on F -extended polymatroid theory.

Consider a scheduling model involving a finite set J of n job classes. Effort is allocated to com-
peting jobs through a scheduling policy u, chosen from the space U of admissible policies. Policy u’s
performance over class j is given by performance measure xu

j ≥ 0. Write xu = (xu
j )j∈J . Associate to

every full string π = (π1, . . . , πn) spanning the n classes a corresponding π-priority policy, assigning
higher priority to class πl over πk if l > k. Write xπ

j . Given S ⊆ J , say that a policy gives priority to
S-jobs if it gives priority to any class i ∈ S over any class j ∈ Sc = J \ S.

We shall be concerned with solving the scheduling problem

v = min




∑

j∈J

cj xu
j : u ∈ U



 , (31)

which is to find an admissible policy minimizing the stated linear cost objective. Motivated by appli-
cations, we shall seek to identify conditions under which an optimal policy exists within a given family
of policies with a postulated structure. As in Section 3.3, we represent the latter by a set system
(J, F ) satisfying Assumption 1. Let π be as above. Recall the notion of full F -string from Definition
4.

Definition 9 (F -policy). We say that the π-priority policy is an F -policy if π ∈ Π(F ), i.e., π is a
full F -string of set system (J, F ).

Remark 7. Sets S ∈ F represent feasible high-priority class subsets under F -policies.

Consider the following problems:

1. Give sufficient conditions under which F -policies are optimal, so that

v = min




∑

j∈J

cj xπ

j : π ∈ Π(F )



 .

2. Give an efficient algorithm for finding an optimal F -policy.

To address such problems, consider the achievable performance region

X = {xu : u ∈ U } ,

which allows us to reformulate (31) as the mathematical programming problem

v = min




∑

j∈J

cj xj : x ∈ X



 .

To proceed, we must assume appropriate properties on X , as discussed next.
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5.1 Partial conservation laws

Suppose to each job class and feasible high-priority set j ∈ S ∈ F is associated a coefficient wS
j > 0,

so that
∑

j∈S wS
j xu

j represents a measure of the system’s workload corresponding to S-jobs, or S-

workload, under policy u. We shall refer to wS
j as the marginal S-workload of class j. Denote the

minimal S-workload by

bS = inf




∑

j∈S

wS
j xu

j : u ∈ U



 , S ∈ F .

Definition 10 (Partial conservation laws). We say that performance vector xu satisfies partial con-
servation laws (PCLs) relative to F -policies if the following holds:
(i) for S ∈ F \ {J},

∑

j∈S

wS
j xπ

j = bS, under any π ∈ Π(F ) giving priority to S-jobs.

(ii)
∑

j∈J

wJ
j xπ

j = bJ , under any π ∈ Π(F ).

Remark 8.

1. Satisfaction of the above PCLs means that, for each S ∈ F , the S-workload is minimized by
any F -policy which gives priority to S-jobs.

2. The generalized conservation laws (GCLs) in [2] are recovered in the case F = 2N . The strong
conservation laws in [30] are further recovered when wS

j ≡ 1.

Assume in what follows that xu satisfies PCLs as above. This gives a partial characterization of
achievable performance region X , based on polytope P (F ) in (12).

Theorem 5 (Achievable performance). P (F ) is an F -extended polymatroid, satisfying X ⊆ P (F ).
The performance vectors xπ of F -policies π are vertices of P (F ).

Proof. PCLs imply X ⊆ P (F ). Let π ∈ Π(F ). By PCL, performance vector xπ is the solution of
(13). Since xπ ∈ X ⊆ P (F ), Definition 5 implies that P (F ) is an F -extended polymatroid. By
Lemma 1, xπ is a vertex of P (F ).

Remark 9.

1. In the GCL case (F = 2J ), it holds that X = P (2J ). See Theorem 4 in [2].

2. By Theorem 5, (14) is an LP relaxation of (31), hence vLP ≤ v. It further implies optimality
of F -policies for (31) under some cost vectors c, so that vLP = v; and, in particular, under
F -admissible cost vectors c ∈ C (F ) of LP (14).

We show next that, under PCLs, the scheduling problem is solved by an index policy with the
postulated structure, under appropriate linear objectives. Let c ∈ C (F ), and let π ∈ Π(F ) and
ν = (νj)j∈J be produced by any index algorithm in Section 4 on input c. Let Sk be given by (11),
and let vLP be the optimal LP value given by (14).

Theorem 6 (Optimality of index F -policies). The π-priority policy, giving higher priority to classes
with larger indices νj , is optimal. Its value is v = vLP.
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Proof. The result follows directly by combining Theorem 1 and Theorem 5.

Remark 10. Note that, by Theorem 1, under any policy u ∈ U it holds that

∑

j∈J

cj xu
j = νπ1

∑

j∈S1

wS1

j xu
j +

n∑

k=2

(νπk
− νπk−1

)
∑

j∈Sk

wSk

j xu
j .

5.2 Multi-project scheduling and index decomposition

This section considers the case where problem (31) represents a multi-project scheduling model, which
represents the natural setting for application of the decomposition property in Section 4.4. We shall
apply a special case of the result below in Section 6. Decomposition results have been previously
established in [2] (under GCLs), and in [26] (under PCLs). The following is a refined version of the
latter.

Consider a finite collection of m ≥ 2 projects, with project k ∈ K = {1, . . . , m} evolving through
finite state space Nk. Effort is dynamically allocated to projects through a scheduling policy u ∈ U ,
where U is the space of admissible policies, prescribing which of two actions to take at each project:

engage it (ak = 1) or rest it (ak = 0). Project k’s states are partitioned as Nk = N
{0,1}
k ∪ N

{1}
k .

When the state ik lies in the controllable state space N
{0,1}
k , the project can be either engaged or

rested, whereas it must be engaged when it lies in the uncontrollable state space N
{1}
k . We assume

that project state spaces are disjoint. Write Jk = N
{0,1}
k .

The performance of policy u over state jk ∈ Jk of project k is given by performance measure
xk,u

jk
≥ 0. Write xk,u = (xk,u

jk
)jk∈Jk

.
The multi-project scheduling problem of concern is

v = min





m∑

k=1

∑

jk∈Jk

ck
jk

xk,u
jk

: u ∈ U



 ,

namely, find a policy that minimizes the stated linear performance objective. This problem fits for-
mulation (31), by letting job classes correspond to project states.

The PCL framework requires a notion of priority among classes. In the current setting, this follows
from the natural notion of priority among projects. We thus interpret each full string π = (π1, . . . , πn),
where n = |J |, as a corresponding π-priority policy.

We must further specify a set system (J, F ), defining the family of F -policies. Assume we are
given a family of policies for operating each project k in isolation, i.e., prescribing in which controllable
states it should be engaged, given as an appropriate set system (Jk, Fk). Project k’s Fk-policies are
obtained by associating to each set Sk ∈ Fk a corresponding Sk-active policy, which engages the
project when its state lies in Sk ∪ N{1}, and rests it otherwise. Construct now (J, F ) as in (21).

Assume further that (i) performance vector xu = (xu
j )j∈J satisfies PCLs relative to F -policies;

and that (ii) marginal workloads wS
j satisfy Assumption 2.

Suppose every project k’s cost vector ck = (ck
jk

)jk∈Jk
is Fk-admissible. Then, Theorem 2(a) gives

that c = (cj)j∈J , where cjk
= ck

jk
, is F -admissible. Let ν

k = (νk
jk

)jk∈Jk
be project k’s index vector.

The following result follows from Theorem 2.

Theorem 7 (Index decomposition for multi-project scheduling). Any F -policy π giving higher priority
to projects k whose states jk have larger indices νk

jk
is optimal.
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6 PCL-indexable RBs

In this section we return to the RB model discussed in Section 3. We shall resolve the issues raised in
Section 3.3 by deploying the PCL framework.

6.1 Standard LP formulation and pure passive-cost normalization

We review next the standard LP formulation of ν-charge problem (8), arising as the dual of the LP
formulation of its DP equations (9). We shall use it to reduce the problem to a pure passive-cost
normalized version, on which we shall focus our analyses.

The standard LP formulation of ν-charge problem (8) is

vi(ν) = min x0 h0 + x1(h1 + ν θ
1) (32)

subject to

x0 (I − β P0) + x1 (I − β P1) = ei (33)

x0
j = 0, j ∈ N{1}, (34)

x0, x1 ≥ 0

where xa = (xa
j )j∈N , θ

1 = (θ1
j )j∈N , and ei is the ith unit coordinate vector in R

N . Vectors are in
row or column form as required. In such LP, variable xa

j corresponds to the standard state-action
occupation measure

xa,u
ij = Eu

i

[
∞∑

t=0

1{X(t) = j, a(t) = a} βt

]
,

giving the expected total discounted number of times action a is taken in state j under policy u,
starting at i. Thus, (34) says the project must be active at uncontrollable states.

The LP constraints (33) imply that

x1 = ei (I − β P1)−1 − x0 (I − β P0) (I − β P1)−1,

and hence its objective (32) can be reformulated as

ei (I − β P1)−1 h1 + x0 ĥ0 + ν x1
θ

1 = vN{0,1}

i + x0 ĥ0 + ν x1
θ

1, (35)

where ĥ0 =
(
ĥ0

j

)
j∈N

is the normalized passive-cost vector given by

ĥ0 = h0 − (I − β P0) (I − β P1)−1 h1. (36)

Note further that identity (36) and the definition of uncontrollable states gives

ĥ0
j = 0, j ∈ N{1}.

We shall focus henceforth on the following normalized ν-charge problem

v̂i(ν) = min





∑

j∈N{0,1}

ĥ0
j x0,u

ij + ν bu
i : u ∈ U



 , (37)

whose optimal value is related to vi(ν) by

vi(ν) = vN{0,1}

i + v̂i(ν).
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6.2 PCLs for normalized ν-charge problem

We shall next cast problem (37) into the multi-project scheduling case of the PCLs in Section 5.2.
Reinterpret (37) as a two-project scheduling model, by adding to the original project a calibrating
project with a single state ∗. One project must be engaged at each time, where the calibrating project
is engaged when the original project is rested.

As in Section 5.2, let the controllable state space of the two-project model be

J∗ = N{0,1} ∪ {∗}.

We shall seek to establish PCLs for performance vector xu
i = (xu

ij)j∈J∗ , where

xu
ij =

{
x0,u

ij if j ∈ N{0,1}

bu
i if j = ∗.

(38)

Note that the normalized ν-charge problem can then be formulated as

v̂i(ν) = min





∑

j∈N{0,1}

ĥ0
j xu

ij + ν xu
i∗ : u ∈ U



 .

Regarding priorities’s interpretation, note that, e.g., giving higher priority to calibrating project’s
state ∗ over original project’s state j means that the latter is rested in state j.

Recall from Section 3.3 that we are given an appropriate set system (N{0,1}, F ) defining the family
of F -policies (cf. Definition 1). Proceeding as in Section 5.2, construct a set system (J∗, F ∗) for the
two-project model by letting

F
∗ = {S∗ = S1 ∪ S2 : S1 ∈ F , S2 ∈ {∅, {∗}}} .

We shall seek to establish that performance vector xu
i satisfies PCLs relative to F ∗, for which

suitable coefficients wS∗

j and bS∗
must be defined.

We start by defining marginal workloads wS
j , for j ∈ N , S ⊆ N{0,1}, in terms of activity measures

bS
i (cf. Section 3.1). The latter are characterized by

bS
i =





θ1
i + β

∑

j∈N

p1
ij bS

j if i ∈ S ∪ N{1}

β
∑

j∈N

p0
ij bS

j , if i ∈ N{0,1} \ S;
(39)

We shall use below the following notation: given d = (dj)j∈N , A = (ai,j)i,j∈N , and S, T ⊆ N , we
shall write dS = (dj)j∈S and AST = (aij)i∈S,j∈T . We can thus reformulate the above equations as

bS
S∪N{0,1} = θ

1
S∪N{0,1} + β P1

S∪N{0,1},N
bS

bS
N{0,1}\S

= β P0
N{0,1}\S,N

bS.

Let now
wS

i = θ1
i 1{i ∈ N{0,1}} + β

∑

j∈N

(p1
ij − p0

ij) tS
j , i ∈ N ; (40)

i.e.,

wS
N{0,1} = θ

1
N{0,1} + β

(
P1

N{0,1},N
− P0

N{0,1},N

)
bS

wS
N{1} = β

(
P1

N{1},N
− P0

N{1},N

)
bS = 0,

(41)
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where the last identity follows from the assumption p1
ij = p0

ij for i ∈ N{1}. Coefficient wS
i thus

represents the marginal increment in activity measure bS resulting from a passive-to-active action
interchange in initial state i.

We proceed with a preliminary result, giving further relations between bS and wS. The proof is
omitted, as it follows by straightforward algebra from the above.

Lemma 5. The following identities hold:

(I − β P0) bS =




wS
S

0N{0,1}\S

θ
1
N{1}




θ
1 − (I − β P1) bS =

[
0S∪N{1}

wS
N{0,1}\S

]
.

(42)

Motivated by Assumption 2, we complete the marginal workload definitions by letting, for j ∈ J∗

and S∗ = S ∪ {∗}, with S ⊆ N{0,1},

wS∗

j =

{
wS

j if j ∈ N{0,1}

1 if j = ∗.

It remains to define the function bS∗

i arising in the right-hand side of the PCLs (which now depends
on initial state i). Let, for S∗ ⊆ J∗,

bS∗

i =

{
bS

i if S∗ = S ∪ {∗}, ∅ 6= S ⊆ N{0,1}

0 otherwise.

The next result gives a set of workload decomposition laws, i.e., linear equations relating workload
terms corresponding to the active and the passive action.

Proposition 4 (Workload decomposition laws). For u ∈ U and S ⊆ N{0,1},

bu
i +

∑

j∈S

wS
j x0,u

ij = bS
i +

∑

j∈N{0,1}\S

wS
j x1,u

ij .

Proof. Using in turn equations (33) and (42), we have

0 =
[
x0,u

i (I − β P0) + x1,u
i (I − β P1) − ei

]
bS

= x0,u
i (I − β P0) bS + x1,u

i

[
(I − β P1) bS − θ

1
]

− ei bS + x1,u
i θ

1

= x0,u
i,S wS

S − x1,u
i,N\S

wS
N\S − bS

i + bu
i ,

which gives the required result, after simplification using Lemma 5.

The relation between coefficients bS
j ’s and wS

j ’s is further clarified next.

Corollary 1. For i ∈ N and S ⊆ N{0,1},

b
S∪{j}
i = bS

i + wS
j x

1,S∪{j}
ij , j ∈ N{0,1} \ S

bS
i = b

S\{j}
i + wS

j x
0,S\{j}
ij , j ∈ S.
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Proof. It follows by letting u = S ∪ {j} and u = S \ {j} in Proposition 4, respectively.

Proposition 4 suggests the following conditions for satisfaction of PCLs.

Assumption 4. Marginal workloads wS
j satisfy the following: for S ∈ F ,

wS
j > 0, j ∈ N{0,1}.

Assumption 4 represents a monotonicity property of bu, as shown next.

Proposition 5. Assumption 4 is equivalent to the following: for S ∈ F ,

bS
j < b

S∪{j}
j , j ∈ N{0,1} \ S

bS
j > b

S\{j}
j , j ∈ S.

(43)

Proof. The result follows from Corollary 1, by noting that x
1,S∪{j}
jj > 0, for j ∈ N{0,1} \ S, and

x
0,S\{j}
jj > 0, for j ∈ S.

We are now ready to established the required PCLs.

Theorem 8 (PCLs). Under Assumption 4, performance vector xu
i satisfies PCLs relative to F ∗-

policies.

Proof. The result follows by combining Proposition 4 with Assumption 4. Consider, e.g., the case
S∗ = S ∪ {∗}, where ∅ 6= S ∈ F . Under any policy u ∈ U ,

∑

j∈F∗

wS∗

j xu
ij = bu

i +
∑

j∈S

wS
j x0,u

ij

= bS
i +

∑

j∈N{0,1}\S

wS
j x1,u

ij

≥ bS
i = bS∗

i ,

with equality attained in the last inequality if priority is given to S∗-jobs, i.e., if the passive action is
taken at states j ∈ N{0,1} \ S. Other cases follow similarly.

We next define a class of RBs that will be shown to be indexable. Let n = |N{0,1}|.

Definition 11 (PCL-indexable RBs). We say the RB is PCL-indexable relative to activity measure
bu and F -policies if the following conditions holds:
(i) Positive marginal workloads: Assumption 4 holds.
(ii) Index monotonicity: Let (ADMISSIBLE, π, ν) be the output of any index algorithm in Section 4
on input ĥ0

N{0,1} . Then, the indices satisfy

νπ1
≤ · · · ≤ νπn , (44)

i.e., ADMISSIBLE = TRUE , or ĥ0
N{0,1} ∈ C (F ).

Remark 11. The definition of PCL-indexability in [26] is recovered in the case θ1
j ≡ 1.

26



Assume below that the RB is PCL-indexable. Feed any index algorithm with input ĥ0
N{0,1} to get

F -string π and index vector ν. Let Sk = {πk, . . . , πn}, for 1 ≤ k ≤ n. The next result shows that
PCL-indexability implies indexability (cf. Definition 2).

Theorem 9 (PCL-indexability =⇒ indexability). The RB is indexable, and the dynamic allocation
index of state j is νj, for j ∈ N{0,1}.

Proof. Theorem 7 applies to the two-project formulation of the normalized ν-charge problem. It follows
that (i) the priority index of the calibrating project’s state is ν∗ = ν; and (ii) the dynamic allocation
index for the original project’s controllable state j is νj. The result now follows by interpreting
Theorem 7 in terms of Definition 2.

Several consequences follow from the above, starting with a reformulation of the ν-charge problem
as an LP over an F ∗-extended polymatroid. Consider the polyhedron Pi(F

∗) ⊂ R
J∗

defined as in
(12), relative to parameters wS∗

j and bS∗

i as above.

Corollary 2. Pi(F
∗) is an F ∗-extended polymatroid. The ν-charge problem can be reformulated as

the LP

vi(ν) = vN{0,1}

i + min





∑

j∈N{0,1}

ĥ0
j xj + ν x∗ : x ∈ Pi(F

∗)



 .

The next result, illustrated in Figure 4, characterizes vi(ν). Let Sn+1 = ∅.

PSfrag replacements

vi(ν)

νπn
νπ1

νπ2 ν

Figure 4: Dependence on activity charge ν of optimal value function vi(ν).

Corollary 3. Function vi(ν) is continuous, concave and piecewise linear on ν, and

vi(ν) = min
{

vSk

i (ν) : 0 ≤ k ≤ n
}

=





vS1

i (ν) = vS1

i + ν bS1

i , if ν ∈ (−∞, νπ1
]

vSk

i (ν) = vSk

i + ν bSk

i , if ν ∈ [νπk−1
, νπk

], 2 ≤ k ≤ n

v
Sn+1

i (ν) = v
Sn+1

i + ν b
Sn+1

i , if ν ∈ [νπn , +∞).
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Proof. The identities follow from Theorem 9 and Definition 2. They imply vi(ν) is continuous concave
piecewise linear on ν, being the minimum of linear functions of ν.

6.3 Marginal costs

Recall that in Section 4.5 we introduced marginal costs cS
j ’s to simplify index calculations. This section

discusses further properties of such coefficients in the RB setting.
We start by defining coefficients cS

j , for j ∈ N , S ⊆ N{0,1}, in terms of value measure vS
i . For

every S, the vS
i ’s are characterized by the linear equations

vS
i =





h1
i + β

∑

j∈N

p1
ij vS

j if i ∈ S

h0
i + β

∑

j∈N

p0
ij vS

j if i ∈ N \ S;

or, in vector notation,

vS
S = h1

S + β P1
SN vS

vS
N\S = h0

N\S + β P0
N\S,N vS .

(45)

Define now
cS

i = h0
i − h1

i + β
∑

j∈N

(p0
ij − p1

ij) vS
j , i ∈ N, (46)

i.e.,

cS = h0 − h1 + β
(
P0 − P1

)
vS , (47)

Coefficient cS
i thus represents the marginal increment in cost measure vS resulting from a passive-to-

active action interchange in initial state i.
It immediately follows that

cS
j = 0, j ∈ N{1}. (48)

Furthermore, (45)–(47) readily yields the following counterpart of Lemma 5.

Lemma 6. The following identities hold:

h0 − (I − β P0) vS =

[
cS

S

0N\S

]

(I − β P1) vS − h1 =

[
0S

cS
N\S

]
.

(49)

The next result is a cost analog of Proposition 4.

Proposition 6 (Cost decomposition laws). For u ∈ U and S ⊆ N{0,1},

vS
i +

∑

j∈S

cS
j x0,u

ij = vu
i +

∑

j∈N{0,1}\S

cS
j x1,u

ij . (50)
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Proof. Using in turn equations (33) and (49), we have

0 =
[
x0,u

i (I − β P0) + x1,u
i (I − β P1) − ei

]
vS

= x0,u
i

[
(I − β P0) vS − h0

]
+ x1,u

i

[
(I − β P1) vS − h1

]
−

ei vS + x1,u
i h1 + x0,u(i) h0

= −x0,u
i,S cS

S + x1,u
i,N\S

cS
N\S − vS

i + vu
i ,

which yields the result, using (48).

The relation between coefficients vS
j ’s and cS

j ’s is clarified next (cf. Corollary 1).

Corollary 4. The following identities hold: for i ∈ N and S ⊆ N{0,1},

vS
i = v

S∪{j}
i + cS

j x
1,S∪{j}
ij , j ∈ N{0,1} \ S

v
S\{j}
i = vS

i + cS
j x

0,S\{j}
ij , j ∈ S.

Proof. It follows by letting u = S ∪ {j} and u = S \ {j} in Proposition 6, respectively.

The next result sheds further light on the relation between time and value measures, and between
marginal workloads and marginal costs.

Proposition 7. Under Assumption 4, the following holds: for j ∈ S ∈ F ,

(a) vS\{j} − vS =
cS

j

wS
j

(
bS − bS\{j}

)
=

c
S\{j}
j

w
S\{j}
j

(
bS − bS\{j}

)
.

(b)
cS

j

wS
j

=
c

S\{j}
j

w
S\{j}
j

.

(c) cS − cS\{j} =
cS

j

wS
j

(
wS − wS\{j}

)
.

Proof. (a) This part follows from Proposition 4 and Proposition 6.
(b) The result follows from (a) and Proposition 5.
(c) From (41), we readily obtain

wS − wS\{j} = β
(
P1 − P0

) (
bS − bS\{j}

)
. (51)

Similarly, by (47), we have

cS − cS\{j} = β
(
P0 − P1

) (
vS − vS\{j}

)
. (52)

The result now follows by combining part (a) with (51)–(52).
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Remark 12.

1. Proposition 7 shows that the cS
j ’s defined by (46) extend those defined by (29).

2. It follows by construction that the cS
j ’s are symmetric (cf. Definition 8). Therefore, marginal

workloads satisfy the recursion in Proposition 3.

3. Note that, by combining identities (36), (45) and (49), it follows that

ĥ0 = cJ . (53)

6.4 PCL-indexability as a law of diminishing marginal returns

This section discusses the intuitive interpretation of PCL-indexability (cf. Definition 11) as a form of
the classic economic law of diminishing marginal returns. Suppose the project is PCL-indexable as
above, and let π, ν and Sk be as in Section 6.2. Assume the initial state is drawn from a probability
distribution assigning a positive mass pi > 0 to each state i ∈ N . Write p = (pi)i∈N , bS =

∑
i∈N pi bS

i ,
and vS =

∑
i∈N pi vS

i .

Theorem 10 (Index characterization and diminishing marginal returns). (a)

bSn+1 < bSn < · · · < bS1.

(b) For 1 ≤ k ≤ n, dynamic allocation index νπk
is given by

νπk
=

vSk+1 − vSk

bSk − bSk+1

= min

{
vSk\{j} − vSk

bSk − bSk\{j}
: j ∈ Sk

}

= max

{
vSk − vSk∪{j}

bSk∪{j} − bSk
: j ∈ N{0,1} \ Sk

}
.

(c) Diminishing marginal returns:

vS2 − vS1

bS1 − bS2
≤

vS3 − vS2

bS2 − bS3
≤ · · · ≤

vSn+1 − vSn

bSn − bSn+1
.

Proof. (a) This part follows from Proposition 5 and p > 0.
(b) The first identity follows from Proposition 7, identity (26), and part (a). The second identity

then follows from (28) in Proposition 2. The third identity further follows from Corollary 3.
(c) The result follows from parts (a), (b) and the inequalities in (17).

Remark 13.

1. Part (a) shows that the busy or active time (as measured by bu) is strictly increasing along the
set/policy sequence ∅ = Sn+1 ⊂ Sn ⊂ · · · ⊂ S1 = N{0,1}.

2. Part (b) characterizes index νπk
as a locally optimal marginal cost rate: it is the minimal rate of

marginal cost increase from vSk per unit marginal activity decrease from bSk resulting from an
active-to-passive action interchange on some state j ∈ Sk. Furthermore, νπk

is the maximal rate
of marginal cost decrease from vSk per unit marginal activity increase from bSk resulting from a
passive-to-active action interchange on some state j ∈ N{0,1} \ Sk.
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3. Part (c) shows that the optimal rate of marginal cost decrease per unit marginal active time
increase diminishes on the base active time. It thus represents a form of the law of diminishing
marginal returns.

PSfrag replacements

bubS1bSk−1

bS4

bSk bSk∪{j}bSk+1bSk\{i}bSn+1

vu

Figure 5: Activity-cost plot: PCL-indexability and diminishing marginal returns.

Figure 5 illustrates the result by an activity-cost plot, where the shaded area represents the region
of achievable activity-cost pairs (bu, vu). We further have the following index characterization under
Assumption 3 on nondecreasing marginal workloads.

Theorem 11. Under Assumption 3,

νj = max





v
S\{j}
j − vS

j

bS
j − b

S\{j}
j

: j ∈ S ∈ {S1, . . . , Sn}



 , j ∈ N{0,1}. (54)

Proof. The result follows directly from Theorem 4 and Proposition 7.

Remark 14.

1. Theorem 11 represents an RB counterpart of the Gittins index characterization for classic bandits
( P0 = I and h0 = 0) as an optimal average cost (reward) rate per unit time, first given in [15].
In the classic case Theorem 11 gives

νj = max

{
−vS

j

bS
j

: j ∈ S ∈ {S1, . . . , Sn}

}
, j ∈ N{0,1},

since b
S\{j}
j = v

S\{j}
j = 0. Actually, the Gittins index characterization in [15] is

νj = max

{
−vS

j

bS
j

: j ∈ S ∈ 2N

}
, j ∈ N,
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2. We pose the open problem: Find conditions under which (54) extends to

νj = max





v
S\{j}
j − vS

j

bS
j − b

S\{j}
j

: j ∈ S ∈ F



 , j ∈ N{0,1}.

6.5 Extension to the long-run average criterion

The results above for the time-discounted criterion readily extend to the long-run average criterion
under suitable ergodicity conditions, by standard limiting (Tauberian) arguments. Assume that the
model is communicating, i.e., every state can be reached from every other state under some stationary
policy. Assume further that, for every S ∈ F , the S-active policy is unichain, i.e., it induces a single
recurrent class plus a (possibly empty) set of transient states. Then, it is well known that measures
bu

i (β), vu
i (β), xa,u

ij (β) (where we have made explicit the dependence on β), when scaled by factor 1−β,
converge to limiting values independent of the initial state i, given by

b̄u = lim
T →∞

1

T
Eu

i

[
T∑

t=0

θ1
X(t) a(t)

]
= lim

βր1
(1 − β) bu

i (β),

v̄u = lim
T →∞

1

T
Eu

i

[
T∑

t=0

h
a(t)
X(t)

]
= lim

βր1
(1 − β) vu

i (β),

x̄a,u
j = lim

T →∞

1

T
Eu

i

[
T∑

t=0

1{X(t) = j, a(t) = a}

]
= lim

βր1
(1 − β) xa,u

ij (β).

Hence, b̄u, v̄u and x̄a,u
j are the corresponding long-run average, or steady-state, measures.

We next argue that the unscaled quantities wS
i (β) and cS

i (β) converge to finite limits w̄S
i and c̄S

i

as β ր 1. Start with marginal workload wS
i (β). We can write, for i ∈ N and S ∈ F ,

bS
i (β) =

b̄S

1 − β
+ aS

i + O(1 − β), as β ր 1, (55)

where the values aS
i are determined, up to an additive constant, by the equations

b̄S + aS
i =





θ1
i +

∑

j∈N

p1
ij aS

j if i ∈ S ∪ N{1}

∑

j∈N

p0
ij aS

j if i ∈ N{0,1} \ S.

Now, substituting for bS
i (β) as given by (55) in (40), and letting β ր 1, gives

w̄S
i = lim

βր1
wS

i (β) = θ1
i 1{i ∈ N{0,1}} +

∑

j∈N

(p1
ij − p0

ij) aS
j , i ∈ N.

We proceed analogously with marginal costs cS
i (β). Write

vS
i (β) =

v̄S

1 − β
+ fS

i + O(1 − β), as β ր 1, (56)
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where the values fS
i are determined, up to an additive constant, by the equations

v̄S + fS
i =





h1
i +

∑

j∈N

p1
ij fS

j if i ∈ S

h0
i +

∑

j∈N

p0
ij fS

j if i ∈ N \ S.

Now, substituting for vS
i (β) as given by (56) in (46), and letting β ր 1, gives

c̄S
i = lim

βր1
cS

i (β) = h0
i − h1

i +
∑

j∈N

(p0
ij − p1

ij) fS
j , i ∈ N.

Thus, previous results carry over to the long-run average case.

6.6 Optimal control subject to an activity constraint

In applications, it is often of interest to impose a constraint on the mean rate of activity. See, e.g., [19]
and the references therein. This is particularly relevant under the long-run average criterion discussed
above, on which we focus next.

The constrained control problem of concern is to find a stationary policy minimizing cost measure
v̄u, among those whose long-run average activity rate is b̄u = t:

v̄t = min
{

v̄u : b̄u = t, u ∈ U

}
. (57)

Assume the project is PCL-indexable as in Section 6.4, and let π, ν and Sk be its optimal F -string,
index vector and active sets. Suppose that, for some 1 ≤ k ≤ n,

b̄Sk+1 < t < b̄Sk ,

and let

p =
t − b̄Sk+1

b̄Sk − b̄Sk+1

, q = 1 − p.

Denote by (Sk+1, πk, p) the stationary policy that is: active on states j ∈ Sk+1 ∪ N{1}; active on state
πk with probability p; and passive otherwise. The next result follows immediately from Section 6.4,
and hence its proof is omitted. See also Figure 5.

Proposition 8. The following holds:

(a) Policy (Sk+1, πk, p) is optimal for problem (57); its optimal value is

v̄t = (1 − p) v̄Sk+1 + p v̄Sk .

(b) Function v̄t is piecewise linear concave on t, with

d

dt
v̄t = νπk

, b̄Sk+1 < t < b̄Sk .

Remark 15. Proposition 8(b) characterizes the index νπk
as a derivative of the optimal constrained

value function vt with respect to the required activity level t.
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7 Admission control problem: PCL-indexability analysis

This section returns to the admission control model introduced in Section 2. We shall resolve the
issues raised in Section 2.3 by deploying a PCL-indexability analysis. See the Appendix for important
yet ancillary material relevant to this section.

In what follows, we shall write ∆xi = xi − xi−1, di = µi − λi, and

ρi =
λi

µi+1
.

We next state the regularity conditions we shall require of model parameters.

Assumption 5. The following conditions hold:
(i) Concave nondecreasing di: 0 ≤ ∆di+1 ≤ ∆di, 1 ≤ i ≤ n − 1, and ∆d1 > 0.
(ii) Convex nondecreasing hi: ∆hi+1 ≥ ∆hi ≥ 0, 1 ≤ i ≤ n − 1.

Remark 16. Assumption 5 is significantly less restrictive than Chen and Yao’s conditions in [6]. Besides
requiring di to be nondecreasing in their condition (5.5a), they require µi to be concave nondecreasing
in their condition (5.5b). They further impose additional conditions, including linearity of holding
costs.

7.1 PCL-indexability analysis under the discounted criterion

We shall establish PCL-indexability of the model relative to the family of threshold policies, given by
set system (N{0,1}, F ), where F = {S1, . . . , Sn+1} is given by (5)–(6). Activity measure bu

i is given
by (2), which corresponds to letting θ1

j = λj/(α + Λ) in (7), for j ∈ N , where Λ is the uniformization
rate (cf. Appendix A).

We must first calculate marginal workload coefficients wSk

i , for which a complete recursion is given
in Figure 6. It involves coefficients ai, given by (67).

Proposition 9. Marginal workloads wS
i , for i ∈ N{0,1} and S ∈ F , are calculated by the recursion

shown in Figure 6.

Proof. The result follows by reformulating in terms of the wS
i ’s the equations on terms ∆bS(i)’s given

in Lemma 9 and Lemma 12 in Appendix B.1, using identity (66).

Remark 17. The recursion in Figure 6 further yields coefficients wS
i when α = 0. These are the

long-run average marginal workloads discussed in Section 7.2.

The next result establishes the required properties of marginal workloads.

Proposition 10 (Positive nondecreasing wS
i ’s). Under Assumption 5(i):

(a) wS
i > 0, for i ∈ N{0,1}, S ∈ F , and hence Assumption 4 holds.

(b) wS
i is nondecreasing on S ∈ F , for i ∈ S fixed, and hence Assumption 3 holds.

Proof. Both parts follow directly from Lemma 13 in Appendix B.1.

Figure 7 illustrates the recursions and inequalities established in Appendix B.1 on marginal work-
loads (arrows indicate the direction of calculations). Pivot terms, forming the backbone of the recur-
sion, are enclosed in boxes.

Marginal cost analyses are given in Appendix B.2, yielding the following recursion.
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Calculation of wS1

i :

wS1

0

λ0
=

α + ∆d1

α + µ1
;

wS1

i

λi
=

α + ∆di+1 +
wS1

i−1

ρi−1

α + µi+1
, 1 ≤ i ≤ n − 1

Calculation of wS2

i :

wS2

0

λ0
=

α + ∆d1

α + λ0 + µ1
;

wS2

i

λi
=

α + ∆di+1 +
wS2

i−1

ρi−1

α + µi+1
, 1 ≤ i ≤ n − 1

Calculation of w
Sk+1

i ’s, for 2 ≤ k ≤ n:

w
Sk+1

k−1

λk−1
=

1

ak

α + ∆dk +
wSk

k−2

ρk−2

α + λk−1 + µk

;
w

Sk+1

k−2

ρk−2
= −(α + ∆dk) +

α + λk−1 + µk

λk−1
w

Sk+1

k−1

w
Sk+1

i

λi

=

α + ∆di+1 +
w

Sk+1

i−1

ρi−1

α + µi+1
, k ≤ i ≤ n − 1

w
Sk+1

i

ρi

= −(α + ∆di+2) +
α + λi+1 + µi+2

λi+1
w

Sk+1

i+1 − w
Sk+1

i+2 , 0 ≤ i ≤ k − 3

Figure 6: Recursive calculation of marginal workloads wSk

i .

wS1

0 > wS2

0 < · · · · · · · · · < w
Sn+1

0

↓ ↓ ց ↑

wS1

1 > wS2

1 >
. . . · · · · · · < w

Sn+1

1

↓ ↓
. . . ↑

...
...

. . .
...

↓ ↓ ց ↑

wS1

n−1 > wS2

n−1 > · · · · · · · · · > w
Sn+1

n−1

Figure 7: Relations between marginal workloads wSk

i .
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Proposition 11. Marginal costs c
Sk+2

k , for 0 ≤ k ≤ n − 1, are calculated by

cS2

0 =
λ0

α + λ0 + µ1
∆h1

c
Sk+2

k =
λk

ak+1

∆hk+1 +
c

Sk+1

k−1

ρk−1

α + λk + µk+1
, 1 ≤ k ≤ n − 1.

We are now ready to establish the model’s PCL-indexability, and to calculate its indices. Construct
ν0, . . . , νn−1 recursively by

ν0 =
∆h1

α + ∆d1

νj = νj−1 +
∆hj+1 − νj−1 (α + ∆dj+1)

α + ∆dj+1 +
w

Sj+1

j−1

ρj−1

, 1 ≤ j ≤ n − 1. (58)

We shall need the following preliminary result.

Lemma 7. Under Assumption 5, the following holds:

(a)
∆hj

α + ∆dj
≤

∆hj+1

α + ∆dj+1
, 1 ≤ j ≤ n − 1.

(b) νj ≤
∆hj+1

α + ∆dj+1
, 0 ≤ j ≤ n − 1.

(c) ν0 ≤ ν1 ≤ · · · ≤ νn−1.

Proof. (a) The result follows directly from Assumption 5.
(b) Proceed by induction on j. The case j = 0 holds by (58). Suppose now

νj−1 ≤
∆hj

α + ∆dj
.

It then follows, by part (a), that

νj−1 ≤
∆hj+1

α + ∆dj+1
.

Notice now that the last identity in (58) can be reformulated as

νj =
∆hj+1

α + ∆dj+1
+

w
Sj+1

j−1

ρj−1

α + ∆dj+1 +
w

Sj+1

j−1

ρj−1

[
νj−1 −

∆hj+1

α + ∆dj+1

]
.

Since α + ∆dj+1 > 0 and w
Sj+1

j−1 > 0, it follows from the last identity that

νj−1 ≤
∆hj+1

α + ∆dj+1
⇐⇒ νj ≤

∆hj+1

α + ∆dj+1
,

which completes the induction.
(c) This follows from parts (a) and (b), together with (58).
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We are now ready to establish the main result of this section.

Theorem 12 (PCL-indexability: discounted criterion). Under Assumption 5, the admission control
model is PCL-indexable relative to threshold policies and rejection measure bu. Its dynamic allocation
indices are the νj’s given by (58), and satisfy (54).

Proof. Using (26) and Proposition 7(b), we must show that

νj =
c

Sj+2

j

w
Sj+2

j

, 0 ≤ j ≤ n − 1.

This readily follows by induction on j, drawing on Proposition 6 and Proposition 11. Furthermore,
Proposition 10 and Theorem 54 imply that the index satisfies (54).

7.2 PCL-indexability under the long-run average criterion

As in Section 6.5, the PCL-indexability analysis above extends to the long-run average version of the
admission control model. The relevant rejection and cost measures are

b̄u = lim
T →∞

1

T
Eu

[∫ T

0
λL(t) a(t) dt

]
,

v̄u = lim
T →∞

1

T
Eu

[∫ T

0
hL(t) dt

]
.

The limiting values of wSk

j , cSk

j and νj as α ց 0 (equivalent to letting β ր 1 in Section 6.5) are
obtained by setting α = 0 in the given recursions. The next result follows.

Corollary 5 (PCL-indexability: long-run average criterion). Under Assumption 5, the admission
control model, under the long-run average criterion, is PCL-indexable relative to threshold policies
and rejection measure b̄u. Its indices satisfy

ν̄j = max

{
v̄S\{j} − v̄S

b̄S − b̄S\{j}
: j ∈ S ∈ {S1, . . . , Sn}

}
, j ∈ N{0,1}.

7.3 The case λj = λ, µj = µ, α = 0

This section derives the long-run average indices when λj = λ, µj = µ. Note that ρj = ρ = λ/µ. As
we shall see in Section 8, the case ρ > 1 is often of interest in applications.

The following results follow easily by induction, and hence we omit their proof. Note first that the
coefficients aj , defined by (67), are given, for 1 ≤ j ≤ n − 1, by

aj =
1

1 + ρ

1 + · · · + ρj

1 + · · · + ρj−1
=





1

1 + ρ

ρj+1 − 1

ρj − 1
if ρ 6= 1

1

2

j + 1

j
if ρ = 1.

37



Regarding marginal workloads, we have

wS1

j = λ, 1 ≤ j ≤ n − 1

wS2

0 =
1

1 + ρ
λ

w
Sj+1

j−1 =
1

1 + ρ

w
Sj

j−2

aj

, 2 ≤ j ≤ n.

Such recursion gives

w
Sj+1

j−1 =
λ

(1 + ρ)j
j∏

i=1

ai

=
λ

1 + · · · + ρj
, 1 ≤ j ≤ n.

Hence, index recursion (58) reduces to

ν0 =
∆h1

µ

νj = νj−1 + ∆hj+1
1 + · · · + ρj

µ
, 1 ≤ j ≤ n − 1,

which yields

νj =
1

µ

j+1∑

i=1

∆hi

(
1 + · · · + ρi−1

)
=





1

µ

j+1∑

i=1

∆hi
ρi − 1

ρ − 1
if ρ 6= 1

1

µ

j+1∑

i=1

i ∆hi if ρ = 1.

(59)

Remark 18. A consequence of (59) is that, in this setting, the index is monotonic, and hence the model
is PCL-indexable, under the relaxed assumption that cost rates hi be only nondecreasing: they need
not be convex as in Assumption 5(ii).

In the linear cost case hj = h j, we obtain

νj =
h

µ

j+1∑

i=1

(
1 + · · · + ρi−1

)
=





h

µ

[
ρj+2 − 1

(ρ − 1)2
−

j + 2

ρ − 1

]
if ρ 6= 1

h

µ

(j + 1) (j + 2)

2
if ρ = 1.

(60)

In the quadratic cost case hj = h j2, we obtain, when ρ 6= 1,

νj =
h

µ

[(
2j + 1

(ρ − 1)2
−

2

(ρ − 1)3

)
ρj+2 −

j (j + 2)

ρ − 1
+

3

(ρ − 1)2
+

2

(ρ − 1)3

]
(61)

and, when ρ = 1,

νj =
h

µ

(j + 1) (j + 2) (4j + 3)

6
.
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8 Applications to routing and make-to-stock scheduling in queueing

systems

In this section we apply the admission control index obtained in Section 7 to develop new heuristic
index policies for two hard queueing control problems.

8.1 An index policy for admission control and routing to parallel queues

Consider a system at which customers arrive as a Poisson stream with rate λ. Upon arrival, a customer
may be either rejected, or routed to one of m queues for service. Queue k has a finite buffer holding
at most nk customers. Its service times are exponential, with rate µk(jk) when it holds Lk(t) = jk

customers at time t ≥ 0, for jk ∈ Nk = {0, . . . , nk}. When all buffers are full, an arriving customer is
lost.

Customers in queue k incur holding costs at rate hk(jk) while Lk(t) = jk, discounted in time
at rate α > 0. Furthermore, a rejection charge ν is incurred per lost customer. The problem of
concern is to find a stationary admission control and routing policy prescribing whether to admit each
arriving customer and, if so, to which nonfull queue to route it, in order to minimize the expected
total discounted sum of holding costs and rejection charges incurred over an infinite horizon.

We assume model parameters satisfy the following conditions.

Assumption 6. For 1 ≤ k ≤ m, the following holds:
(i) Concave nondecreasing µk(jk): 0 ≤ ∆µk(jk + 1) ≤ ∆µk(jk), 1 ≤ jk < nk.
(ii) Convex nondecreasing hk(jk): 0 ≤ ∆hk(jk) ≤ ∆hk(jk + 1), 1 ≤ jk < nk.

We aim to design a well-grounded and tractable heuristic policy, for which we shall use the ad-
mission control index developed in Section 7. The idea is to note that this model is an RBP made up
of m single-queue admission control RBs as studied before where, at each time, at most one of the m
entry gates must be open.

Let νk(jk) be queue k’s admission control index, representing the fair rejection charge for a cus-
tomer finding queue k in state jk < nk. Such interpretation leads to the following admission control
and routing index policy:

1. Route an arriving customer to a nonfull queue k whose current state jk < nk has the smallest
index νk(jk) satisfying νk(jk) < ν, if any is available.

2. Otherwise, reject the customer.

In the case where queues are symmetric (ignoring possibly different buffer lengths), and the ad-
mission control capability is removed (by letting ν = ∞), such policy reduces to the celebrated
shortest queue routing policy. The latter is known to be optimal under appropriate assumptions. See
[38, 18, 20].

In the case of constant service rates µk(jk) = µk and linear holding costs hk(jk) = hk jk, under the
long-run average criterion (α = 0), identity (60) yields the routing index

νk(jk) =
hk

µk

[
ρjk+2

k − 1

(ρk − 1)2
−

jk + 2

ρk − 1

]
, (62)

where ρk = λ/µk. The heavy traffic case ρk > 1, where each queue lacks the capacity to process
all the traffic, is of considerable interest in applications; in such case, when there are 2 queues, the
switching curve in state space (j1, j2) determined by such policy is asymptotically linear with limiting
slope ln ρ1/ ln ρ2 as j1, j2 → ∞. The index policy above readily extends to models with infinite buffers.
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Note that the standard heuristic in the linear cost case routes customers to the queue with smallest
index ν̂k(jk) = hk (jk + 1)/µk.

8.2 An index policy for scheduling a multiclass make-to-stock queue with lost

sales

We next consider a model for scheduling a multiclass make-to-stock queue (cf. [5, Ch. 4]) in the
lost sales case, which extends a simpler model studied by Veatch and Wein in [35] (having constant
production and demand rates, and linear holding costs).

A flexible production facility makes m products, labeled by k = 1, . . . , m, in a make-to-stock
mode. The facility can work on at most an item at a time. Finished product k items are stored
in a dedicated stock, holding up to nk items. When this contains Lk(t) = jk units, the facility can
work at rate µk(jk) on such products, and corresponding customer orders arrive at rate λk(jk). We
assume mutually independent, exponential production and interarrival times. A product k’s order is
immediately filled from stock if jk ≥ 1, and is otherwise lost. At each time, the facility can either stay
idle, or engage in production of an item, by following a stationary policy.

Product k incurs state-dependent stock holding costs, at rate ck(jk) per unit time; stockout costs,
at rate sk per lost order; and is sold for a state-dependent price rk(jk). The resulting product k’s net
cost rate per unit time in state jk is thus

hk(jk) = ck(jk) + sk λk(0) 1{jk = 0} − rk(jk) λk(jk) 1{jk > 0}.

We further assume that production is subsidized at rate ν per completed item. Costs and rewards are
discounted in time at rate α > 0.

We shall assume that model parameters satisfy the following conditions (cf. Assumption 5). Let
dk(jk) = λk(jk) − µk(jk) for jk ≥ 1. For consistency with previous analyses, write ∆dk(1) = λk(1) −
∆µk(1).

Assumption 7. For 1 ≤ k ≤ m, the following holds:
(i) Concave nondecreasing dk(jk): 0 ≤ ∆dk(jk + 1) ≤ ∆dk(jk), 1 ≤ jk < nk, and ∆dk(1) > 0.
(iii) Convex nondecreasing hk(jk): 0 ≤ ∆hk(jk) ≤ ∆hk(jk + 1), 0 ≤ jk < nk.

The goal is to design a state-dependent production scheduling policy, which dynamically prescribes
whether to engage in production and, if so, of which product, so as to minimize the expected total
discounted value of costs accrued over an infinite horizon.

The admission control index derived before readily yields a heuristic index policy for such problem.
The idea is to note that the present model is an RBP made up of m single-queue admission control
projects as studied before, with the roles of parameters λ’s and µ’s interchanged. Thus, opening queue
k’s entry gate corresponds to making product k. One must then, at each time, open at most one entry
gate.

Let νk(jk) be queue k’s admission control index, representing the critical production subsidy under
which one should be indifferent between idling and making product k in state jk. Such interpretation
leads to the following production control index policy:

1. Make a product k with a nonfull stock level jk < nk having the smallest index νk(jk) satisfying
νk(jk) < ν, if any is available.

2. Otherwise, idle the facility.
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Note that one may equivalently regard −ν as a production cost rate per completed item. Hence,
the indices −νk(jk) represent critical production costs for product k. Note further that, in the case of
identical products, such policy prescribes to make the product k having the least stock jk available,
as long as νk(jk) < ν.

We next draw on the results in Section 7.3 to give explicit formulae for the index in some special
cases, corresponding to constant arrival and service rates λk(jk) = λk, µk(jk) = µk, under the long-run
average criterion α = 0. Let ρk = λk/µk 6= 1.

Consider first the case of linear stock holding costs and constant selling prices,

hk(jk) = ck jk + sk λk 1{jk = 0} − rk λk 1{jk > 0}.

The results in Section 7.3 then yield the production index

νk(jk) =
ck

µk

[
ρ−jk−1

k − 1

(1 − ρk)2
−

jk + 1

1 − ρk

]
− rk − sk. (63)

Remark 19.

1. The index (63) equals Whittle’s in [35] scaled by factor 1/µk. Yet, although both indices give
the same (optimal) policy for a single-product problem, such factor causes them to give distinct
policies for the multi-product problem if the µk’s differ.

2. The index policy idles the facility when the number of units in stock for each product lies at
or above a corresponding critical base-stock level. The idling policy is thus characterized by the
hedging-point (cf. [35]) consisting of such base-stocks.

3. The index in (63) also gives a policy for a model with unlimited storage capacity (nk = ∞). In
such setting, if ρk > 1 for some product k, then νk(jk) < 0. Hence, in the case ν = 0, the facility
will never idle.

Consider next the case where stock holding costs are quadratic, so that

hk(jk) = ck j2
k + sk λk 1{jk = 0} − rk λk 1{jk > 0}.

One then obtains, via (61), the production index

νk(jk) =
ck

µk

[(
2jk + 3

(1 − ρk)2
−

2

(1 − ρk)3

)
ρ−jk−1

k (64)

−
(jk + 1)2

1 − ρk

−
1

(1 − ρk)2
+

2

(1 − ρk)3

]
− rk − sk.

9 Concluding remarks

We have developed a polyhedral approach to the development of dynamic allocation indices in a variety
of stochastic scheduling problems. In our view, such results offer a glimpse of the untapped potential
which polyhedral methods have to offer in the field of stochastic optimization. We highlight two avenues
for further research, which are the subject of ongoing work: test empirically the proposed heuristic
index policies, as in [3]; and provide approximate and asymptotic analyses of their performance, as in
[16].
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A Discrete-time reformulation

We reformulate the model of concern into discrete time by deploying the standard uniformization
technique (cf. [22]), which proceeds in two steps: (i) the original process L(t) is reformulated into
an equivalent uniformized process L̃(t), having uniform transition rate Λ; process L̃(t) is obtained by
sampling L(t) at time epochs corresponding to a Poisson process with rate Λ; these includes real as
well as virtual transitions, in which no state change occurs; and (ii) process L̃(t) is reformulated into
a discrete-time process X(t), by viewing inter-transition intervals as discrete time periods.

Note that Λ > 0 is a valid uniform transition rate iff it satisfies

λi + µi ≤ Λ, i ∈ N.

The resulting discrete-time process X(t), for t = 0, 1, . . ., is an RB (cf. Section 3) characterized by
the following elements:

-State space: N = {0, 1, . . . , n}; N{0,1} = {0, . . . , n − 1}; N{1} = {n}.

-Actions: a = 0 (passive; open entry gate) and a = 1 (active; shut entry gate).

-Transition probability matrices: Under action a = 1,

P1 =
1

Λ




Λ
µ1 Λ − µ1

. . .
. . .
. . .

. . .

µn Λ − µn




;

and, under action a = 0,

P0 =
1

Λ




Λ − λ0 λ0

µ1 Λ − λ1 − µ1 λ1

. . .
. . .

. . .

. . .
. . .

. . .

µn Λ − µn




.

-One-period holding costs: c0 = c1 =
1

α + Λ
h.

-Discount factor: β =
Λ

α + Λ
.

B Marginal workload and cost analysis

B.1 Marginal workloads: calculation and properties

We next address the tasks of calculating marginal workloads wSk

i for the admission control model, and
of establishing their required properties.
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Calculation of scaled w
Sk

i ’s

To avoid dependence on uniformization rate Λ, the coefficients wS
i we shall calculate correspond to

those defined by (40) after scaling by factor α + Λ. Since

P1 − P0 =
1

Λ




λ0 −λ0

λ1 −λ1

. . .
. . .

λn−1 −λn−1

0 0




, (65)

we have

wS
i =





λi

[
1 − ∆bS

i+1

]
if 0 ≤ i ≤ n − 1

0 if i = n.
(66)

Calculation of the wS
i ’s thus reduces to that of the ∆bS

i ’s. To study the latter, we start by
characterizing the coefficients bSk

i , through their defining equations in (39). We shall denote by λS
i the

birth rate in state i under the S-active policy, i.e.,

λS
i = λi 1{i ∈ N{0,1} \ S}, i ∈ N.

Note that λSk

i = λi 1{0 ≤ i < k − 1}, for 1 ≤ k ≤ n + 1.

Lemma 8. For 1 ≤ k ≤ n + 1, coefficients bSk

i are characterized by the equations

(α + Λ) bSk
0 = λ0 − λSk

0 + (Λ − λSk
0 ) bSk

0 + λSk
0 bSk

1

(α + Λ) bSk

i = λi − λSk

i + µi bSk

i−1 + (Λ − λSk

i − µi) bSk

i + λSk

i bSk

i+1, 1 ≤ i ≤ n − 1

(α + Λ) bSk
n = λn + µn bSk

n−1 + (Λ − µn) bSk
n .

The next result, characterizing coefficients ∆bSk

i , follows immediately.

Lemma 9. For 1 ≤ k ≤ n + 1, coefficients ∆bSk

i are characterized by the equations

(α + λSk

0 + µ1) ∆bSk

1 = ∆λ1 − ∆λSk

1 + λSk

1 ∆bSk

2

(α + λSk

i−1 + µi) ∆bSk

i = ∆λi − ∆λSk

i + µi−1 ∆bSk

i−1 + λSk

i ∆bSk

i+1, 2 ≤ i ≤ n − 1

(α + λSk

n−1 + µn) ∆bSk
n = ∆λn + λSk

n−1 + µn−1 ∆bSk

n−1.

We next develop a recursive procedure to solve the equations in Lemma 9, based on the following
observations: (i) the equations give

∆bS1

1 =
∆λ1

α + µ1
,

from which remaining ∆bS1

i ’s are calculated; (ii) for 1 ≤ k ≤ n, once pivot coefficient ∆b
Sk+1

k is

available, they give the remaining ∆b
Sk+1

i ’s; and (iii) the first pivot is

∆bS2

1 =
λ1

α + λ0 + µ1
.

Hence, if we can express pivot ∆b
Sk+2

k+1 in terms of ∆b
Sk+1

k , for 1 ≤ k ≤ n − 1, this would complete a

recursion to calculate all coefficients ∆bSk

i .

43



We next seek to relate successive pivots, drawing on [6]. Consider, for 1 ≤ k ≤ n − 1, the vectors
(where xT denotes the transpose of vector x)

∆bk =
(
∆b

Sk+1

1 , . . . , ∆b
Sk+1

k

)T

∆b̂k =
(
∆b

Sk+2

1 , . . . , ∆b
Sk+2

k

)T

bk =
λk

α + λk−1 + µk

ek

b̂k =
λk ∆b

Sk+2

k+1

α + λk−1 + µk

ek,

where ek is the kth unit coordinate vector in R
k. Let further Bk be the k × k matrix

Bk =




0 λ1

α+λ0+µ1
µ1

α+λ1+µ2
0 λ2

α+λ1+µ2

. . .
. . .

. . .
. . .

. . .
. . .

µk−1

α+λk−1+µk
0




,

with B1 = 0. The next result reformulates some equations in Lemma 9.

Lemma 10. For 1 ≤ k ≤ n − 1:

(a) ∆bk = bk + Bk ∆bk.

(b) ∆b̂k = b̂k + Bk ∆b̂k.

Recall that di = µi − λi, and that we require that the di satisfy Assumption 5. To proceed,
introduce coefficients

ak =





1 if k = 1

det
(
I − Bk

)

det (I − Bk−1)
if 2 ≤ k ≤ n.

(67)

Lemma 11. Under Assumption 5(i), the following holds:

(a) ak > 0, for 1 ≤ k ≤ n.

(b) The ak’s can be computed recursively by letting a1 = 1 and

ak = 1 −
λk−1 µk−1

(α + λk−2 + µk−1) (α + λk−1 + µk)

1

ak−1
, 2 ≤ k ≤ n.

(c)
α + µk

α + λk−1 + µk
< ak < 1, 2 ≤ k ≤ n.
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Proof. (a) Under Assumption 5(i) the row sums of Bk are less than unity, and hence so is its spectral

radius. It follows that det
(
I − Bk

)
> 0, which proves the result.

(b) The recursion follows from the definition of ak and the identity

det(I − Bk) = det(I − Bk−1) −
λk−1 µk−1

(α + λk−2 + µk−1) (α + λk−1 + µk)
det(I − Bk−2)

(c) Let 2 ≤ k ≤ n. It follows from (a) and (b) that ak < 1. We next show that

ak >
α + µk

α + λk−1 + µk

, 1 ≤ k ≤ n,

by induction on k. The case k = 1 is trivial. Assume the result holds for k − 1, i.e.,

ak−1 >
α + µk−1

α + λk−2 + µk−1
.

Then, part (b) and the induction hypothesis yield

ak = 1 −
λk−1

α + λk−1 + µk

µk−1

α + λk−2 + µk−1

ak−1

> 1 −
λk−1

α + λk−1 + µk

=
α + µk

α + λk−1 + µk

,

which completes the proof.

We are now ready to relate successive pivots.

Lemma 12. For 1 ≤ k ≤ n − 1,

ak+1

[
1 − ∆b

Sk+2

k+1

]
=

α + ∆dk+1 + µk

[
1 − ∆b

Sk+1

k

]

α + λk + µk+1
;

or, equivalently,

w
Sk+2

k =
λk

ak+1

α + ∆dk+1 +
w

Sk+1

k−1

ρk−1

α + λk + µk+1
.

Proof. Fix 1 ≤ k ≤ n − 1. By Lemma 10 and the definitions of hk, ĥk, we have

∆bk − ∆b̂k = (I − Bk)−1 (bk − b̂k)

=
λk

[
1 − ∆b

Sk+2

k+1

]

α + λk−1 + µk

(I − Bk)−1 ek.
(68)

Now, noting that the element in position (k, k) of matrix
(
I − Bk

)−1
is

det
(
I − Bk−1

)

det (I − Bk)
,
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which by definition equals 1/ak, it follows from the last identity above that

∆b
Sk+1

k − ∆b
Sk+2

k =
1

ak

λk (1 − ∆b
Sk+2

k+1 )

α + λk−1 + µk

. (69)

Combining the previous identity with

∆b
Sk+2

k+1 =
λk+1

α + λk + µk+1
+

µk

α + λk + µk+1
∆b

Sk+2

k ,

(cf. Lemma 9), and substituting for ak in terms of ak+1 (cf. Lemma 11), yields the required identities
(after straightforward algebra).

Properties of marginal workloads

We next set out to establish properties of marginal workloads which are invoked in Section 7.

Lemma 13. Under Assumption 5(i), the following holds, for α ≥ 0:

(a) w
Sk+1

k−1 > 0, 1 ≤ k ≤ n.

(b) w
Sk+2

i−1 > w
Sk+1

i−1 , 1 ≤ i ≤ k ≤ n − 1.

(c) w
Sk+1

i−1 > 0 =⇒ w
Sk+1

i > 0, 1 ≤ k ≤ i ≤ n − 1.

(d) w
Sk+1

i > w
Sk+2

i , 1 ≤ k ≤ i ≤ n − 1.

Proof. (a) Proceed by induction on k. The case k = 1 holds by the expression for wS2

0 in Figure 6 and

Assumption 5(i). Suppose now wSk

k−2 > 0. We have

w
Sk+1

k−1

λk−1
=

1

ak

α + ∆dk +
wSk

k−2

ρk−2

α + λk−1 + µk

> 0,

where the identity is taken from Figure 6, and the inequality follows from the induction hypothesis,
along with Assumption 5(i) and ak > 0 (Lemma 11).

(b) Using (66), we can rewrite identity (68) as

∆bk − ∆b̂k =
w

Sk+2

k

α + λk−1 + µk

(I − Bk)−1 ek.

Now, since the spectral radius of Bk is less than unity (cf. Lemma 11’s proof), matrix
(
I − Bk

)−1

is positive componentwise, and hence
(
I − Bk

)−1
ek > 0. Combining this with part (b) and the last

identity above yields ∆bk − ∆b̂k > 0, i.e.,

∆b
Sk+1

i > ∆b
Sk+2

i , 1 ≤ i ≤ k.
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By (66), these inequalities give the required result.
(c) The result follows from

w
Sk+1

i

λi

=

α + ∆di+1 +
w

Sk+1

i−1

ρi−1

α + µi+1
, k ≤ i ≤ n − 1

(cf. Figure 6), and Assumption 5(i).
(d) By (66), the result is equivalent to

∆b
Sk+1

i+1 < ∆b
Sk+2

i+1 , 1 ≤ k ≤ i ≤ n − 1. (70)

Now, it follows from Lemma 9 that, for 1 ≤ k ≤ n − 1,

(α + µi) ∆b
Sk+1

i = µi−1 ∆b
Sk+1

i−1 , k + 1 ≤ i ≤ n − 1

(α + µi) ∆b
Sk+2

i = µi−1 ∆b
Sk+2

i−1 , k + 2 ≤ i ≤ n − 1,

hence
∆b

Sk+2

i − ∆b
Sk+1

i =
µi−1

α + µi
(∆b

Sk+2

i−1 − ∆b
Sk+

i−1 ), k + 2 ≤ i < n.

In light of the last identity, to prove (70) it is enough to show that

∆b
Sk+2

k+1 − ∆b
Sk+1

k+1 > 0,

which we establish next. Consider the case k = 0. By Lemma 9, we have

∆bS2

1 − ∆bS1

1 =
λ1

α + λ0 + µ1
−

∆λ1

α + µ1

=
λ0

α + µ1

α + ∆d1

α + λ0 + µ1
> 0,

where the inequality follows by Assumption 5(i). Consider now the case k ≥ 1. Drawing again on
Lemma 9, we have

(α + λk + µk+1) ∆b
Sk+2

k+1 = λk+1 + µk ∆b
Sk+2

k

(α + µk+1) ∆b
Sk+1

k+1 = ∆λk+1 + µk ∆b
Sk+1

k .

Using in turn the last two identities, (69) and (66), part (a) and Lemma 11(c), yields

(α + µk+1) (∆b
Sk+2

k+1 − ∆b
Sk+1

k+1 ) = λk

[
1 − ∆b

Sk+2

k+1

]
+ µk (∆b

Sk+2

k − ∆b
Sk+2

k )

=

[
1 −

µk/ak

α + λk−1 + µk

]
w

Sk+2

k > 0,

as required. This completes the proof.
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B.2 Marginal cost calculation

We set out in this section to calculate marginal costs cSk

i , proceeding similarly as before for marginal
workloads. Again, to eliminate the dependence on uniformization rate Λ, the terms cS

i below corre-
spond to those defined by (46) after scaling by factor α + Λ.

We start by relating coefficients vS
i ’s and cS

i ’s. From (46) and (65), we obtain

cS
i = λi ∆vS

i+1, 0 ≤ i ≤ n − 1.

We must thus calculate the ∆vSk

i ’s. Start by calculating the vSk

i ’s through (45).

Lemma 14. For 1 ≤ k ≤ n + 1, coefficients vSk

i are characterized by the equations

(α + Λ) vSk

0 = h0 + (Λ − λSk

0 ) vSk

0 + λSk

0 vSk

1

(α + Λ) vSk

i = hi + µi vSk

i−1 + (Λ − λSk

i − µi) vSk

i + λSk

i vSk

i+1, 1 ≤ i ≤ n − 1

(α + Λ) vSk
n = hn + µn vSk

n−1 + (Λ − µn) vSk
n .

It follows that coefficients ∆vSk

i are characterized as shown next.

Lemma 15. For 1 ≤ k ≤ n + 1, coefficients ∆vSk

i are characterized by the equations

(α + λSk

0 + µ1) ∆vSk

1 = ∆h1 + λSk

1 ∆vSk

2

(α + λSk

i−1 + µi) ∆vSk

i = ∆hi + µi−1 ∆vSk

i−1 + λSk

i ∆vSk

i+1, 2 ≤ i ≤ n − 1

(α + λSk

n−1 + µn) ∆vSk
n = ∆hn + µn−1 ∆vSk

n−1.

We next develop a recursion to calculate pivot terms ∆v
Sk+1

k , along the lines followed in Appendix

B.1 to calculate the ∆b
Sk+1

k ’s. Note that Lemma 15 yields

∆vS1

1 =
∆h1

α + µ1
,

and hence

cS1

0 =
λ0

α + µ1
∆h1.

It further yields the first such pivot as

∆vS2

1 =
∆h1

α + λ0 + µ1
,

so that

cS2

0 =
λ0

α + λ0 + µ1
∆h1.

We next set out to relate successive pivots. Associate with 1 ≤ k ≤ n − 1 the vectors

∆vk =
(
∆v

Sk+1

1 , . . . , ∆v
Sk+1

k

)T

∆v̂k =
(
∆v

Sk+2

1 , . . . , ∆v
Sk+2

k

)T

hk =

(
∆h1

α + λ0 + µ1
, . . . ,

∆hk

α + λk−1 + µk

)

ĥk = hk +
λk ∆v

Sk+2

k+1

α + λk−1 + µk

ek.

The next result is a counterpart to Lemma 10.
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Lemma 16. For 1 ≤ k ≤ n − 1,

(a) ∆vk = hk + Bk ∆vk;

(b) ∆v̂k = ĥk + Bk ∆v̂k.

The relation between pivots ∆v
Sk+1

k and ∆v
Sk+2

k+1 , and its marginal cost reformulation is given next.
The proof is similar to that of Lemma 12, and is hence omitted.

Lemma 17. For 1 ≤ k ≤ n − 1,

ak+1 ∆v
Sk+2

k+1 =
∆hk+1

α + λk + µk+1
+

µk

α + λk + µk+1
∆v

Sk+1

k ;

or, equivalently,

c
Sk+2

k =
λk

ak+1

∆hk+1 +
c

Sk+1

k−1

ρk−1

α + λk + µk+1
.

C Possible inconsistency of the Whittle index relative to threshold

policies

The reader may wonder whether the extra flexibility provided by parameters θ1
j in the new index

introduced in Definition 3 significantly expands the scope of the original Whittle index. We argue
next that such is the case by showing, in the setting of the admission control model, that the Whittle
index does not rank the states in a manner consistent with threshold policies, under the parameter
range given by Assumption 5.

Recall that the Whittle index arises from the appropriate ν-charge problem obtained by charging
costs at rate ν while the entry gate is shut. Namely, the corresponding activity measure bu obtains by
letting θ1

j = 1, for j ∈ N = {0, . . . , n}
We shall consider that an index policy for the admission control model is consistent with threshold

policies if index νj is nondecreasing on j ∈ {0, . . . , n − 1}.
Consider the case where the buffer size is n = 2, service rates are µj = µ, and cost rates are

hj = h j. Suppose arrival rates λj are strictly decreasing on j, namely

∆λ2 < 0, ∆λ1 < 0. (71)

It then follows that Assumption 5 holds.
Take, in particular, λ0 = 1, λ1 = 1

2 , λ2 = 1
4 , µ = 3

2 , α = 1
33 , h = 1. Pick the uniformization rate

Λ = 3, so that β = Λ/(α + Λ) = 99
100 .

The corresponding RB is indexable, in Whittle’s sense, and has Whittle indices

ν2 = 0 < ν1 =
3300

6767
< ν0 =

11 022

19 111
.

They thus give a state ranking which is inconsistent with threshold policies.
Such inconsistency only arises, however, under state-dependent arrival rates; under a constant

arrival rate λ, the extended index equals Whittle’s scaled by factor 1/λ.
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