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Abstract

This paper addresses a general class of two-stage stochastic programs
with integer recourse and discrete distributions. We exploit the structure
of the value function of the second stage integer problem to develop a
novel global optimization algorithm. The proposed scheme departs from
those in the current literature in that it avoids explicit enumeration of the
search space while guaranteeing finite termination. Our computational
results indicate superior performance of the proposed algorithm in com-
parison to the existing literature.
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1 Introduction

Under the two-stage stochastic programming paradigm, the decision variables
of an optimization problem under uncertainty are partitioned into two sets.
The first stage variables are those that have to be decided before the actual
realization of the uncertain parameters. Subsequently, once the random events
have presented themselves, further design or operational policy improvements
can be made by selecting, at a certain cost, the values of the second stage or
recourse variables. The goal is to determine first stage decisions such that the
sum of first stage cost and the expected recourse cost is minimized. A standard
formulation of the two stage stochastic program is as follows [4, 28]:
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(2SSP) : z = min cT x+ Eω∈Ω[Q(x, ω)] (1)
s.t. x ∈ X,

with

Q(x, ω) = min f(ω)T y (2)
s.t. D(ω)y ≥ h(ω) + T (ω)x

y ∈ Y,

where X ⊆ R
n1 , c ∈ Rn1 , and Y ⊆ R

n2 . Here, ω is a random variable from
a probability space (Ω,F ,P) with Ω ⊆ R

k , f : Ω → R
n2 , h : Ω → R

m2 ,
D : Ω → R

m2×n2 , T : Ω → R
m2×n1 . Problem (1) with variables x constitute

the first stage which needs to be decided prior to the realization of the uncertain
parameters ω; and (2) with variables y constitute the second stage.
In the presence of linear constraints and variables only, problem (2SSP) is

referred to as a two stage stochastic linear program. For a given value of the
first stage variables x, the second stage problem decomposes into independent
subproblems, one for each realization of the uncertain parameters. This decom-
posability property, along with the convexity of the second stage value function
Q(·, ω) [55, 56], has been exploited to develop a number of decomposition-based
algorithms [5, 20, 26, 41, 54] as well as gradient-based algorithms [17, 46]. For
an extensive discussion of stochastic programming, the reader is referred to
standard text books [4, 25, 28, 37].
In contrast to stochastic linear programming, the study of stochastic integer

programs, those that have integrality requirements in the second stage, is very
much in its infancy. These problems arise when the second stage involves, for
example, scheduling decisions [14], routing decisions [47], resource acquisition
decisions [3], fixed-charge costs [6], and change-over costs [10]. In addition, bi-
nary variables in the second stage can also arise in the modeling of risk objectives
in stochastic linear programming [29]. The main difficulty in solving stochastic
integer programs is that the value function Q(·, ω) is not necessarily convex but
only lower semicontinuous (l.s.c.) [7, 49, 43]. Thus, the standard decomposition
approaches that work nicely for stochastic linear programs, break down when
second stage integer variables are present. As an illustration of the non-convex
nature of stochastic integer programs, consider the following example from [45]:

(EX) : min −1.5x1 − 4x2 + E[Q(x1, x2, ω1, ω2)]
s.t. 0 ≤ x1, x2 ≤ 5,

where

Q(x1, x2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − 13x1 − 23x2
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Figure 1: Objective function of (EX)

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − 23x1 − 13x2

y1, y2, y3, y4 ∈ {0, 1},

and (ω1, ω2) ∈ {5, 15}×{5, 15}with a uniform probability distribution. Figure 1
shows the objective function of (EX) in the space of the first stage variables. The
highly discontinuous (lower semicontinuous) and multi-extremal nature of the
function is clearly observed. Thus, in general, stochastic integer programming
constitutes globally minimizing a highly non-convex function.
For problems where the second stage recourse matrix D possesses a special

structure known as simple recourse, Haneveld et al. [18, 19] proposed solution
schemes based upon the construction of the convex hull of the second stage value
function. For more general recourse structure, Laporte and Louveaux [30] pro-
posed a decomposition-based approach for stochastic integer programs when the
first stage variables are pure binary. This restriction allows for the construction
of optimality cuts that approximate the non-convex second stage value function
at only the binary first stage solutions (but not necessarily at other points).
The authors proposed a branch and bound algorithm approach to search the
space of the first stage variables for the global optimal solution, while using the
optimality cuts to approximate the second stage value function. Finite termi-
nation of the algorithm is obvious since the number of first stage solutions is
finite. The method has been successfully used in solving two-stage stochastic
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location-routing problems [31, 32, 33, 34]. Unfortunately, the algorithm is not
applicable if any of the first stage variables are continuous. Caroe and Tind [12]
generalized this algorithm to handle cases with mixed-integer first and second
stage variables. The method required the use of non-linear integer programming
dual functions to approximate the second stage value function in the space of
the first stage variables. The resulting master problem then consists of non-
linear (possibly discontinuous) cuts, and the authors admit that no practicable
method for its solution is known [45].
Caroe [9, 11] used the scenario decomposition approach of Rockafellar and

Wets [39] to develop a branch and bound algorithm for stochastic integer pro-
grams. This method solves the Lagrangian dual, obtained by dualizing the
non-anticipativity constraints, as the lower bounding problem within a stan-
dard branch and bound framework. The subproblems of the Lagrangian dual
correspond to the scenarios and include variables and constraints from both
first stage and second stage. Consequently, these subproblems are more difficult
to solve than in Benders-based methods, where a subproblem corresponds to
only the second stage problem for a particular scenario. Furthermore, although
the Lagrangian dual provides very tight bounds, its solution requires the use
of subgradient methods and is computationally expensive. A major limitation
of this approach is that finite termination is guaranteed only if the first stage
variables are purely discrete, or if an ε−optimal termination criterion with ε > 0
is used [9, 11].
More recently, Schultz et al. [45] proposed a finite scheme for two-stage

stochastic programs with discrete distributions and pure integer second stage
variables. For this problem, the authors of [45] observe that only integer values
of the right hand side parameters of the second stage problem are relevant.
This fact is used to identify a countable set in the space of the first stage
variables containing the optimal solution. In [45], the authors propose complete
enumeration of this set to search for the optimal solution. Evaluation of an
element of the set requires the solution of second stage integer subproblems
corresponding to all possible realizations of the uncertain parameters. Thus,
explicit enumeration of all elements is, in general, computationally prohibitive.
For a more detailed discussion on various algorithms for stochastic integer

programming, the reader is referred to the recent surveys of van der Vlerk and
co-workers [53, 44, 50].
In this paper, we develop a branch and bound algorithm for the global op-

timization of two-stage stochastic integer programs with discrete distributions,
mixed-integer first stage variables, and pure integer second stage variables. The
main difficulty with applying branch and bound to a (semi-)continuous domain
is that the resulting approach may not be finite, i.e., infinitely many subdivisions
may be required for the lower and upper bounds to become exactly equal. With
the exception of one [45], all existing practical algorithms for general stochastic
integer programming also rely on applying branch and bound to the first stage
variables to deal with the non-convexities of the value function. Consequently,
finite termination of these algorithms is not guaranteed unless the first stage
variables, i.e., the search space, is purely discrete. For the algorithm proposed

4



in this paper, we prove finite termination. The method differs from the finite al-
gorithm of [45], in that it avoids explicit enumeration of all discontinuous pieces
of the value function. Furthermore, the proposed method allows for uncertain-
ties in the cost parameters and the constraint matrix in addition to the right
hand sides of the recourse problem.
The key concept behind our development is to reformulate the problem via

a variable transformation that induces special structure to the discontinuities of
the value function. This structure is exploited through: (a) a branching strategy
that isolates the discontinuous pieces and eliminates discontinuities, and (b) a
bounding strategy that provides an exact representation of the value function
of the second stage integer program in the absence of discontinuities. Finiteness
of the method is a consequence of the fact that, within a bounded domain,
there is only a finite number of such discontinuous pieces of the value function.
The issue of finiteness is not only of theoretical significance – our computational
results indicate that the proposed algorithm performs vastly superior to existing
strategies in the literature.
The remainder of the paper is organized as follows. Section 2 specifies the

assumptions required for the proposed algorithm. In Section 3, we present the
transformed problem and discuss its relation to the original problem. Some
structural results on the transformed problem are presented in Section 4. These
results are used to develop a branch and bound algorithm in Section 5. Section 6
provides the proof of finiteness of the proposed algorithm. Some enhancements
and extensions of the algorithm are suggested in Section 7. Finally, computa-
tional results are presented in Section 8.

2 Assumptions

In this paper, we address instances of (2SSP) under the following assumptions:

(A1) The uncertain parameter ω follows a discrete distribution with finite sup-
port Ω = {ω1, . . . , ωS} with Pr(ω = ωs) = ps.

(A2) The second stage variables y are purely integer, i.e., y ∈ Zn2.

(A3) The technology matrix T linking the first and second stage problems is
deterministic, i.e., T (ω) = T .

Assumption (A1) is justified by the results of Schultz [43] who showed that,
if ω has a continuous distribution, the optimal solution to the problem can be
approximated within any given accuracy by the use of discrete distributions.
Extensions of the proposed algorithm when assumptions (A2) and (A3) are not
satisfied are briefly discussed in Section 7.
The uncertain problem parameters (f(ω), D(ω), h(ω)) associated with a par-

ticular realization ωs (a scenario), will be succinctly denoted by (fs, Ds, hs) with
associated probability ps. Without any loss of generality, we assume the first
stage variables to be purely continuous. Mixed-integer first stage variables can
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be handled in the framework to follow without any added conceptual difficulty.
We can then state the problem as follows:

(2SSIP) : z = min cx+
S∑

s=1

psQs(x)

s.t. x ∈ X,

with

Qs(x) = min fsy

s.t. Dsy ≥ hs + Tx

y ∈ Y ∩Zn2,

where X ⊆ R
n1 , c ∈ Rn1 , T ∈ Rm2×n1 , and Y ⊆ R

n2 . For each s = 1, . . . , S,
fs ∈ Rn2 , hs ∈ Rm2 , and Ds ∈ Rm2×n2 . Note that the expectation operator
has been replaced by a probability weighted finite sum, and the transposes have
been eliminated for simplicity.
We make the following additional assumptions for (2SSIP):

(A4) The first stage constraint set X is non-empty and compact.

(A5) Qs(x) < ∞ for all x ∈ Rn1 and all s.

(A6) For each s, there exists us ∈ Rm2
+ such that usDs ≤ fs.

(A7) For each s, the second stage constraint matrix is integral, i.e., Ds ∈
Z

m2×n2 .

Assumption (A5) is known as the complete recourse property [55]. In fact, we
only need relatively complete recourse, i.e., Qs(x) <∞ for all x ∈ X and all s.
Since X is compact, relatively complete recourse can always be accomplished by
adding penalty inducing artificial variables to the second stage problem. How-
ever, we shall assume complete recourse for simplicity of exposition. Assumption
(A6) guarantees Qs(x) > −∞ [43]. Thus, Qs(x) is finite valued and (2SSIP) is
well-defined. Assumption (A7) can be satisfied by appropriate scaling whenever
the matrix elements are rational.
For a given value of the first stage variables x, the problem decomposes

into S integer programs Qs(x). It is implicitly assumed that these “small”
integer subproblems are easier to solve than the deterministic equivalent. The
proposed methodology is independent of the oracle required to solve the integer
subproblems. For example, the Gröbner basis framework described in [45] to
solve many similar integer programs, can be used in this context.
Note that, for each s, Qs(x) is the value function of an integer program,

and is well known to be lower semicontinuous (l.s.c) with respect to x. Blair
and Jeroslow [7, 8] showed that such value functions are, in general, continuous
only over certain cones in the space of x and the discontinuities lie along the
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boundaries of these cones. Existing branch and bound methods [30, 9, 11] for
stochastic integer programs attempt to partition the space of first stage variables
by branching on one variable at a time. In this way, the first stage variable
space is partitioned into (hyper)rectangular cells. Since the discontinuities are,
in general, not orthogonal to the variable axes, there would always be some
rectangular partition that contains a discontinuity in the interior. Thus, in the
case of continuous first stage variables, it might not be possible for the lower and
upper bounds to converge for such a partition, unless the partition is arbitrarily
small. This would require infinite partitioning of the first stage variables and
only a convergent (i.e., possibly infinite) scheme. In general, it is not obvious
how one can partition the search space by subdividing along the discontinuities
within a branch and bound framework.
Next, we propose a transformation of the problem that causes the disconti-

nuities to be orthogonal to the variable axes. Thus, a rectangular partitioning
strategy can potentially isolate the discontinuous pieces of the value function,
thereby allowing upper and lower bounds to collapse finitely. This is the key to
the subsequent development of a finite branch and bound algorithm.

3 Problem Transformation

Instead of (2SSIP), we propose to solve the following problem:

(TP) : min f(χ)
s.t. χ ∈ X

where

f(χ) = Φ(χ) + Ψ(χ),

Ψ(χ) =
S∑

s=1

psΨs(χ),

Φ(χ) = min{cx|Tx = χ, x ∈ X},
Ψs(χ) = min{fsy|Dsy ≥ hs + χ, y ∈ Y ∩Zn2}, and

X = {χ ∈ Rm2 |χ = Tx, x ∈ X}.
The variables χ are known as the “tender variables” in the stochastic pro-

gramming literature. These are the variables that link the first and second stage
problems together. Instead of the first stage variables, we propose to search the
space of the tender variable for global optima. The following results establish
the existence of a solution of problem (TP), and its relation to the original
problem (2SSIP).

Theorem 3.1. There exists an optimal solution to problem (TP).

Proof: It follows from Assumption (A5), and the results in [7, 8, 43] that Ψs(·)
is finite valued and l.s.c. Φ(·) is the value function of a linear program, and
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is therefore piece-wise linear and convex (cf. [1]). Thus, f(·) is a positive lin-
ear combination of real valued l.s.c functions, and is therefore l.s.c (by Fatou’s
Lemma cf. [40]). Since X is non-empty compact (A4), and T is a linear trans-
formation, we have X is nonempty and compact. The claim then follows from
Weierstrass theorem (cf. [21]).

Theorem 3.2. Let χ∗ be an optimal solution of (TP). Then x∗ ∈ argmin{cx
|x ∈ X,Tx = χ∗} is an optimal solution of (2SSIP). Furthermore, the optimal
objective values of the two problems are equal.

Proof: First, note that, for any χ and x such that Tx = χ, we have Ψs(χ) =
Qs(x) for all s. Then, from the definition of x∗ and Ψ(·), we have

Φ(χ∗) + Ψ(χ∗) = cx∗ +
S∑

s=1

psQs(x∗). (3)

We shall now prove the claim by contradiction. Suppose that x∗ is not an
optimal solution to (2SSIP). Then, there exists x′ ∈ X such that

cx′ +
S∑

s=1

psQ(x′) < cx∗ +
S∑

s=1

psQ(x∗). (4)

Now, construct χ′ = Tx′ and note that χ′ ∈ X . Since x′ ∈ {x|x ∈ X,Tx = χ′},
we have f(χ′) ≤ cx′. Also, Ψs(χ′) = Qs(x′) for all s. Equations (3) and (4),
then, imply that

Φ(χ′) + Ψ(χ′) < Φ(χ∗) + Ψ(χ∗).

Thus, we have a contradiction. Equation (3) also establishes that the objective
values of the two problems are equal.

Theorem 3.2 implies that we can solve (2SSIP) by solving (TP) with re-
spect to the tender variables χ ∈ X . Typically, X has smaller dimension than
X . More importantly, this transformation induces a special structure to the
discontinuities in the problem. These structural results are discussed next.

4 Structural Properties

Let Ψs(χj) denote Ψs(χ) as a function of the jth component (j = 1, . . . ,m2) of
χ. Further, we use cl(X), ∂(X), and dim(X) to denote the closure, the relative
boundary, and the dimension of a set X , respectively. The following result is
well known (cf. [36]).

Lemma 4.1. For any s = 1, . . . , S, and j = 1, . . . ,m2, Ψs(χj) is l.s.c and
non-decreasing in χj.
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Schultz et al. [45] proved that the second stage value function is constant
over certain subsets of the x-space. Next, we prove a similar result in the space
of the tender variables.

Lemma 4.2. For any ks
j ∈ Z, Ψs(χj) is constant over the interval χj ∈(

ks
j − hs

j − 1, ks
j − hs

j

]
for all s = 1, . . . , S and j = 1, . . . ,m2.

Proof: Since by assumption (A7), Ds is integral, the jth constraint (Dsy)j ≥
hs

j + χj implies (Dsy)j ≥ �hs
j + χj�. Thus, for any ks

j ∈ Z, Ψs(χj) is constant
over regions {(hs

j + χj)|�hs
j + χj� = ks

j} = {(hs
j + χj)|ks

j − 1 < hs
j + χj ≤ ks

j}.
Equivalently, Ψs(ks

j ) is constant over intervals χj ∈ (ks
j − hs

j − 1, ks
j − hs

j ] with
ks

j ∈ Z.

Definition 4.3. Let B be a subset of Rn and I be a set of indices. The
collection of sets M := {Mi|i ∈ I}, where Mi ⊆ B, is called a partitioning of
B if B = ∪i∈IMi and Mi ∩Mj = ∂(Mi) ∩ ∂(Mj) for all i, j ∈ I, i �= j.

Theorem 4.4. Let k = (k1
1 , . . . , k

s
j , . . . , kS

m2
)T ∈ ZSm2 be a vector of integers.

For a given k, let

C(k) := {χ ∈ Rm2 |χ ∈ ∩S
s=1Π

m2
j=1(k

s
j − hs

j − 1, ks
j − hs

j ]}.

The following assertions hold:

(i) if C(k) �= ∅, then cl(C(k)) is a full dimensional hyper-rectangle, i.e.,
dim(C(k)) = m2,

(ii) the collection {C(k)|k ∈ ZSm2} forms a partitioning of Rm2 ,

(iii) if C(k) �= ∅, then Ψ(χ) is constant over C(k).
Proof: Part (i): Note that Πm2

j=1[k
s
j − hs

j − 1, ks
j − hs

j ] is the Cartesian prod-
uct of intervals, and hence is a hyper-rectangle. The orthogonal intersection
of all such hyper-rectangles is also a hyper-rectangle. The first part of the
claim then follows from the well known facts that for convex sets Ci with
i ∈ I, cl(Πi∈ICi) = Πi∈Icl(Ci), and cl(∩i∈ICi) = ∩i∈Icl(Ci) (cf. [38]). To
see that such a hyper-rectangle is full-dimensional, the reader can verify that
any C(k) �= ∅ can be written as C(k) = Πm2

j=1 ∩S
s=1 (ks

j − hs
j − 1, ks

j − hs
j ]. For

each j, ∩S
s=1(k

s
j −hs

j−1, ks
j −hs

j ] is the finite intersection of unit-length intervals
which are left-open and right-closed. Thus, this intersection is itself a positive
length interval. C(k) is then the Cartesian product of such positive length in-
tervals and is hence full-dimensional.

Part (ii): It can be easily verified that for any χ ∈ Rm2 , there exists k ∈ ZSm2

such that χ ∈ C(k). Furthermore, for k �= k′, C(k) and C(k′) are disjoint. Thus,
{C(k)|k ∈ ZSm2} forms a partitioning of Rm2 .
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Figure 2: The Second Stage Value Function of (EX) over X
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Part (iii): For a given k, it follows from Lemma 4.2, that for any s, Ψs(χ) is
constant over the hyper-rectangle Πm2

j=1(k
s
j − hs

j − 1, ks
j − hs

j ]. Since C(k) is a
non-empty subset of all such hyper-rectangles (for all s), each Ψs(χ) is constant
over C(k), and so is Ψ(χ).

The above result establishes that the second stage expected value function
is piece wise constant over (neither open nor closed) rectangular regions in the
space of the tender variables χ. Thus, the discontinuities can only lie at the
boundaries of these regions and, therefore, are all orthogonal to the variable
axes. This is not the case, in general, if we consider the value function in
the space of the original first stage variables. To illustrate this, we plot the
second stage expected value function for the example problem (EX) considered
in Section 1, in the space of the original first stage variables (Figure 2) and
in the space of the tender variables (Figure 3). The change in the orientation
of the discontinuities is clear. Notice that the feasible region X is a linear
transformation of X .
Next, we establish the finiteness of the partitioning when the underlying set

is compact.

Theorem 4.5. Let X ∈ Rm2 and K := {k ∈ ZSm2 |C(k) ∩ X �= ∅}. Then, if X
is compact, |K| < ∞.

Proof: Since X is compact, we can obtain finite bounds lj and uj such that
lj ≤ χj ≤ uj for all χ ∈ X . Now, suppose for some k = (k1

1 , . . . , k
s
j , . . . , k

S
m2
)T ,

there exists χ ∈ C(k) ∩ X . Then, from the definition of C(k) and the fact that
X is compact, we must have for each j: lj ≤ ks

j − hs
j for all s, which implies

ks
j ≥ �lj + hs

j�. Similarly, we also have ks
j − hs

j − 1 ≤ uj, which then implies
ks

j ≤ �uj + hs
j + 1�. Thus

�lj + hs
j� ≤ ks

j ≤ �uj + hs
j + 1�.

We have bounded each component of the vector k for which C(k)∩X �= ∅. Since
k is an integer vector, there can only be a finite number of these that satisfy
the above bounds. Thus, the claim follows.

The above result along with Theorem 4.4 implies that the compact set X
is completely covered by a finite number of rectangular partitions, over each of
which the second stage value function is constant. In Section 5, we exploit this
property to develop a finite branch and bound algorithm for (TP).

5 A Branch and Bound Algorithm

A major issue in applying branch and bound over continuous domains is that the
resulting approach may not be finite but merely convergent, i.e., infinitely many
subdivision may be required to make the lower bound exactly equal to the upper
bound. In addition, for our problem (TP), we need to be able to deal with the
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discontinuous nature of the objective function. The challenge here is to identify
combinations of lower-bounding and branching techniques that can handle the
discontinuous objective function and yield a finite algorithm. Towards this end,
we exploit the structural results of Section 4 by partitioning the search space
into regions of the form Πm2

j=1(lj , uj ], where lj is a point at which the second
stage value function Ψ(χj) may be discontinuous. Recall, that Ψ(χj) can only
be discontinuous at points χj where (hs

j + χj) is integral for some s. Thus we
partition our search space along such values of χ. Branching in this manner, we
can isolate regions over which the second stage value function is constant, and
hence solve the problem exactly.
We shall now present a formal statement of a prototype branch and bound

algorithm for problem (TP). The words in italic letters constitute the critical
operations of the algorithm and will be discussed in subsequent subsections.
The following notation is used in the description.

Notation:

L List of open subproblems
k Iteration number; also used to indicate the subproblem selected
Pk Partition corresponding to k
αk Upper bound obtained at iteration k
βk Lower bound on subproblem k
χk A feasible solution to subproblem k
U Upper bound on the global optimal value
L Lower bound on the global optimal value
χ∗ Candidate for the global optima

The Algorithm

Initialization:

Preprocess the problem by constructing the hyper-rectangleP0 := Πm1
j=1(l

0
j ,

u0
j ] ⊇ X . Add the problem min{f(χ)|χ ∈ X ∩ P0} to the list L of open
subproblems.

Set U ← +∞ and k ← 0.

Iteration k:

Step k.1: If L = ∅, terminate with solution χ∗, otherwise select a sub-
problem k, defined as inf{f(χ)|χ ∈ X ∩ Pk}, from the list L of currently
open suproblems. Set L ← L\ {k}. Note, that the min has been replaced
by inf since the feasible region of the problem is not necessarily closed.

Step k.2: Bound the infimum of subproblem k from below, i.e., find βk

satisfying βk ≤ inf{f(χ)|χ ∈ X ∩ Pk}. If X ∩ Pk = ∅, βk = +∞ by
convention. Determine a feasible solution χk ∈ X and compute an upper
bound αk ≥ min{f(χ)|χ ∈ X} by setting αk = f(χk).
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Step k.2.a: Set L ← mini∈L∪{k} βi.

Step k.2.b: If αk < U , then χ∗ ← χk and U ← αk.

Step k.2.c: Fathom the subproblem list, i.e., L ← L \ {i|βi ≥ U}.
If βk ≥ U , then goto Step k.1 and select another subproblem.

Step k.3: Branch, by partitioning Pk into Pk1 and Pk2 . Set L ← L ∪
{k1, k2}, i.e., append the two subproblems inf{f(χ)|χ ∈ X ∩ Pk1} and
inf{f(χ)|χ ∈ X ∩ Pk2} to the list of open subproblems. For selection
purposes, set βk1 , βk2 ← βk. Set k ← k + 1 and goto Step k.1.

5.1 Preprocessing

As mentioned earlier, we shall only consider partitions of the form Πm2
j=1(lj , uj ],

where lj is such that (hs
j + lj) is integral for some s. We can then construct a

partition P0 := Πm1
j=1(l

0
j , u

0
j ] ⊃ X in the following manner:

- Construct a closed partition Πm2
j=1[lj , uj] ⊇ X as follows: for each compo-

nent j of χ, set lj = min{χj|χ ∈ X} and uj = max{χj|χ ∈ X}. Typically,
X is polyhedral and so the above problems are linear programs.

- For each s and j, find ks
j ∈ Z such that ks

j − hs
j − 1 < lj ≤ ks

j − hs
j . If

lj + hs
j is integral, set ks

j = lj + hs
j , otherwise set ks

j = �lj + hs
j + 1�. Let

l0j = maxs=1,...,S{ks
j − hs

j − 1}.
- Set u0

j = uj.

Above, we have relaxed lj to l0j such that l0j is the closest point to lj where
(l0j + hs

j) is integral for some s. From now on, whenever convenient, we shall
denote partitions of the form Πm1

j=1(lj , uj] by (l, u] with l = (l1, . . . , lm2)T , and
u = (u1, . . . , um2)T .

5.2 Selection

In Step k.1 of iteration k, we need to select a subproblem, from the list of
open subproblems L, to be considered for bounding and further partioning. A
critical condition for convergence of a branch and bound algorithm is that this
selection operation be bound improving [22]. This is accomplished by choosing
the subproblem that attains the least lower bound, i.e., select k ∈ L such that
βk = L.

5.3 Lower Bounding

For a given partition Pk := Πm2
j=1(l

k
j , uk

j ] where lj is such that (hs
j+ lj) is integral

for some s, we can obtain a lower bound on the corresponding subproblem by

13



solving:

(LB) : fL(Pk) = min cx+ θ (5)
s.t. x ∈ X,Tx = χ

lk ≤ χ ≤ uk

θ ≥
S∑

s=1

psΨs(lk + ε), (6)

where

Ψs(χ) = min fsy (7)
s.t. Dsy ≥ hs + χ

y ∈ Y ∩Zn2.

In problem (LB), ε is sufficiently small such that Ψs(·) is constant over (lk, lk+ε]
for all s. Since we have exactly characterized the regions over which the Ψs(·) is
constant, we can calculate this ε a priori. A procedure for this is outlined next.

Calculation of ε:

• Do for j = 1, . . . ,m2:

- Set s = 1, Ξ = ∅. Choose k1
j ∈ Z.

- Let χ0
j = k1

j − h1
j − 1 and χ1

j = χ0
j + 1.

- Set Ξ← Ξ ∪ {χ0
j , χ

1
j}.

- Do for s = 2, . . . , S:

- Choose ks
j ∈ Z such that χ0

j < ks
j − hs

j ≤ χ1
j , i.e., set ks

j =
�χ1

j + hs
j�.

- Let χs
j = ks

j − hs
j .

- If Ξ ∩ {χs
j} = ∅, then set Ξ← Ξ ∪ {χs

j}.
End Do.

- Order the elements of Ξ such that χ0
j = ξ0

j < ξ1
j < . . . < ξn

j = χ1
j ,

with n ≤ S.

- Let εj = mini=1,...,n{ξi
j − ξi−1

j }.
End Do.

• Set ε = 0.5×minj=1,...,m2{εj}.

In the above procedure, we first determine an interval (χ0
j , χ

1
j ] such that

�h1
j + χj�, and hence Ψ1(χj), is constant for all χj ∈ (χ0

j , χ
1
j ]. Then, for each

s = 2, . . . , S, we find χs
j such that �hs

j + χj�, and hence Ψ1(χj), is constant for
all χj ∈ (χ0

j , χ
s
j ]. In this way, all candidate points of discontinuity in (χ

0
j , χ

1
j ]

14



are identified and collected in set Ξ. The points of discontinuity that appear in
(χ0

j , χ
1
j ] also repeat to the right of χ

1
j with a unit period. It then suffices to sort

the potential points of discontinuity identified over (χ0
j , χ

1
j ] to obtain the length

εj of the smallest interval along each axis j over which Ψs(χj) is guaranteed to
be constant for all s. The finally chosen value of ε is strictly smaller than each
εj.
We next show that (LB) is a valid lower bounding problem. Note that the

feasible region of (LB) is closed, so that a minimizer exists.

Proposition 5.1. For any partition Pk = (lk, uk],

βk := fL(Pk) ≤ inf{f(χ)|χ ∈ Pk ∩ X}.

Proof: The claim obviously holds if Pk∩X = ∅. Now consider some χ ∈ Pk∩X .
Let x ∈ argmin{cx|Tx = χ, x ∈ X} and θ =

∑S
s=1 psΨs(χ) for all s. Thus,

f(χ) = Φ(χ) +
∑S

s=1 psΨs(χ) = cx + θ. We shall now show that (x, χ, θ) is
feasible to (LB). x and χ are obviously feasible. From the construction of ε and
definition of lk, we know that for each s, Ψs(χ) is constant over (lk, lk+ε]. Then,
owing to the monotonicity property of Ψs (Lemma 4.1), Ψs(χ) ≥ Ψs(lk+ε) since
χ > lk. Thus, θ =

∑S
s=1 psΨs(χ) ≥ ∑S

s=1 psΨs(lk + ε) and the constraint (6)
in (LB) is satisfied. Since the solution is feasible, fL(Pk) ≤ cx+ θ = f(χ). The
claim follows from the fact that the above holds for any χ ∈ Pk ∩ X .

To solve (LB), we first need to solve S second stage subproblems (7) to
construct the cut (6). The master problem (5) can then be solved with respect
to the variables (x, χ, θ). Note that X is typically polyhedral, so that (5) is a
linear program. If the first-stage variables have integrality requirements, then
(5) is a mixed-integer linear program. Each scenario subproblem and the master
problem can be solved completely independently, so complete stage and scenario
decomposition is achieved. Problem (5) is similar to the master problem of
the L-shaped decomposition method for stochastic linear programs [54]. The
variable θ approximates the expected second stage value function in the first
stage variable space through constraint (6). In Section 7, we shall discuss how
tighter approximations to the value function may be accommodated along with
the “lower corner cut”(6).

Proposition 5.2. Let Pk be a partition over which the second stage expected
value function Ψ(·) is constant and there exists χ∗ ∈ argmin{f(χ)|χ ∈ X ∩Pk},
i.e., the infimum is achieved. Let χk be an optimal solution to the lower bounding
problem (LB) over this partition. Then,

f(χk) ≤ f(χ∗).
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Proof: Let (xk, χk, θk) be an optimal solution of the lower bounding prob-
lem (LB) for the partition Pk = (lk, uk]. Note that χk ∈ X ∩ cl(Pk). Then,
fL(Pk) = cxk + Ψ(lk + ε) and f(χk) = cxk + Ψ(χk). If χk > lk, then
Ψ(χk) = Ψ(lk + ε) since Ψ(·) is constant over Pk. Thus, f(χk) = fL(Pk). On
the other hand, if χk

j = lkj for some j = 1, . . . ,m2, then Ψ(χk) ≤ Ψ(lk+ε), owing
to the monotonicity property. Thus f(χk) ≤ fL(Pk). Since fL(Pk) ≤ f(χ∗) by
Proposition 5.1, the claim follows.

5.4 Upper Bounding

For a given partition Pk such that Pk ∩X �= ∅, let χk be an optimal solution of
problem (LB). Note that χk ∈ X , and is therefore a feasible solution. We can
then compute an upper bound

αk := f(χk) ≥ min{f(χ)|χ ∈ X}.

Proposition 5.3. If, for a partition Pk, the second stage expected value func-
tion Ψ(·) is constant, then the partition Pk will be fathomed in the course of the
algorithm.

Proof: From the proof of Proposition 5.2, αk = f(χk) ≤ fL(Pk) = βk. In the
bounding Step k.2.a of the algorithm, we set U = min{U,αk}. Thus, in Step
k.2.c, the current partition Pk satisfies βk ≥ U and will be fathomed.

5.5 Branching

A typical scheme for partitioning Pk would consist of selecting and bisecting
the variable j′ corresponding to the longest edge of the hyper-rectangle Pk.
Although such a scheme is exhaustive [52], it might not be possible to isolate
partitions without discontinuities, and take advantage of Proposition 5.3.
To isolate the discontinuous pieces of the second stage value function, we

are required to partition an axis j′ at a point χj′ such that Ψs(·) is possibly
discontinuous at χj′ for some s. While we can do this by selecting χj′ such that
hs

j′ + χj′ is integral for some s, we can do better by determining the value of
χj′ where the current second stage solution becomes infeasible. Such a point is
more likely to be one at which Ψs(·) is discontinuous. This scheme is formally
stated next. We let ys be the solution of the second stage IP subproblems in
the solution of the lower bounding problem (LB).

The branching scheme

- For each j = 1, . . . ,m2, compute pj := mins=1,...,S{(Dsys)j − hs
j}.

- Let j′ ∈ argmaxj{pj − lkj }.
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- Split Pk = Πm2
j=1(l

k
j , uk

j ] into two partitions Pk1 = (lkj′ , pj′ ]Πj 
=j′ (lkj , uk
j ],

and Pk2 = (pj′ , u
k
j′ ]Πj 
=j′ (lkj , uk

j ].

6 Proof of Finiteness

Consider a nested sequence of successively refined partitions {Pkq} such that
Pkq+1 ⊂ Pkq .

Definition 6.1. [22] A bounding operation is called finitely consistent if, at
every step any unfathomed partition element can be further refined, and if any
nested sequence of {Pkq} of successively refined partition elements is finite.

Lemma 6.2. In a branch and bound procedure, suppose that the bounding
operation is finitely consistent. Then, the procedure terminates after finitely
many steps.
Proof: See Theorem IV.1. in [22].

Lemma 6.3. The bounding operation of the proposed branch and bound algo-
rithm is finitely consistent.

Proof: Consider a partition Pk that is unfathomed. By Proposition 5.3, the sec-
ond stage value function is discontinuous over this partition. Thus, the branch-
ing step can further refine it, thereby satisfying the first condition for finite
consistency. Branching along the discontinuity on this partition will result in
two strictly smaller partitions. By Theorem 4.5, the number of discontinuities
in Pk is finite. Therefore, any nested sequence {Pkq} generated by branching
along the discontinuities of Pk will be finite.

Theorem 6.4. The proposed algorithm terminates with a global minimum after
finitely many steps.

Proof: As a consequence of Lemmas 6.2 and 6.3, it follows that the algorithm
terminates after finitely many steps. The globality of the solution follows from
the validity of the lower and upper bounding procedures used. In particular,
let χ∗ ∈ P0 be a global minimizer. Then, there exists a finite nested sequence
{Pkq}Q

q=1 of length Q such that χ∗ ∈ Pkq for all q = 1, 2, . . . , Q. Clearly, PkQ

does not contain a discontinuity, otherwise it would be further refined. Further-
more, χ∗ ∈ argmin{f(χ)|χ ∈ X ∩ PkQ}. Let χk be the solution to the lower
bounding problem over PkQ . Then, by Proposition 5.2, f(χk) ≤ f(χ∗). Since
χk ∈ X , χk must also be a global minimizer.
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7 Enhancements and Extensions

The proposed branch and bound algorithm is valid for any lower bounding
scheme that dominates the lower bound obtained by solving problem (LB). In
this section, we suggest how such tighter bounds may be obtained. We also
discuss the applicability of the proposed algorithm in case of mixed-integer
second stage variables.

Benders cuts

Consider the LP relaxation of the second stage problem for a given scenario s
and a value of the tender variable χ:

Ψs
LP (χ) = min fsy

s.t. Dsy ≥ hs + χ (us)
y ≥ 0

where the us are the optimal dual solutions. We assume that the constraint
y ∈ Y is included in the constraint Dsy ≥ hs + χ. The classical Benders cut [2]
is then given by:

(hs + χ)us ≤ Ψs
LP (χ),

and is valid for any χ (not just χ). Since Ψs
LP (χ) ≤ Ψs(χ), we also have

S∑

s=1

ps[(hs + χ)us] ≤
S∑

s=1

psΨs(χ).

Thus, if we have dual solutions us for the LP relaxations of the second stage
problem corresponding to any χ, we can add the valid cut

θ ≥
S∑

s=1

ps[(hs + χ)us]

to our lower bounding problem (LB). These, along with the “lower corner cuts”
(6), may provide a better approximation to the second stage value function.

Bounds from the Lagrangian Dual

Caroe [9, 11] used the scenario decomposition approach of Rockafellar and
Wets [39] to obtain bounds for (2SSIP). The idea here is introduce copies
x1, . . . , xS and y1, . . . , yS of the first stage and second stage variables, corre-
sponding to each scenario, and then rewrite (2SSIP) in the form

min
∑S

s=1 pscxs + psfsys

s.t. xs ∈ X s = 1, . . . , S
Dsys ≥ hs + Txs s = 1, . . . , S

ys ∈ Y ∩ Zn2 s = 1, . . . , S
x1 = . . . = xS (8)
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Above, the non-anticipativity constraint (8) states that the first stage decision
should not depend on the scenario which will prevail in the second stage. This
constraint can also be represented as

∑S
s=1 Hsxs = 0, where Hs are matrices

of conformable dimensions (see [9] for details). The Lagrangian relaxation with
respect to the non-anticipativity constraints is then,

L(λ) = min
S∑

s=1

(psc+ λHs)xs + psfsys

s.t. xs ∈ X s = 1, . . . , S
Dsys ≥ hs + Txs s = 1, . . . , S
ys ∈ Y ∩ Zn2 s = 1, . . . , S.

Since the above problem is completely decomposable by scenarios, we can equiv-
alently write it as:

L(λ) =
S∑

s=1

min{(psc+λHs)xs+psfsys|xs ∈ X,Dsys ≥ hs+Txs, ys ∈ Y ∩Zn2}.

It is well known that the Lagrangian dual zLD = maxλ L(λ) provides a lower
bound to (2SSIP). Caroe used this lower bounding scheme within a branch and
bound framework for solving (2SSIP).
Since we partition the space of tender variables, consider the Lagrangian

relaxation of the problem when the tender variables are restricted to be χ ∈
P := (l, u]:

L(λ,P) =
S∑

s=1

min {(psc+ λHs)xs + psfsys|xs ∈ X, l ≤ Txs ≤ u,

Dsys ≥ hs + Txs, Dsys ≥ hs + l + ε, ys ∈ Y ∩ Zn2} ,

where ε is the same as that considered in problem (LB) in Section 5.3. Note that
the above Lagrangian relaxation has additional constraints: Dsys ≥ hs + l + ε,
to deal with the neither open nor closed nature of P . We shall denote the
corresponding Lagrangian dual by

zLD(P) := max
λ

L(λ,P).

Proposition 7.1. Given a partition P := (l, u],

fL(P) ≤ zLD(P) ≤ inf{f(χ)|χ ∈ X ∩ P}.
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Proof: Let (x1, . . . , xS , y1, . . . , yS) be the solutions obtained while computing
L(0,P). Thus

L(0,P) =
S∑

s=1

pscxs + psfsys.

Let x̃ be the solution of the master problem (5), and ỹs be the solution of the
scenario s subproblem (7), while computing fL(P). Since each xs is feasible to
the master problem (5), we have cx̃ ≤ cxs for all s. Thus, cx̃ ≤ ∑S

s=1 pscxs.
Recall that the subproblems (7) are solved with χ = l+ε, i.e., with the constraint
Dsy ≥ hs + l + ε. Since ys also satisfies Dsys ≥ hs + l + ε, ys is feasible to the
scenario s subproblems (7), and so fsỹs ≤ fsys for each s. Clearly,

fL(P) =
S∑

s=1

pscx̃s + psfsỹs

≤
S∑

s=1

pscxs + psfsys

= L(0,P)
≤ zLD(P).

To see that zLD(P) ≤ inf{f(χ)|χ ∈ X ∩ P}, consider a feasible solution
(χ, x, y1, . . . , yS) such that χ = Tx, x ∈ X , χ ∈ X ∩ P , and Dsys ≥ hs + χ
for all s. Construct a solution (x1, . . . , xS , y1, . . . , yS) to the Lagrangian relax-
ation L(λ,P), by setting xs = x, and ys = ys for all s. To see that such a
solution is feasible to L(λ,P), we only need to verify that Dsys ≥ hs + l + ε.
Since Txs = χ > l, and from the definition of ε, �hs+Txs� is constant whenever
Txs ∈ (l, l+ε], we have thatDsys ≥ hs+Txs implies Dsys ≥ hs+l+ε. Thus the
solution (x1, . . . , xS , y1, . . . , yS)is feasible to L(λ,P). Since x1 = . . . = xS , we
have

∑S
s=1 Hsxs = 0, and

∑S
s=1 {(psc+ λHs)xs + psfsys} = c(

∑S
s=1 psxs) +∑S

s=1 psfsys = cx+
∑S

s=1 psfsys. Thus L(λ,P) ≤ inf{f(χ)|χ ∈ X ∩P}. Since
the λ was arbitrary, the inequality is true for zLD(P).

Thus, we can use the Lagrangian dual to obtain tighter bounds than those
obtained by solving (LB).

Mixed-integer Second Stage

In the presence of continuous variables in the second stage, the orthogonality of
the discontinuities in the space of the tender variables may be lost. Consider,
for example, a variant of (EX) where the second stage problem (in the space of
the tender variables) is given by:

Q(χ1, χ2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − y5

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − y6
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−1.9706y5 + 0.9706y6 ≤ −χ1

0.9706y5 − 1.9706y6 ≤ −χ2

y1, y2, y3, y4 ∈ {0, 1}
y5, y6 ∈ [0, 5].

The expected second stage value function (with Ω = {0, 5}×{0, 5} with uniform
probability) in the space of the χ variables is shown in Figure 4.
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Figure 4: Mixed integer second stage

Since the discontinuities of the second stage mixed-integer value function are
no longer orthogonal, finiteness of the algorithm cannot be achieved with a rect-
angular partitioning scheme. In principle, one could reformulate the problem by
including all the continuous variables from the second stage subproblems in the
first stage, thereby ending up with a pure integer second stage. The finiteness of
the proposed algorithm would be retained when applied to this reformulation.
Since such a scheme would involve branching on continuous variables from the
first stage problem as well as those from the scenario subproblems, the method
would only be viable when there are only a few continuous variables per sec-
ond stage subproblem. Another straight forward way of ensuring finiteness is
to consider explicitly branching on the integer variables of the second stage.
Even though this will be computationally intensive, it will also guarantee finite
termination.
Blair and Jeroslow [8] proved that the value function of a mixed-integer

program is piece-wise polyhedral over certain cones in the space of the right-
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hand side vectors. At this point, it is not obvious how one can use these results
to design a partitioning scheme that guarantees finiteness of the branch and
bound algorithm.

Random Technology Matrix

The proposed algorithm can be extended to problems where the technology
matrix T is scenario-dependent by introducing tender variables corresponding
to each scenario, i.e., χs = T sx. However, in this case, the algorithm would
require branching on S × m2 variables as opposed to m2 variables when T is
deterministic.

8 Computational Results

In this section, we report our computational experience in using the proposed
branch and bound algorithm to solve instances of two-stage stochastic integer
programs from the literature.

Test Set 1

The first set of test problems involves two-stage stochastic integer programs
with pure integer first stage variables taken from Caroe [9]. Since the first stage
variables are pure integer, Caroe’s method terminates finitely. However, our
computational results indicate that the proposed method is much faster than
Caroe’s algorithm even for this problem class. The test problems are generated
from the following basic model:

(EX1) : min −1.5x1 − 4x2 + E[Q(x1, x2, ω1, ω2)]
s.t. x1, x2 ∈ [0, 5] ∩ Z,

where

Q(x1, x2, ω1, ω2) = min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − x1

6y1 + y2 + 3y3 + 2y4 ≤ ω2 − x2

y1, y2, y3, y4 ∈ {0, 1},

where (ω1, ω2) is uniformly distributed on Ω ⊆ [5, 15]×[5, 15]. Five test problems
are generated from the above instance by varying the number of scenarios by
taking Ω as equidistant lattice points in [5, 15] × [5, 15] with equal probability
assigned to each point. The resulting instances have 4, 9, 36, 121, and 441
scenarios. The size of the deterministic equivalent for each of these instances is
shown in Table 1.
Caroe [9] reports attempts to directly solve the deterministic equivalent of

the above instances using the MIP solver of CPLEX 5.0. With 36 or more
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Scenarios Integer Binary Constraints
Variables Variables

4 2 16 8
9 2 36 18

36 2 144 72
121 2 484 242
441 2 1764 882

Table 1: Sizes of instances in Test Set 1

scenarios, CPLEX 5.0 MIP could not solve the problem instances within resource
usage limits. For example, the instance with 121 scenarios could not be solved
within 300,000 nodes, yielding an optimality gap of more than 10%. These
results clearly motivate the need for decomposition-based approaches.
The proposed algorithm was applied to solve this small example. Since the

second stage integer subproblems involved only 4 binary variables, they were
solved by complete enumeration. The computations were carried out on a 332
MHz IBM RS/6000 PowerPC. Table 2 compares the performance of the pro-
posed algorithm to that of the Lagrangian decomposition approach of Caroe [9].
A major part of the computational effort in solving stochastic integer programs
is spent on solving IP subproblems. From Table 2, it is clear that the number of
IPs solved is fewer for the proposed method. Furthermore, the IP subproblems
only correspond to second stage problem, whereas for Caroe’s method, these
involve first stage variables as well. Consequently, the CPU requirements of
the proposed method are much lesser. Note that the platforms used in the two
computations are different. To keep the CPU times in perspective, Table 3 com-
pares the relative performance of the two machines on standard benchmarks as
listed on [24] and [16]. The benchmarks reflect the performance of the micro-
processor, memory architecture, and the compiler. SPECint95 is a component
level benchmark established by the Standard Performance Evaluation Corpora-
tion [48], that measures integer performance. SPECfp95 is a similar benchmark
measuring floating-point performance. These benchmarks reflect the ratio of
a base CPU requirement to the CPU requirement of the hardware to perform
some standard computations. Thus, a higher benchmark value indicates supe-
rior performance. The LINPACK benchmark provides the speed with which a
dense system of 100 linear equations is solved using the LINPACK [15] libraries
in a FORTRAN environment. From the benchmark values in Table 3, it is clear
that the platform used by Caroe [9] is faster. Therefore, the computational
results in Table 2 indicate that the proposed algorithm is much faster than that
of [9].

Test Set 2

Our second test set is taken from Schultz et al. [45]. It consists of two variants
of (EX1) (described in Test Set 1) with continuous first stage variables. The
first of these problems (Example 7.1 in [45]) is the 441 scenario version of (EX1)
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Caroe [9] Proposed
Scenarios CPU∗ s. IPs solved Obj. CPU† s. IPs solved Obj.

4 0.2 52 57.00 0.01 52 57.00
9 0.4 189 59.33 0.01 135 59.33

36 1.4 720 61.22 0.01 540 61.22
121 4.8 2783 62.29 0.02 1936 62.29
441 25.1 9702 61.32 0.06 7056 61.32

∗ Digital Alpha 500 MHz
† IBM RS/6000 43P 332 MHZ

Table 2: Computational results for Test Set 1

Digital IBM RS/6000
Benchmark Alpha 500 [16] Model 43P [24]
SPEC int95 15.0 12.9
SPEC fp95 20.4 6.21

LINPACK DP (n = 100) 235.3 Mflop/s 59.9 Mflop/s
Clock speed 500 MHz 332 MHz

Table 3: Comparative performance of hardware

CPLEX 5.0 [45] Schultz et al. [45] Proposed
Nodes Gap IPs solved Obj. IPs solved Obj.

Problem 1 (T = I) 50000 24% 53361 61.32 12248 61.32
Problem 2 (T �= I) 50000 27% 8379 61.44 4410 61.44

Table 4: Comparative performance for Test Set 2

with the integrality restrictions removed from the first stage variables. Schultz et
al. [45] identified the set of candidate solutions to be the finite set {(k1/2, k2/2) :
k1, k2 ∈ Z} ∩ [0, 5] × [0, 5]. This set has a cardinality of 121, and the authors
evaluated each of these points to determine the optimal solution x1 = 0, x2 =
4 with value 61.32. Note that evaluating a single point amounts to solving
441 second stage integer programs. Therefore, a total of 53, 361 small integer
programs were solved in [45]. These problems were solved using Gröbner basis
methods. [45] also reports their attempt to solve this problem by CPLEX 5.0
with a node limit of 50, 000. After exploring all 50, 000 nodes, CPLEX ended
up with an optimality gap of 24%. No CPU times were reported in Schultz et
al. [45].
We solved the problem to global optimality using the proposed branch and

bound algorithm. The algorithm required the solution of only 12, 348 second
stage integer programs – a reduction of 76% in the number of IPs solved than
that required by [45].
Note that, in (EX1), the technology matrix T is the identity. To illustrate

the effect of the variable transformation, we next solve another variant of (EX1)
with a more interesting T matrix, namely problem (EX) (described in Section 1)
with 441 scenarios. Schultz et al. [45] solved this problem (Example 7.3 in [45])
by characterizing the solution set and identifying 53 candidate points. Using
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Problem 1 (T = I) Problem 2 (T �= I)
Scenarios CPU† s. IPs solved Obj. CPU† s. IPs solved Obj.

4 0.01 60 57.00 0.00 24 57.75
9 0.01 171 59.33 0.00 63 59.56

36 0.02 684 61.22 0.01 396 60.28
121 0.03 2299 62.29 0.02 1331 61.01
441 0.15 12348 61.32 0.05 4410 61.44

† IBM RS/6000 43P 332 MHZ

Table 5: Computational results for Test Set 2

some problem specific results, they were able to reduce the number of candidate
points to 19. Complete enumeration of these points required the solution of
8379 integer subproblems, and yielded the optimal solution of x1 = 0, x2 = 4.5
with objective value 61.44. On the other hand, the proposed branch and bound
algorithm required the solution of only 4410 integer programming subproblems
– a 47% reduction in the number of IPs solved. For this problem, Schultz et
al. [45] reports that CPLEX with a node limit of 50, 000 ended up with an
optimality gap of 27%.
The comparative performances discussed above are summarized in Table 4.

Both of these problems include 441 scenarios. Table 5 presents the CPU times
and the number of IP subproblems required by the proposed algorithm for
solving various scenario instances of the two problems in Test set 2.

Test Set 3

Our final test set is a collection of two-stage stochastic product substitution
problems described in Woodruff et al. [27, 35]. The problem involves mixed-
integer variables in both first and second stage. The set includes three problems,
SIZES3, SIZES5, and SIZES10, having 3, 5, and 10 scenarios. The size of the
deterministic equivalent integer program for each of these test problems are
presented in Table 6.
A direct attempt to solve the deterministic mixed-integer program using the

CPLEX 5.0 MIP solver was reported in Jorjani et al. [27]. These results are
summarized in Table 7. The authors put a node limit of 20,000 for the two
smaller problems, and 250,000 for the larger problem. Even after exploring
such large number of nodes, CPLEX could not solve these problems and yielded
optimality gaps in the range of 2-4%. From this table, it is clear that, although
the problems are of modest size (no more than 110 binary variables), they are
not amenable to state-of-the-art integer programming techniques, and one must
rely on decomposition methods.
Caroe [9] attempted to solve these problems using Lagrangian decomposition

based branch and bound algorithm. A CPU limit of 1000 seconds was imposed.
Until now, Caroe’s results were the best available for these problems.
Having gained some insight regarding the applicability of the proposed method

on problems with mixed-integer second stage (Section 7), we attempted to solve
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Problem Binary Continuous Constraints
Variables Variables

SIZES3 40 260 142
SIZES5 60 390 186
SIZES10 110 715 341

Table 6: Sizes of Test Set 3

these problems by explicitly branching on the second stage integer variables.
The implementation was carried out using BARON [42, 51] to maintain the
branch and bound tree. OSL [23] was used as the IP solver and CPLEX [13]
was used as the LP solver. The computations were carried out on a 332MHz
IBM Rs/6000 PowerPC. A CPU limit of 100,000 seconds was imposed.

Problem LB UB Nodes CPU‡
SIZES3 218.2 224.7 20000 1859.8
SIZES5 220.1 225.6 20000 4195.2
SIZES10 218.2 226.9 250000 7715.5

‡ DEC alpha 3000/700

Table 7: Performance of CPLEX 5.0 on Test Set 3 as reported in [27]

Caroe [9] BARON
Problem LB UB CPU∗ s LB UB CPU† s
SIZES3 224.384 224.544 1, 000 224.433 70.7
SIZES5 224.354 224.567 1, 000 224.486 7, 829.1
SIZES10 224.336 224.735 1, 000 224.236 224.717 10, 000.0

∗ Digital Alpha 500 MHz
† IBM RS/6000 133 MHZ

Table 8: Computational results for Test Set 3

Total Max. Nodes Nodes until
Problem Nodes in memory best UB
SIZES3 1885 260 906
SIZES5 108, 782 13, 562 41, 642
SIZES10 36, 700 23, 750 20, 458

Table 9: Nodes in branch and bound tree

Table 8 compares the performance of the proposed method with that of
[9]. As a reference, the node information required by our branch and bound
algorithm is presented in Table 9. From Table 8, we observe that Caroe’s
method was not able to close the gap for these problems on a computer much
faster than ours. The proposed approach successfully closed the gap for two of
these three very difficult problems. For all three test problems, we were able to
identify better upper bounds (feasible solutions) than those known earlier.
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