Skip to main content
Log in

A magnetic resonance device designed via global optimization techniques

  • Published:
Mathematical Programming Submit manuscript

Abstract.

In this paper we are concerned with the design of a small low-cost, low-field multipolar magnet for Magnetic Resonance Imaging with a high field uniformity. By introducing appropriate variables, the considered design problem is converted into a global optimization one. This latter problem is solved by means of a new derivative free global optimization method which is a distributed multi-start type algorithm controlled by means of a simulated annealing criterion. In particular, the proposed method employs, as local search engine, a derivative free procedure. Under reasonable assumptions, we prove that this local algorithm is attracted by global minimum points. Additionally, we show that the simulated annealing strategy is able to produce a suitable starting point in a finite number of steps with probability one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods. Academic Press, New York, 1982

  2. Brachetti, P., De Felice Ciccoli, M., Di Pillo, G., Lucidi, S.: A new version of the Price’s algorithm for global optimization. J. Global Optim. 10, 165–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho, Z., Jones, J.P., Singh, M.: Foundations of Medical Imaging. John Wiley and Sons, New York, 1993

  4. Chubar, O., Elleaume, P., Chavanne, J.: A 3d magnetostatics computer code for insertion devices. J. Synchrotron Radiation 5, 481–484 (1998)

    Article  Google Scholar 

  5. Cirio, L., Lucidi, S., Parasiliti, F., Villani, M.: A global optimization approach for the synchronous motors design by finite element analysis. Int. J. Appl. Electromagnetics and Mechanics 16, 13–27 (2002)

    Google Scholar 

  6. Conn, A.R., Gould, N.I.M., Toint, Ph.: Trust-region methods. MPS-SIAM Series on Optimization. SIAM publications, Philadelphia, PA, USA, 2000, p. 22

  7. Czyzyk, J., Mesnier, M., Moré, J.: The neos server. IEEE J. Comput. Sci. Engin. 5, 68–75 (1998)

    Article  Google Scholar 

  8. Daidone, A., Parasiliti, F., Villani, M., Lucidi, S.: A new method for the design optimization of three-phase induction motors. IEEE Trans. Magnetics 34, 2932–2935 (1998)

    Article  Google Scholar 

  9. Dolan, E.: The neos server 4.0 administrative guide. Tech. Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, 2001

  10. Elleaume, P., Chubar, O., Chavanne, J.: Computing 3d magnetic field from insertion devices. In: Proceeding of the PAC97 Conference May, 1997, pp. 3509–3511

  11. Fourer, R., Gay, D., Kernighan, B.: AMPL a modeling language for mathematical programming. Boyd & Fraser publishing company, Massachusetts, 1993

  12. Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T., Matej, S.: Multidimensional optimization in image reconstruction from projections. In: Developments in Global Optimization, I. M. Bomze, T. Csendes, R. Horst, and P. Pardalos, (eds.), Kluwer, Dordrecht, 1997, pp. 289–300

  13. García-Palomares, U.M., Rodríguez, J.F.: New Sequential and Parallel Derivative-Free Algorithms for Unconstrained Minimization. SIAM J. Optim. 13, 79–96 (2002)

    Article  MathSciNet  Google Scholar 

  14. Grippo, L., Lampariello, F., Lucidi, S., Sciandrone, M.: Global convergence and stabilization of unconstrained minimization methodswithout derivatives. J. Optim. Theory Appl. 56, 385–406 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Gropp, W., Moré, J.: Optimization environments and the neos server. In: Approximation Theory and Optimization, M. Buhmann and A. Iserles, (eds.), Cambridge University Press, 1997, pp. 167–182

  16. Haacke, E.M., Brown, R.W., Thompson, M.R., Vankatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley and Sons, New York, 1999

  17. Hendrix, E., Ortigosa, P., Garcia, I.: On success rates for controlled random search. J. Global Optim. 21, 239–263 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, Z., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Approach. IEEE Press, 2000

  19. Liuzzi, G., Lucidi, S., Placidi, G., Sotgiu, A.: A magnetic resonance device designed via global optimization techniques. TR 09-02, Department of Computer and System Sciences ‘‘A. Ruberti’’, University of Rome ‘‘La Sapienza’’, Rome, Italy, 2002

  20. Lucidi, S., Piccioni, M.: Random tunneling by means of acceptance-rejection sampling for global optimization. J. Optim. Theory Appl. 62, 255–279 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Lucidi, S., Sciandrone, M.: On the global convergence of derivative free methods for unconstrained optimization. SIAM J. Optim. 13, 97–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21 (2), 119–142 (2002)

    Article  MATH  Google Scholar 

  23. Nishimura, D.G.: Magnetic Resonance Imaging. MRSRL Press

  24. Price, W.L.: Global optimization algorithms for a CAD workstation. J. Optim. Theory Appl. 55, 133–146 (1983)

    MATH  Google Scholar 

  25. Price, W.L., Woodhams, F.: Optimising accelerator for CAD workstations. IEEE Proc. 135, 214–221 (1988)

    Google Scholar 

  26. Solis, F.J.-B., Wets, R.J.: Minimization by random search techniques. Math. Oper. Res. 6, 19–30 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Wolfram Research Inc.: Mathematica, http://www.wolfram.com/, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lucidi.

Additional information

This work was supported by CNR/MIUR Research Program “Metodi e sistemi di supporto alle decisioni”, Rome, Italy.

Mathematics Subject Classification (1991):65K05, 62K05, 90C56

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liuzzi, G., Lucidi, S., Piccialli, V. et al. A magnetic resonance device designed via global optimization techniques. Math. Program., Ser. A 101, 339–364 (2004). https://doi.org/10.1007/s10107-004-0528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0528-5

Key words

Navigation