Skip to main content
Log in

An optimization approach to the problem of protein structure prediction

  • Published:
Mathematical Programming Submit manuscript

Abstract.

We describe a large-scale, stochastic-perturbation global optimization algorithm used for determining the structure of proteins. The method incorporates secondary structure predictions (which describe the more basic elements of the protein structure) into the starting structures, and thereafter minimizes using a purely physics-based energy model. Results show this method to be particularly successful on protein targets where structural information from similar proteins is unavailable, i.e., the most difficult targets for most protein structure prediction methods. Our best result to date is on a protein target containing over 4000 atoms and ∼12,000 cartesian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azmi, A.: Use of smoothing methods with stochastic perturbation for global optimization (a study in the context of molecular chemistry), Phd thesis, University of Colorado, 1998.

  2. Azmi, A., Byrd, R., Eskow, E., Schnabel, R., Crivelli, S., Philip, T., Head-Gordon, T.: Predicting Protein Tertiary Structure Using a Global Optimization Algorithm with Smoothing, Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches. C.A. Floudas and P.M. Pardalos, (eds.), (Kluwer Academic Publishers, 2000) 1–18

  3. Bates, P.A., Sternberg, M.J.E.: Model building by comparison at CASP3: Using expert knowledge and computer automation, Proteins: Structure, Function and Genetics 37, 47–54 (1999)

    Google Scholar 

  4. Burke, D.F., Deane, C.M., Nagarajaram, H.A., Campillo, N., Martin-Martinez, M., Mendes, J., Molina, F., Perry, J., Reddy, B.V.B., Soares, C.M., Steward, R.E., Williams, M., Carrondo, M.A., Blundell, T.L., Mizuguchi, K.: An iterative structure-assisted approach to sequence alignment, comparative modeling. Proteins: Structure, Function and Genetics 37, 55–60 (1999)

    Google Scholar 

  5. Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem 4, 187–217 (1983)

    Google Scholar 

  6. Coleman, T., Shalloway, D., Wu, Z.: Isotripic effective energy simulated annealing searches for low energy molecular cluster states. Comp. Optim. Appl. 2, 145–170 (1993)

    MathSciNet  Google Scholar 

  7. Coleman, T., Shalloway, D., Wu, Z.: A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing. Technical Report CTC93TR130, Ithaca, N.Y.: Advanced Computing Research Institute, Cornell University, 1994

  8. Coleman, T., Wu, Z.: Parallel continuation-based global optimization for molecular conformation and protein folding. Technical Report CTC-94-TR175, Center for Theory and Simulation in Science and Engineering, Cornell, 1994

  9. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Google Scholar 

  10. Crivelli, S., Eskow, E., Bader, B., Lamberti, V., Byrd, R., Schnabel, R., Head-Gordon, T.: A Physical approach to protein structure prediction. Biophysical J. 82, 36–49 (2002)

    Google Scholar 

  11. Crivelli, S., Philip, T., Byrd, R., Eskow, E., Schnabel, R., Yu, R., Head-Gordon, T.: A Global Optimization Strategy for Predicting Protein Tertiary Structure: α-helical Proteins, Computers and Chemistry, conference proceedings for New Trends in Computational Methods for Large Molecular Systems. In press

  12. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M., Barton, G.J., Jpred: A Consensus Secondary Structure Prediction Server. Bioinformatics 14, 892–893 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Domingues, F.S., Koppensteiner, W.A., Jaritz, M., Prlic, A., Weichberger, C., Wiederstin, M., Floeckner, H., Lacknet, P., Sippl, M.: Sustained performance of knowledge-based potentials in fold recognition. Proteins: Structure, Function and Genetics 37, 112–120 (1999)

    Google Scholar 

  14. Dunbrack, R.L.: Comparative Modeling of CASP3 targets using PSI-BLAST Jr, SCWRL. Proteins: Structure, Function and Genetics 37, 81–87 (1999)

    Google Scholar 

  15. Fischer, D.: Modeling three-dimensional protein structures for amino acid sequences of the CASP3 experiment using sequence-derived predictions. Proteins: Structure, Function and Genetics 37, 61–65 (1999)

    Google Scholar 

  16. Head-Gordon, T., Stillinger, F.H.: Predicting polypeptide and protein structures from amino acid sequence: Antlion method applied to melittin. Biopolymers 33, 293–303 (1993)

    Google Scholar 

  17. Head-Gordon, T., Arrecis, J., Stillinger, F.H.: A strategy for finding classes of minima on a hypersurface: implications for approaches to the protein folding problem. Proc. Natl. Acad. Sci. USA 88, 11076–11080 (1991)

    Google Scholar 

  18. Head-Gordon, T., Sorenson, J.M., Pertsemlidis, A., Glaeser, R.M.: Differences in hydration structure near hydrophobic and hydrophilic amino acid side chains. Biophys. J. 73, 2106–2115 (1997)

    Google Scholar 

  19. Hura, G., Sorenson, J.M., Glaeser, R.M., Head-Gordon, T.: Solution x-ray scattering as a probe of hydration-dependent structuring of aqueous solutions. Perspectives in Drug Discovery and Design 17, 97–118 (1999)

    Article  Google Scholar 

  20. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  21. Jones, D.T., Tress, M., Bryson, K., Hadley, C.: Successful recognition of protein folds using threading methods biased by sequence similarity and predicted secondary structure. Proteins: Structure, Function and Genetics 37, 104–111 (1999)

    Google Scholar 

  22. Karplus, K., Barrett, C., Cline, M., Diekhans, M., Grate, L., Hughey, R.: Predicting protein structure using only sequence information. Proteins: Structure, Function and Genetics 37, 121–125 (1999)

    Google Scholar 

  23. Koretke, K.K., Russell, R.B., Copley, R.R., Lupas, A.N.: Fold recognition using sequence and secondary structure information. Proteins: Structure, Function and Genetics 37, 141–148 (1999)

    Google Scholar 

  24. Kostrowicki, J., Piela, L., Cherayil, B.J., Scheraga, H.A.: Performance of the diffusion equation method in searches for optimum structure of clusters of Lennard-Jones atoms. J. Phys. Chem. 95, 4113–4119 (1991)

    Google Scholar 

  25. Kostrowicki, J., Scheraga, H.A.: Application of the diffusion equation method for global optimization to oligopeptides. J. Phys. Chem. 96, 7442–7449 (1992)

    Google Scholar 

  26. Le Grand, S.M., Merz Jr, K.M.: The application of the genetic algorithm to minimization of potential energy functions. J. Global Opt. 3, 49–66 (1993)

    MATH  Google Scholar 

  27. Lee, J., Lino, A., Ripoll, D.R., Pillardy, J., Scheraga, H.A.: Calculation of protein conformations by global optimization of a potential energy function. Proteins: Structure, Function and Genetics 37, 204–208 (1999)

    Google Scholar 

  28. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization methods. Mathematical Programming 45, 503–528 (1989)

    MATH  Google Scholar 

  29. Liwo, A., Lee, J., Ripoll, D.R., Pillardy, J., Scheraga, H.: Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96, 5482–5485 (1999)

    Article  Google Scholar 

  30. Moré, J.J., Wu, Z.: Issues in large-scale global molecular optimization. Technical Report MCS-P539-1095, Argonne, Illinois: Argonne National Laboratory, 1996a

  31. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures, Technical Report MCS-P628-1296, Argonne, Illinois: Argonne National Laboratory, 1996b

  32. Ne’methy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H.A.: Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J. Phys. Chem. 96, 6472–6484 (1992)

    Google Scholar 

  33. Novotny, J., Bruccoleri, R.E., Karplus, M.: An analysis of incorrectly folded protein models. Implications for structure prediction. J. Mol. Biol. 177, 787–818 (1984)

    Google Scholar 

  34. Pertsemlidis, A., Saxena, A.M., Soper, A.K., Head-Gordon, T., Glaeser, R.M.: Direct, structural evidence for modified solvent structure within the hydration shell of a hydrophobic amino acid. Proc. Natl. Acad. Sci. 93, 10769–10774 (1996)

    Article  Google Scholar 

  35. Pillardy, J., Piela, L.: Molecular dynamics on deformed potential energy hypersurfaces. J. Phys. Chem. 99, 11805–11812 (1995)

    Google Scholar 

  36. Reva, B.A., Finkelstein, A.V., Skolnick, J.: What is the probability of a chance prediction of a protein structure with an rmsd of 6 Å ?. Folding and Design 3, 141–147 (1998)

    Google Scholar 

  37. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic methods for global optimization. American Journal of Mathematical and Management Sciences 4, 7–40 (1984)

    MATH  Google Scholar 

  38. Rinnooy Kan, A.H.G., Timmer, G.T.: Global optimization. In: Handbooks in operations research and management science, volume I : optimization. G.L. Nemhauser, A.H.J. Rinnooy Kan, and M.J. Todd, (eds.), (North-Holland, 1989) 631–662.

  39. Shalloway, D.: Application of the renormalization group to deterministic global minimization of molecular conformation energy functions. Global Optimization 2, 281–311 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Schnabel, R.B., Koontz, J.E., Weiss, B.E.: A modular system of algorithms of unconstrained minimization. ACM Transactions on Mathematical Software 11, 419–440 (1985)

    Article  MATH  Google Scholar 

  41. Sorenson, J.M., Head-Gordon, T.: The importance of hydration for the kinetics and thermodynamics of protein folding: simplified lattice models. Fold and Design 3, 523–534 (1998)

    Google Scholar 

  42. Sorenson, J.M., Hura, A., K., Soper, Pertsemlidis, A., Head-Gordon, T.: Determining the role of hydration forces in protein folding. Invited Feature Article for J. Phys. Chem. B 103, 5413–5426 (1999)

    Article  Google Scholar 

  43. Stillinger, F.H.: Diffusion smoothing. Phys. Rev. B 32, 3134–3141 (1985)

    Article  Google Scholar 

  44. Stillinger, F.H., Weber, T.A.: Nonlinear Optimization Simplified by Hypersurface Deformation. J. Statist. Phys. 52, 1429–1445 (1988)

    MATH  Google Scholar 

  45. Wu, Z.: The effective energy transformation scheme as a special continuation approach to global optimziation with application to molecular conformation. Technical Report CTC-93-TR143, Center for Theory and Simulation in Science and Engineering, Cornell University, 1993

  46. Yang, A.-S., Honig, B.: Sequence to structure alignment in comparative modeling using PrISM. Proteins: Structure, Function and Genetics 37, 66–72 (1999)

    Google Scholar 

  47. Yu, R.C., Head-Gordon, T.: Neural network design applied to protein secondary structure prediction. Phys Rev. E. 51, 3619–3627 (1995)

    Article  Google Scholar 

  48. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins: Structure, Function and Genetics 34, 220–223 (1999)

    Google Scholar 

  49. Zhu, H., Braun, W.: Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins. Protein Science 8, 326–342 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskow, E., Bader, B., Byrd, R. et al. An optimization approach to the problem of protein structure prediction. Math. Program., Ser. A 101, 497–514 (2004). https://doi.org/10.1007/s10107-003-0493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0493-4

Keywords

Navigation