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Abstract. We consider the problem of minimizing a polynomial over a set defined by polynomial equations
and inequalities. When the polynomial equations have a finite set of complex solutions, we can reformulate
this problem as a semidefinite programming problem. Our semidefinite representation involves combinato-
rial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x1, . . . , xn]/I ,
where I is the ideal generated by the polynomial equations in the problem. Moreover, we prove the finite
convergence of a hierarchy of semidefinite relaxations introduced by Lasserre. Semidefinite approximations
can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a
grid case) that ensure that the approximation solves the original problem to optimality.

1. Introduction

A central problem in combinatorial optimization and other areas of mathematics con-
cerns the optimization of a linear or, more generally, polynomial function over a basic
closed semi-algebraic set. It can be formulated as

p∗ := inf f (x) s.t. h1(x) = 0, . . . , hm(x) = 0, hm+1(x) ≥ 0, . . . , hm+k(x) ≥ 0
(1)

where f, h1, . . . , hm+k ∈ R[x1, . . . , xn]. Set

V := {x ∈ C
n | h1(x) = 0, . . . , hm(x) = 0}, (2)

S := V ∩ R
n, F := S ∩ {x | hm+1(x) ≥ 0, . . . , hm+k(x) ≥ 0}. (3)

We assume throughout the paper that the set V is finite and we let I denote the ideal
generated by the polynomials h1, . . . , hm; thus V is the complex variety associated to I .
In typical combinatorial applications, V = {0, 1}n, which corresponds to the case when
the polynomials h1, . . . , hm are the quadratic polynomials x2

i − xi (i = 1, . . . , n), and
F is determined by imposing additional polynomial constraints. For example, in the
maximum stable set problem, F is the set of 0/1 points satisfying xixj = 0 for all pairs
ij ∈ E, where E is the set of edges of a graph; alternatively, F is is the set of 0/1 points
satisfying xi + xj ≤ 1 for all edges ij ∈ E.

Write the polynomial f (x) as f (x) = ∑
α∈Sd

fαxα, where d is its degree, and let
f = (fα)α∈Sd

denote the vector consisting of the coefficients of the polynomial f (x).
Here and below, Sd denotes the set of sequences α ∈ Z

n+ with |α| := ∑n
i=1 αi ≤ d and
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Z+ is the set of nonnegative integers. Given an integer t ≥ d, one can also view f as a
vector in R

St by setting fα := 0 for all α ∈ St \ Sd .
A classical approach for solving problem (1) is to linearize the objective function

by introducing variables yα = xα for the monomials xα present in the problem. This
allows us to write f (x) = f T y. Given an integer t ≥ deg(f ), the set:

P := conv((vα)α∈St | v ∈ F). (4)

is a polytope as F is a finite set. Therefore, problem (1) can be reformulated as the
problem: min

y∈P
f T y, of minimizing the linear objective function f T y over P . Various

methods have been proposed in the literature for constructing relaxations of the polytope
P ; that is, for generating new valid constraints from the given constraints hj (x) = 0,
hj (x) ≥ 0.

Combinatorial methods. Consider the 0/1 case, when the equations: x2
i − xi = 0

(i = 1, . . . , n) are present in the description of F . A possibility for generating new con-
straints is to multiply the inequalities hj (x) ≥ 0 by certain products of the variables xi

and 1−xi ; then linearization is applied, after having replaced each occurrence of a square
x2
i by xi . In this way, hierarchies of linear relaxations: P ⊆ . . . ⊆ P n ⊆ . . . ⊆ P t ⊆ . . .

for the original problem are obtained. The lift-and-project method of Balas, Ceria and
Cornuéjols [1], the matrix-cut method of Lovász and Schrijver [19], and the reformula-
tion-linearization technique of Sherali and Adams [29] can all be cast in this framework.
Lovász and Schrijver [19] propose moreover a stronger hierarchy of semidefinite relax-
ations. We do not give here the exact details of applicability of these methods; see [14]
for a comparative presentation of these methods. A common feature is that the original
problem (1) is solved exactly at step t = n as a linear programming problem over
a 2n-dimensional simplex, and that each intermediary relaxation gives an efficiently
computable bound for any fixed t (under some assumptions).

Algebraic methods via moments and sums of squares of polynomials. Several other
authors have proposed methods for constructing semidefinite relaxations of the problem
(1), based on results about moment sequences and (the dual theory of) representations
of nonnegative polynomials as sums of squares. See Nesterov [21], Lasserre [11], Par-
rilo [22, 23], Parrilo and Sturmfels [25], Shor [30] and the recent papers of Marshall
[20] and Schweighofer [28]. It turns out that, in the 0/1 case, these constructions yield
relaxations that are at least as strong as the relaxations obtained via the above mentioned
combinatorial methods. Moreover, they apply to the case when F is an arbitrary compact
semi-algebraic set. Details about the links between the various methods can be found in
[14].

Contents of the paper. The paper considers the problem of minimizing a polynomial
function f (x) over the semi-algebraic set F from (3), assuming that the equations in
the description of F have a finite set V of complex solutions. One possibility would
be to solve the problem using the theory of quantifier elimination (with a polynomial
running time for a fixed number n of variables; see [2]). One can also compute all the
points of V using the eigenvalue method sketched in Section 1.2 (together with exact
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symbolic computations using univariate representations for algebraic real numbers, see
[2]), and then evaluate f (v) for all v ∈ F . In this paper, we propose an alternative - more
elementary - method, which does not need the enumeration of the points of V . Instead,
we will reformulate problem (1) as a semidefinite program. As this program involves
matrices of size |B| ≥ |V |, it can be solved in practice only for small |B|. However,
one can define (in the grid case) a hierarchy of semidefinite relaxations of the original
problem whose low order members yield efficiently computable bounds to the original
problem; some results in this direction are given in Section 4.

The paper is organized as follows. Section 1.1 contains some algebraic preliminaries
about polynomial ideals and Section 1.2 recalls some well known results for the related
problem of solving a system of polynomial equations. We present in Section 1.3 the
method of Lasserre [11]. In particular, we introduce the hierarchy (15) of relaxations for
(1), involving trucated moment matrices, and the dual hierarchy (16), in terms of sums
of squares of polynomials with bounded degrees. We observe that, under the assumption
that V is finite, problem (1) can be reformulated as (10) (involving infinite moment
matrices) or (12) (involving sums of squares). We also introduce some results by Curto
and Fialkow (Theorem 9), Putinar (Theorem 10) and Parrilo (Theorem 11), which play
a central role in the paper.

In Section 2 we present the new semidefinite representation (22) for problem (1). It
involves combinatorial moment matrices MB(y), which are matrices indexed by a basis
B of the quotient space R[x1, . . . , xn]/I . Roughly speaking, this representation can be
seen as a finite analogue of the program (10), obtained by ‘factoring through the ideal
I ’ generated by the polynomial equations entering the description of the semi-algebraic
set F . The new formulation does not contain any semidefinite constraint for the equa-
tions hj (x) = 0 (j ≤ m), as they are used for the construction of the combinatorial
moment matrix MB(y). The ideas underlying this construction were already mentioned
in the grid case ([13–15]). The equivalence of (1) and (22) follows using the result of
Curto and Fialkow from Theorem 9. In the radical case, an alternative proof is based
on a simple combinatorial identity involving the Zeta matrix of the ideal I (see Lemma
17); this is a direct extension of the corresponding result given in [19] and in [14] for
the 0/1 and ±1 cases (which also underlies the convergence results for combinatorial
lift-and-project methods). Combinatorial moment matrices turn out to be closely related
to some algebraic notions (Hermite’s form, multiplication operator) used for solving
zero-dimensional systems of polynomial equations; see Sections 1.2 and 2.2 for details.

In Section 3, we prove the finite convergence of the bounds µ∗
t provided by the semi-

definite hierarchy (15) (see Theorem 22). If I is radical, or if the polynomials h1, . . . , hm

form a Groebner basis of I , then there is also finite convergence of the bounds σ ∗
t pro-

vided by the dual hierarchy (16). Under the second assumption, we can prove estimates
on the order t for which σ ∗

t = µ∗
t = p∗; in the grid case these estimates are sharper than

those given in [13]. (See Theorem 23 and Example 24.)
In Section 4, we consider approximations for problem (1) in the case when S is the

set {x | (xi − ai)(xi − bi) = 0 ∀i = 1, . . . , n} (where ai �= bi are given real numbers)
(thus including the 0/1 and ±1 cases). These approximations are obtained by consid-
ering truncated combinatorial moment matrices MBt

(y), where MBt
(y) is indexed by

all square free monomials of degree ≤ t . Our main result is that, if MBt
(y) 	 0 and

rank MBs
(y) ≤ ∑s

i=1

(
t
i

)
for some 1 ≤ s ≤ t , then y is a convex combination of the
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vectors (vα)α∈B2t
(v ∈ S). Moreover, the number of vectors entering the convex combi-

nation is at most 2t−1 if rank MB1(y) ≤ t . (See Theorem 25.) Therefore, if the optimum
solution MBt

(y) of the relaxed problem satisfies the above rank condition, then it in
fact solves the original problem (1) at optimality.

We also mention a result of the same flavour for the maximum stable set problem.
The theta number:

ϑ(G) := max
n∑

i=1

yi s.t. MB1(y) 	 0, yij = 0 (ij ∈ E), y0 = 1 (5)

is a well known upper bound on the stability number of a graph G = ({1, . . . , n}, E),
introduced by Lovász [18]. If we impose that MB1(y) has rank 1 in (5), then the pro-
gram solves the maximum stable set problem exactly. We prove that the same holds if we
require only that rank MB1(y) ≤ 2 (see Proposition 30). This is an analogue of a result
of Burer, Monteiro and Zhang [4] given for another formulation of the theta number.

1.1. Polynomial ideals and varieties

We group here some preliminaries on polynomial ideals and varieties. For more infor-
mation on the material in the present and the next subsection, see, e.g., [2], [5], [6], [31].
Given an ideal I in R[x1, . . . , xn], the set V from (2) is the complex variety associated
to I . If I is generated by h1, . . . , hm, then V consists of the common complex zeros of
h1, . . . , hm. When V is finite, the ideal I is said to be zero-dimensional.

As the polynomials h1, . . . , hm are real valued, V is closed under complex conjuga-
tion; that is, V can be partitioned as S ∪T ∪T , where S = V ∩R

n and T = {v | v ∈ T }.
When V is finite, one can find complex polynomials pv (for v ∈ V ) satisfying pv(v) = 1
and pv(v

′) = 0 for v′ ∈ V \{v} as well as pv = pv (v ∈ V ); the pv’s are known as inter-
polation polynomials at the points of V . Therefore, given complex numbers av (v ∈ V )
such that av = av (v ∈ V ), one can find a real polynomial taking the prescribed values
av at the points v ∈ V . This fact will be used in the proofs of Proposition 8 and Theorem
11.

The set

I (V ) := {f ∈ R[x1, . . . , xn] | f (x) = 0 for all x ∈ V }

is an ideal in R[x1, . . . , xn] that contains the ideal I . When equality I = I (V ) holds,
the ideal I is said to be radical; this corresponds, roughly speaking, to the case when all
solutions x ∈ V have single multiplicities. For instance, the ideal I in R[x] generated
by h(x) = x2 is not radical since V = {0} and f (x) = x belongs to I (V ) \ I .

The monomials in R[x1, . . . , xn] are denoted as xα := x
α1
1 · · · xαn

n for α ∈ Z
n+. The

degree of xα is |α| = ∑n
i=1 αi . Given a nonzero polynomial f (x) = ∑

α fαxα , its terms
are the quantities fαxα with fα �= 0 and its degree deg(f ) is the maximum degree of a
term of f . A monomial ordering ‘<’ is a total ordering of the set of monomials which
is a well-ordering and satisfies the condition: xα < xβ �⇒ xα+γ < xβ+γ . Examples
of monomial ordering are the lexicographic order ‘<lex’, where xα <lex xβ if α < β
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for a lexicographic order on Z
n+, or the graded lexicographic order ‘<grlex’, where

xα <grlex xβ if |α| < |β|, or |α| = |β| and xα <lex xβ .
Fix a monomial ordering on R[x1, . . . , xn]. Given a nonzero polynomial f (x) =∑

α fαxα , its leading term LT(f ) is defined as fαxα , where xα is the maximum (with
respect to the given ordering) monomial for which fα �= 0. Let I be an ideal in
R[x1, . . . , xn]. A finite subset G ⊆ I is called a Groebner basis of I if the leading
term of every nonzero polynomial in I is divisible by the leading term of some poly-
nomial in G. It is known that a Groebner basis always exists. A monomial xα is called
a standard monomial if it not divisible by the leading term of any polynomial in I or,
equivalently, if xα is not divisible by the leading term of any poynomial in a Groebner
basis.

Once a monomial ordering is fixed, one can apply the division algorithm. Let
h1, . . . , hm and f be nonzero polynomials. If one divides f by the polynomials h1, . . . ,

hm, one obtains polynomials u1, . . . , um and r satisfying f = ∑m
j=1 ujhj + r, no term

of r is divisible by LT(hj ) (j = 1, . . . , m) if r �= 0, and LT(f ) ≥ LT(ujhj ) if uj �= 0.

When the polynomials h1, . . . , hm form a Groebner basis of I , the remainder r is
uniquely determined and it is a linear combination of the set B of standard monomials;
that is, r(x) = ∑

xβ∈B rβxβ where rβ ∈ R. Moreover, f ∈ I if and only if r = 0.
Therefore, R[x1, . . . , xn]/I and R

B are isomorphic vector spaces.

Definition 1. A set B := {f1, . . . , fN } of polynomials forms a basis of R[x1, . . . , xn]/I
if, for every polynomial f , there exists a unique set of real numbers λ

(f )
1 , . . . , λ

(f )
N such

that f − ∑N
i=1 λ

(f )
i fi ∈ I. When B contains only monomials, we call B a mono-

mial basis. The polynomial
∑N

i=1 λ
(f )
i fi is called the residue of f modulo I w.r.t. the

basis B and we set λ(f ) := (λ
(f )
i )Ni=1 ∈ R

|B|. Moreover, for v ∈ V , define the vector
ζB
v := (fi(v))Ni=1 ∈ R

|B|; thus f (v) = (λ(f ))T ζB
v .

For instance, the set of standard monomials (w.r.t. some monomial ordering) is a
(monomial) basis of R[x1, . . . , xn]/I . A fundamental property that we will use in the
paper is the following, which can be found, e.g., in ([6], Theorem 2.10).

Theorem 2. Let I be an ideal in R[x1, . . . , xn] with complex variety V (as in (2)).
Then, the variety V is finite if and only if the vector space R[x1, . . . , xn]/I has finite
dimension N . Moreover, |V | ≤ N , with equality if and only if the ideal I is radical.

Example 3. ([5], p. 227) Let I be the ideal in R[x, y] generated by xy3−x2 and x3y2−y.
W.r.t. the lexicographic order with y > x, the polynomials y − x7 and x12 − x2 form a
Groebner basis with corresponding set of standard monomials B1 = {1, x, x2, . . . , x11}.
W.r.t. the graded lexicographic order with y > x, the polynomials x3y2 − y, x4 − y2,
xy3 −x2, y4 −xy form a Groebner basis with corresponding set of standard monomials
B2 = {1, x, x2, x3, y, xy, x2y, x3y, y2, xy2, x2y2, y3}. Hence, |B1| = |B2| = 12, and
the maximum degree of a standard monomial is 11 in B1 and 4 in B2. The complex
variety of I is V = {(0, 0)} ∪ {(x, x7) | x10 = 1}, with cardinality 11. As |V | < |B1|,
the ideal I is not radical.

The quotient space R[x1, . . . , xn]/I has simultaneously the structure of a vector
space and of a ring. In order to specify the multiplication operation, it suffices to give
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the multiplication table w.r.t. a basis B = {f1, . . . , fN }; this is the B × B matrix TB
whose (fi, fj )th entry is the residue w.r.t. B of the product fifj ; that is, for fi, fj ∈ B,

TB(fi, fj ) =
N∑

k=1

λ
(fifj )

k fk. (6)

The multiplication table TB can be computed using the division algorithm.

Example 4. Let I1 be the ideal in R[x, y] generated by x2 − x and y2 − y and I2 be
the ideal generated by x2 − 1 and y2 − 1. Then, for i = 1, 2, B := {1, x, y, xy} is a
monomial basis of R[x, y]/Ii whose multiplication table Ti is as follows:

T1 =







1 x y xy

1 1 x y xy

x x x xy xy

y y xy y xy

xy xy xy xy xy





, T2 =







1 x y xy

1 1 x y xy

x x 1 xy y

y y xy 1 x

xy xy y x 1





.

1.2. Solving systems of polynomial equations

Our paper is dealing with the problem of optimizing a polynomial function over a finite
set of points arising as the solution set of a system of polynomial equations and inequali-
ties. A related problem, which has received considerable attention in the literature, is the
problem of solving a system of polynomial equations: h1(x) = 0, . . . , hm(x) = 0. Let
I be the ideal generated by h1, . . . , hm with complex variety V , assumed to be finite.
Then the so-called eigenvalue method (also known as the Stetter-Möller method) can
be applied for finding V , which relies on finding the eigenvalues of the multiplication
operator. Given a polynomial h ∈ R[x1, . . . , xn], let

mh : R[x1, . . . , xn]/I −→ R[x1, . . . , xn]/I

f �−→ f h

be the ‘multiplication by h’ operator. Given a basis B of R[x1, . . . , xn]/I , let Mh denote
the matrix of mh w.r.t. B; thus Mh is the B × B matrix whose f th column is the
vector λ(hf ) ∈ R

B, giving the residue w.r.t. B of the product hf , for f ∈ B. When
h(x) = xi , the multiplication matrices Mxi

=: Mi are known as the companion matrices
of the ideal I . As the matrices M1, . . . , Mn pairwise commute, they generate a com-
mutative algebra R[M1, . . . , Mn], which is isomorphic to the ring R[x1, . . . , xn]/I
via the correspondance xi −→ Mi . It is easy to verify that, for h(x) = ∑

α hαxα ,
Mh = ∑

α hαM
α1
1 · · · Mαn

n . The next result shows that the coordinates of the points
v ∈ V can be evaluated by computing the eigenvalues of the companion matrices.

Theorem 5 (Stickelberger’s theorem). Assume that V is finite.

(i) The complex zeros of I are the vectors of joint eigenvalues of the companion matri-
ces M1, . . . , Mn; that is, V = {λ ∈ C

n | ∃u ∈ C
n \ {0} s.t. Miu = λiu ∀i =

1, . . . , n}.
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(ii) Given h ∈ R[x1, . . . , xn], T r(Mh) = ∑
v∈V m(v)h(v), where m(v) (v ∈ V ) are

the multiplicities of the zeros of I . In particular, T r(Mh) = ∑
v∈V h(v) when I is

radical.

A related relevant result is the following result (see, e.g., [2], section 4.5) permitting
to count the number of real zeros of a system of polynomial equations having finitely
many complex zeros. It involves the bilinear map:

herh : R[x1, . . . , xn]/I × R[x1, . . . , xn]/I −→ R

(f, g) �−→ T r(Mfgh)

whose associated quadratic form: Herh(f ) := herh(f, f ) for f ∈ R[x1, . . . , xn]/I ,
is known as the multivariate Hermite’s form. Let Hh = (T r(Mfgh))f,g∈B denote the
matrix of the Hermite’s form w.r.t. a basis B of R[x1, . . . , xn]/I ; thus Hh is real sym-
metric.

Theorem 6 (Counting real zeros via the Hermite’s form). Let σ+ (resp., σ−) denote
the number of positive (resp., negative) eigenvalues of Hh, and set s+ := |{v ∈ V ∩R

n |
h(v) > 0}|, s− := |{v ∈ V ∩ R

n | h(v) < 0}|, and 2t := |{v ∈ V \ R
n | h(v) �= 0}|.

Then, σ+ − σ− = s+ − s−, and rank Hh = |{v ∈ V | h(v) �= 0}| = s+ + s− + 2t.

Therefore, σ+ = s+ + t and σ− = s− + t .

As we will see in Section 2.2, there is a close relationship between the Hermite’s
matrix Hh and the notion of combinatorial moment matrix considered in this paper. The
following observations will be useful for establishing this link. In view of Theorem 5
(ii), Hh = (

∑
v∈V m(v)f (v)g(v)h(v))f,g∈B; that is, Hh = ∑

v∈V m(v)h(v)ζB
v (ζB

v )T ,
where ζv = (f (v))f ∈B (as in Definition 1). In fact, any matrix H of the form H =
∑

v∈V avζ
B
v (ζB

v )T , where the scalars av ∈ C satisfy av = av for v ∈ V , is the Hermite’s
matrix Hh of some polynomial h ∈ R[x1, . . . , xn], as one can find such polynomial h

satisfying h(v)m(v) = av for all v ∈ V . Thus Theorem 6 applies to any such matrix H .
In particular,

H 	 0 ⇐⇒ s− = t = 0 ⇐⇒ av ≥ 0 (v ∈ V ∩ R
n), av = 0 (v ∈ V \ R

n). (7)

[One can easily prove this fact directly, along the same lines as for the proof of Lemma
2.5 in [17].]

1.3. Moments and sums of squares of polynomials

We present here the method of Lasserre [11] for solving problem (1). A basic
observation underlying Lasserre’s construction is the fact that

p∗ := inf
x∈F

f (x) = inf
µ

∫

f (x)µ(dx), (8)

where the second infimum is taken over all probability measures µ on R
n supported by

F (i.e., µ is a nonnegative measure with mass 0 outside of F and with total mass
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∫
F

µ(dx) = 1). Note that
∫

f (x)µ(dx) =
∑

α

fα

∫

xαµ(dx). For α ∈ Z
n+, the

quantity yα :=
∫

xαµ(dx) is called the moment of order α of the measure µ, and

y = (yα)α∈Z
n+ is called the sequence of moments of µ; one also says that µ is a repre-

senting measure for y. The measure µ is a probability measure when y0 = 1. Therefore,
(8) can be reformulated as

p∗ = inf f T y s.t. y has a representing measure supported by F. (9)

When F is a finite set, every probability measure µ supported by F is atomic; that is,
µ can be written as µ = ∑

v∈F λvδv , where λv ≥ 0,
∑

v∈F λv = 1, and δv is the
Dirac measure at v (with mass 1 at v and zero elsewhere). Then the moment of order
α of µ is equal to

∑
v∈F λvv

α . Therefore, the points of the polytope P from (4) are
precisely the sequences having a probability representing measure supported by F and
relaxations of P can be obtained by considering necessary conditions for the existence
of such measures. Characterizing sequences of moments of measures is the object of
the classical theory of moments; see, e.g., [7], [8], [10]. Moment matrices M(y) and
the so-called shift operator h ∗ y are two classical notions used in characterizations of
moment sequences, as the next lemma shows. In what follows, R

Z
n+ denotes the vector

space consisting of the sequences y = (yα)α∈Z
n+ .

Given y ∈ R
Z

n+ , its moment matrix is the (infinite) matrix M(y) := (yα+β)α,β∈Z
n+

and, given a polynomial h ∈ R[x1, . . . , xn], h ∗ y := M(y)h ∈ R
Z

n+ , with entries
(h ∗ y)α = ∑

β hβyα+β (α ∈ Z
n+). For a real symmetric matrix X, the notation: X 	 0

means that X is positive semidefinite. If A is a principal submatrix of X, one says that
X is a flat extension of A if rank X = rank A; then, X 	 0 ⇐⇒ A 	 0.

Lemma 7. (i) If y ∈ R
Z

n+ has a representing measure µ, then M(y) 	 0. Moreover,
if p(x) is a polynomial such that M(y)p = 0, then the support of µ is contained
in the set of zeros of p(x).

(ii) Let h(x) be a polynomial and F := {x ∈ R
n | h(x) ≥ 0}. If y ∈ R

Z
n+ has a

representing measure supported by F , then M(h ∗ y) 	 0.

(iii) If M(y) 	 0, then Ker M(y) is an ideal in R[x1, . . . , xn].

Proof. (i) follows from the fact that, for any polynomial p, pT M(y)p =∑
α,β pαpβyα+β = ∑

α,β pαpβ

∫
xα+βµ(dx) = ∫

p(x)2µ(dx) and (ii) follows

from the fact that pT M(h ∗ y)p = ∫
F

h(x)p(x)2µ(dx).

(iii) Let p, q be polynomials such that M(y)p = 0 and set f := pq, g := pq2; we
show that M(y)f = 0. One can easily verify that f T M(y)f = gT M(y)p; thus,
f T M(y)f = 0, which implies M(y)f = 0 since M(y) 	 0. ��

Based on this, one can define the following bound for p∗:

µ∗ := inf f T y s.t. M(y) 	 0, M(hj ∗ y) = 0 (j = 1, . . . , m)

M(hj ∗ y) 	 0 (j = m + 1, . . . , m + k), y0 = 1. (10)

By Lemma 7 (i),(ii), µ∗ ≤ p∗. In fact, equality: µ∗ = p∗ holds, as the next result shows.
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Proposition 8. Let F be as in (3) and assume that V is finite. The following assertions
are equivalent for y ∈ R

Z
n+ :

(i) y has a representing measure supported by F .
(ii) M(y) 	 0, M(hj ∗y) = 0 (j = 1, . . . , m), M(hj ∗y) 	 0 (j = m+1, . . . , m+k).

The proof relies on the following result of Curto and Fialkow.

Theorem 9. [7] Given y ∈ R
Z

n+ , if M(y) is positive semidefinite and has finite rank,
then y has a (unique) representing measure.

Proof of Proposition 8. (i) �⇒ (ii) follows from Lemma 7.
(ii) �⇒ (i) Note first that I ⊆ Ker M(y), since Ker M(y) is an ideal containing the

polynomials h1, . . . , hm, as 0 = hj ∗ y = M(y)hj (j = 1, . . . , m). Let B be a
monomial basis of R[x1, . . . , xn]/I . As any monomial xα is congruent modulo I

to a polynomial which is a linear combination of monomials in B, the αth column
of M(y) can be expressed as a linear combination of the columns indexed by B.
Therefore, the matrix M(y) has finite rank. By Theorem 9, y has a representing
measure µ. As I ⊆ Ker M(y), it follows from Lemma 7 that the support of µ is
contained in V ∩R

n = S. Say, µ = ∑
v∈S avδv with av ≥ 0. Remains to verify that

av = 0 if v ∈ S \ F . Let v ∈ S \ F and let j ≥ m + 1 such that hj (v) < 0. Let
p be a real polynomial such that p(v) = 1 and p(v′) = 0 for v′ ∈ S \ {v}. Then,
0 ≤ pT M(hj ∗ y)p = avhj (v), which implies that av = 0. Thus the support of µ

is contained in F . ��
Call a polynomial u a s.o.s. if u can be written as a sum of squares of polynomials.

Define

M(F ) := {u0 +
m+k∑

j=1

ujhj | uj ∈ R[x1, . . . , xn], u0, um+1, . . . , um+k are s.o.s.}

(11)

As p∗ = sup ρ s.t. f (x) − ρ ≥ 0 ∀x ∈ F, one can derive a lower bound on p∗ by
replacing the nonnegativity condition: f (x) − ρ ≥ 0 ∀x ∈ F by the stronger condition:
f (x) − ρ ∈ M(F ); namely,

σ ∗ := sup ρ s.t. f (x) − ρ ∈ M(F ). (12)

Then, σ ∗ ≤ µ∗. Indeed, f T y ≥ ρ if y is feasible for (10) and if ρ is feasible for (12),
which can be seen using the following facts: Any polynomial u can be written as the
difference of two s.o.s. (e.g., u = 1

4 ((u + 1)2 − (u − 1)2)); given two polynomials p

and h and g := hp2, then yT g = pT M(h ∗ y)p (easy to check). In fact, equality:

σ ∗ = µ∗ = p∗ (13)

holds, which can be proved using the following result of Putinar [27].

Theorem 10. [27] Let F := {x ∈ R
n | g1(x) ≥ 0, . . . , gL(x) ≥ 0} for some polyno-

mials g1, . . . , gL, and M(F ) := {u0 + ∑L
�=1 u�g� | u0, u� are s.o.s.}. If F is compact

and if there exists a polynomial u ∈ M(F ) for which the set U := {x ∈ R
n | u(x) ≥ 0}

is compact, then every positive polynomial on F belongs to M(F ).
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In the present case, the assumptions of Theorem 10 hold. Indeed, the polynomial
u(x) := − ∑m

j=1 hj (x)2 belongs to M(F ) and U = V ∩ R
n is finite. Therefore, given

ε > 0, as the polynomial f (x) − p∗ + ε is positive on F , it belongs to M(F ) and thus
p∗−ε is feasible for (12), implying σ ∗ ≥ p∗−ε. Letting ε go to 0, we find that σ ∗ ≥ p∗
and thus (13) holds.

Comment. Equality: µ∗ = p∗ can be proved using Curto and Fialkow’s result (The-
orem 9) and it is implied by (13), which follows using Putinar’s result (Theorem 10).
The original proofs for these two results are based on functional analytic tools (includ-
ing Riesz representation theorem and the spectral theorem). An alternative simple proof
for Theorem 9 has been given recently in [17] which, beside Hilbert’s Nullstellensatz,
uses only elementary linear algebra; a key observation is that the kernel of a positive
semidefinite moment matrix is a radical ideal. Although a more elementary proof for
Theorem 10 has been given in [28], it remains however more involved than the proof for
Theorem 9.

Parrilo [24] shows the following extension of Putinar’s result to nonnegative polyno-
mials on F , in the case when the polynomials hj (x) (j = 1, . . . , m) generate a radical
ideal. The proof is elementary and is included for completeness. Thus, in the radical
case, (13) follows directly from Theorem 11.

Theorem 11. [24] Let F be as in (3). Assume that V is finite and that the ideal generated
by h1, . . . , hm is radical. Then every nonnegative polynomial on F belongs to M(F ).

Proof. Write V = S∪T ∪ T̄ , where S = V ∩R
n, T̄ = {v̄ | v ∈ T } and T ∪ T̄ = V \R

n.
Suppose first that f is a real polynomial nonnegative on the set S. For v ∈ S ∪ T , let
γv = √

f (v) (thus, γv ∈ R+ if v ∈ S) and define the real polynomials qv := γvpv

(v ∈ S) and qv := γvpv + γvpv (v ∈ T ). The polynomial f − ∑
v∈S∪T (qv)

2 vanishes
at all points of V ; hence it belongs to I (V ), which is equal to I since I is radical. This
shows that f = σ + q, where σ is a s.o.s. and q ∈ I .

Suppose now that f is nonnegative on the set F . We define real polynomials s0,

sm+1, . . . , sm+k taking the following prescribed values at the points in V . If v ∈ V \S, or
if v ∈ S and f (v) ≥ 0, s0(v) = f (v) and sj (v) = 0 (j = m+1, . . . , m+k). Otherwise,

v �∈ F and thus hjv (v) < 0 for some jv ∈ {m+ 1, . . . , m+ k}; then sjv (v) = f (v)
hjv (v)

and
s0(v) = sj (v) = 0 for all remaining j . Then, each of s0, sm+1, . . . , sm+k is nonnegative
on S; by the above, sj = σj + qj , where σj is a s.o.s. and qj ∈ I . By construction, the
polynomial f − s0 − ∑m+k

j=m+1 sjhj vanishes at all points of V and thus belongs to I .

Therefore, f − σ0 − ∑m+k
j=m+1 σjhj ∈ I . ��

Practically, one can use the programs (10) and (12) for computing p∗ in the following
way. Define

dj := �deg(hj )/2� (j = 1, . . . , m + k), d := max(d1, . . . , dm+k). (14)

Following Lasserre [11], one can formulate the following semidefinite relaxations for
(1), obtained from (10) by replacing the (infinite) moment matrix M(y) by its leading
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principal submatrix (truncation) Mt(y) := (yα+β)α,β∈St , indexed by the set St corre-
sponding to the set of monomials with degree at most t .

µ∗
t := inf f T y

s.t. Mt(y) 	 0, Mt−dj
(hj ∗ y) = 0 (j = 1, . . . , m)

Mt−dj
(hj ∗ y) 	 0 (j = m + 1, . . . , m + k), y0 = 1 (15)

for any t ≥ max(d, �deg(f )/2�). Obviously, µ∗
t ≤ µ∗

t+1 ≤ µ∗ ≤ p∗. By bounding the
degrees of the unknown polynomials uj (x) in (12), one obtains the hierarchy:

σ ∗
t := sup ρ

s.t. f (x) − ρ = u0(x) +
m+k∑

j=1

uj (x)hj (x) with u0, um+1, . . . , um+k s.o.s.

and deg(u0), deg(ujhj ) ≤ 2t (j = 1, . . . , m + k) (16)

for t ≥ max(d, �deg(f )/2�). Obviously, σ ∗
t ≤ σ ∗

t+1 ≤ σ ∗ ≤ p∗. As sums of squares of
polynomials can be tested using semidefinite programming (see [26]), (16) can be refor-
mulated as a semidefinite program. Any polynomial u can be decomposed as u′ − u′′,
where u′ and u′′ are s.o.s. with degree at most deg(u); hence the program (16) is equiv-
alent to the usual formulation, where the polynomials uj (j = 1, . . . , m) are required
to be of the form u′

j − u′′
j , with u′

j , u
′′
j s.o.s. of degree at most 2(t − dj ).

Lasserre [11] shows that the program (16) is the semidefinite dual of (15); hence,

σ ∗
t ≤ µ∗

t ≤ p∗ (17)

by weak duality. By Theorem 10, the bounds σ ∗
t (and thus µ∗

t ) converge to p∗ as t → ∞.
When the ideal I generated by h1, . . . , hm is radical, Theorem 11 implies the finite con-
vergence of the bounds σ ∗

t (and thus µ∗
t ) to p∗. Lasserre [12, 13] has shown the finite

convergence of the bounds σ ∗
t , µ∗

t in the case when F is contained in {0, 1}n or is equal
to the set of points in a grid; the result follows alternatively from Parrilo’s result since
the ideal is radical in the grid case. In the non-radical case, we show the finite conver-
gence of µ∗

t (see Theorem 22) and, in the case when the polynomials h1, . . . , hm form a
Groebner basis of I (w.r.t. some monomial ordering), the finite convergence of σ ∗

t (see
Theorem 23). Furthermore, we give a semidefinite representation for problem (1) (see
Corollary 16), which is more concise than (15), as it involves matrices of size smaller
than |St | for any t ensuring the finite convergence of (15).

2. A Semidefinite Representation for a Finite Variety

2.1. Approach via combinatorial moment matrices

Consider the problem (1) of minimizing a polynomial f over the semi-algebraic set
F from (3). As before, I is the ideal generated by the polynomials h1, . . . , hm and V

is its complex variety, assumed to be finite. Then, R[x1, . . . , xn]/I has finite dimen-
sion N ≥ |V | (by Theorem 2). Let B := {f1, . . . , fN } be a basis of R[x1, . . . , xn]/I .
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Problem (1) remains unchanged if we replace the polynomial f by its residue r(x) :=
∑N

i=1 λ
(f )
i fi(x) modulo I w.r.t. B (recall Definition 1). That is,

p∗ = min
v∈F

(λ(f ))T ζB
v = min yT λ(f ) s.t. y ∈ PB(F ) := conv(ζB

v | v ∈ F). (18)

We give here a semidefinite representation for the polytope PB(F ), which can be seen
as a finite analogue of the program (10); it does not need the explicit knowledge of the
variety V , but only the knowledge of a basis B of R[x1, . . . , xn]/I and of its associated
multiplication table.

The key ingredient in the proof of Proposition 8 was the fact that the kernel of a matrix
M(y) feasible for (10) contains the ideal I ; this implies that M(y) is a flat extension of
its principal submatrix MB(y) indexed by a monomial basis B of R[x1, . . . , xn]/I . In
particular, all entries of M(y) can be expressed in terms of the entries of y indexed by
B, using the equations h(x) = 0 provided by h ∈ I . We now formalize this idea and
introduce the ‘combinatorial’ analogues MB(y) and h ∗ y ∈ R

|B| (for y ∈ R
|B|) of the

corresponding notions in the classical case.
Given y = (y1, . . . , yN)T ∈ R

|B|, its combinatorial moment matrix MB(y) is the

|B| × |B| matrix indexed by B, whose (fi, fj )th entry is yT λ(fifj ) = ∑N
k=1 λ

(fifj )

k yk

for fi, fj ∈ B. Thus MB(y) is obtained from the multiplication table of B (recall (6))
by ‘linearizing’, where ‘linearizing’ means replacing each occurrence of fk by yk .

Given a polynomial h ∈ R[x1, . . . , xn], define h ∗ y := MB(y)λ(h) ∈ R
|B|. One

can verify that h ∗ y = MT
h y, where Mh is the ‘multiplication by h’ operator introduced

in Section 1.2.
Let U denote the N × |Zn+| matrix whose rows (resp., columns) are indexed by B

(resp., by Z
n+) and whose (i, α)-entry is equal to λ

(xα)
i . In words, the αth column of

U contains the coordinates of the residue of xα in the basis B. For a polynomial h, its
residue modulo I w.r.t. B is

∑N
i=1 λ

(h)
i fi , where

λ(h) = Uh. (19)

Indeed,
∑N

i=1 λ
(h)
i fi ≡ h mod. I , while h = ∑

α hαxα ≡ ∑
α hα(

∑N
i=1 Ui,αfi) which

is equal to
∑N

i=1(
∑

α hαUi,α)fi = ∑N
i=1(Uh)ifi , thus showing that λ

(h)
i = (Uh)i for

i = 1, . . . , N .
Given y ∈ R

|B|, define its extension:

ỹ := UT y ∈ R
Z

n+ . (20)

Hence, for α ∈ Z
n+, ỹα is obtained by ‘linearizing’ the residue of xα modulo I w.r.t. B.

Example 12. Consider the 0/1 case, when I is generated by the polynomials x2
j − xj

(j = 1, . . . , n) and V = {0, 1}n. W.r.t. the graded lexicographic order, the set of standard
monomials is

B = {xA :=
∏

i∈A

xi | A ⊆ {1, . . . , n}}. (21)

For xA, xB ∈ B, the (xA, xB)th entry of the multiplication table is xA∪B , since xA∪B

is the residue of the product xAxB modulo I . Hence the combinatorial moment matrix
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MB(y) of a vector y = (yA)A⊆{1,... ,n} is the matrix indexed by all subsets of {1, . . . , n}
with (A, B)th entry yA∪B . The extension ỹ of y satisfies: ỹα = yA, where A = {i ∈
{1, . . . , n} | αi ≥ 1}.

In the ±1 case, I is generated by the polynomials x2
j −1 (j = 1, . . . , n), V = {±1}n,

and (21) is again the set of standard monomials. The (xA, xB)th entry of the multipli-
cation table is now equal to xA
B , and the combinatorial moment matrix MB(y) of a
vector y = (yA)A⊆{1,... ,n} has its (A, B)th entry equal to yA
B . The extension ỹ of y

satisfies: ỹα = yA, where A = {i ∈ {1, . . . , n} | αi odd }.
Lemma 13. Let y ∈ R

|B| and let ỹ ∈ R
Z

n+ be its extension as in (20).

(i) M(ỹ) = UT MB(y)U. Hence, when B is a monomial basis, MB(y) is the principal
submatrix of M(ỹ) indexed by B and M(ỹ) is a flat extension of MB(y).

(ii) The extension of h ∗ y is equal to h ∗ ỹ.
(iii) I ⊆ Ker M(ỹ).
(iv) For a polynomial h, hT ỹ = (λ(h))T y.

Proof. (i) Given α, β ∈ Z
n+, the (α, β)th entry of the matrix UT MB(y)U is equal to

∑N
i,j=1 Ui,αUj,βMB(y)ij = ∑N

i,j=1 Ui,αUj,β

(∑N
k=1 λ

(fifj )

k yk

)
= ∑N

k=1
(∑N

i,j=1 Ui,αUj,βλ
(fifj )

k

)
yk. On the other hand, xα ≡ ∑N

i=1 Ui,αfi, xβ ≡ ∑N
j=1

Uj,βfj modulo I , which implies that xαxβ ≡ ∑N
i,j=1 Ui,αUj,βfifj ≡ ∑N

k=1(∑N
i,j=1 Ui,αUj,βλ

(fifj )

k

)
fk modulo I . Therefore, the (α, β)th entry of MB(y) is

equal to
∑N

k=1

(∑N
i,j=1 Ui,αUj,βλ

(fifj )

k

)
yk.

(ii) By definition, the extension of h ∗ y is UT (h ∗ y) = UT (MB(y)λ(h)), while
h∗ỹ = M(ỹ)h = UT MB(y)Uh (using (i) above), which is equal to UT MB(y)λ(h)

(using (19)).
(iii) If h ∈ I , then 0 = λ(h) = Uh (by (19)), implying M(ỹ)h = UT MB(y)Uh = 0.
(iv) We have: hT ỹ = hT (UT y) = (Uh)T y = (λ(h))T y (using (19)). ��

Theorem 14. The following assertions are equivalent for y ∈ R
|B| and its extension

ỹ ∈ R
Z

n+ .

(i) The vector y belongs to the cone generated by the vectors ζB
v = (fi(v))Ni=1 (v ∈ F ).

(ii) MB(y) 	 0, MB(hj ∗ y) 	 0 (j = m + 1, . . . , m + k).
(ii) M(ỹ) 	 0, M(hj ∗ỹ) = 0 (j = 1, . . . , m), M(hj ∗ỹ) 	 0 (j = m+1, . . . , m+k).
(iv) The vector ỹ belongs to the cone generated by the vectors ζv = (vα)α∈Z

n+ (v ∈ F ).

Proof. (i) �⇒ (ii) To see it, let y := ζB
v for v ∈ F . Then, MB(y) = yyT 	 0. Indeed,

the (fi, fj )th entry of yyT is fi(v)fj (v), while the (fi, fj )th entry of MB(y) is

equal to
∑N

k=1 λ
(fifj )

k fk(v) and thus to fi(v)fj (v), since fifj ≡ ∑N
k=1 λ

(fifj )

k fk

modulo I . Moreover, MB(hj ∗ y) = hj (v)yyT 	 0, for j ≥ m + 1.
(ii) �⇒ (iii) As M(ỹ) = UT MB(y)U , it follows that M(ỹ) 	 0. For j = 1, . . . , m,

hj ∗ ỹ = M(ỹ)hj = 0, since I ⊆ Ker M(ỹ) (by Lemma 13 (iii)). For j =
m+ 1, . . . .m+ k, M(hj ∗ ỹ) = M(h̃j ∗ y) = UT MB(hj ∗ y)U 	 0 (use Lemma
13 (i),(ii)).
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(iii) �⇒ (iv) follows from Proposition 8.
(iv) �⇒ (i) Say, ỹ = ∑

v∈F avζv with av ≥ 0. Let i = 1, . . . , N .As ỹ = UT y, f T
i ỹ =

f T
i (UT y) = (Ufi)

T y = yi . On the other hand, as f T
i ζv = fi(v) = (ζB

v )i , f T
i ỹ =

∑
v∈F avfi(v) is the ith coordinate of

∑
v∈F avζ

B
v . Hence, y = ∑

v∈F avζ
B
v . ��

Corollary 15. Assume that V is finite and let B be a monomial basis of R[x1, . . . , xn]/I
containing the constant monomial 1. Then, problem (1) is equivalent to

min rT y s.t. MB(y) 	 0, MB(hj ∗ y) 	 0 (j = m + 1, . . . , m + k), y0 = 1, (22)

where r(x) = ∑
β∈B rβxβ is the residue of the polynomial f (x) w.r.t. B, and y0 is the

coordinate of y indexed by 1.

Proof. Directly from Theorem 14 since, for y = ∑
v avζ

B
v ,

∑
v av = 1 ⇐⇒ y0 = 1. ��

We have formulated for simplicity the above corollary for a monomial basis although
it holds for any basis containing the constant polynomial 1. Therefore, (22) provides a
concrete finite semidefinite program permitting to solve the infinite program (10). We
now consider the dual semidefinite program of the semidefinite program (22). For con-
venience, the same symbol B denotes the set of exponents β for which xβ ∈ B and, for a
polynomial q(x), the notation: q ∈ R

B means that q(x) is a linear combination of mono-
mials in B, i.e., q(x) = ∑

β∈B qβxβ . Setting h0(x) := 1 and MB(hj ∗y) = ∑
β∈B C

j
βyβ

for j = 0, 1, . . . , m + k, the dual semidefinite program of (22) reads:

ρ∗ := sup r0 − 〈C0
0 , Z0〉 −

m+k∑

j=m+1

〈Cj
0 , Zj 〉

s.t. 〈C0
β, Z0〉 +

m+k∑

j=m+1

〈Cj
β, Zj 〉 = rβ (β ∈ B \ {0})

Z0, Zm+1, . . . , Zm+k 	 0. (23)

One can verify that (23) is equivalent to

ρ∗ = sup ρ

s.t. r(x) − ρ = (
∑

i0

q2
0,i0

) +
m+k∑

j=m+1

hj (
∑

ij

q2
j,ij

) + q

where all qj,ij belong to R
B and q ∈ I

and thus to the program: ρ∗ = sup ρ s.t. f (x)−ρ ∈ M(F ). (The latter equivalence fol-
lows using the fact that any sum of squares: s = ∑

� p2
� can be written as s = ∑

� r2
� +q,

where r� ∈ R
B and q ∈ I , by replacing p� by its residue r� modulo I w.r.t. B.) This

program being identical to (23), we find that σ ∗ = ρ∗. By (13), ρ∗ = p∗ and thus there
is no duality gap between (22) and its dual (23).

Corollary 16. Assume that V is finite and let B be a monomial basis of R[x1, . . . , xn]/I
containing 1. Then the programs (1), (22) and (23) are equivalent.
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2.2. The radical case and the link with the Hermite’s form

When the ideal I is radical, one can prove the equivalence of (i) and (ii) in Theorem
14 without using the result of Curto and Fialkow. A first alternative is to use Parrilo’s
result (Theorem 11). A second alternative is to extend some arguments used in [14],
[15] in the 0/1 and ±1 cases; it goes as follows. Given a basis B = {f1, . . . , fN }
of R[x1, . . . , xn]/I , let ZB denote the complex |B| × |V | matrix with columns ζB

v =
(fi(v))Ni=1 (v ∈ V ).

In the 0/1 case, when B is the basis from (21), the matrix ZB is known as the Zeta
matrix of the lattice of subsets of the set {1, . . . , n} and the inverse matrix Z−1

B as its
Möbius matrix. By analogy, in the general case, we may call ZB the Zeta matrix of the
ideal I w.r.t. B.

When I is radical, ZB is nonsingular and the residue of a polynomial f ∈
R[x1, . . . , xn] w.r.t. B is the polynomial

∑N
i=1 λ

(f )
i fi , where λ(f ) =((ZB)T)−1(f (v))v∈V.

The polytope PB(F ) from (18) is the convex hull of the columns of ZB. Thus, in the
radical case,

PB(F ) = {y ∈ R
|B| | (Z−1

B y)v ≥ 0 (v ∈ F), (Z−1
B y)v = 0 (v ∈ V \F), eT Z−1

B y = 1}.
The next result shows how to express the combinatorial moment matrix MB(y) in terms
of the vector Z−1

B y.

Lemma 17. Assume that I is radical.Then, fory ∈ R
|B|,MB(y)=ZBdiag(Z−1

B y) (ZB)T.

Proof. Givenfi, fj ∈ B, the (fi, fj )th entry of the matrixZBdiag(Z−1
B y)(ZB)T is equal

to
∑

v∈V fi(v)fj (v)(Z−1
B y)v =(Z−1

B y)T (fi(v)fj (v))v∈V =yT (Z−1
B )T (fi(v)fj (v))v∈V,

which in turn is equal to yT λ(fifj ) and thus to the (fi, fj )th entry of MB(y). ��

When V ⊆ R
n, ZB and Z−1

B y are real valued and thus MB(y) 	 0 ⇐⇒ Z−1
B y ≥ 0.

When V contains complex points, we can apply (7) and conclude that MB(y) 	 0 ⇐⇒
(Z−1

B y)v ≥ 0 (v ∈ V ∩ R
n) and (Z−1

B y)v = 0 (v ∈ V \ R
n). Therefore, Theorem 14

holds.

Comment. An analogous technique is used in [17] for proving Theorem 9 (and
thus Proposition 8), which can be sketched as follows. As M(y) 	 0, its kernel I :=
Ker M(y) is a radical ideal in R[x1, . . . , xn] and, as rank M(y) < ∞, I is zero-
dimensional and thus its variety V is finite. The proof relies then on the identity:
M(y) = ZT diag(Z̃y)Z, analogue to Lemma 17. Here, Z is the |Zn+| × |V | matrix
with columns ζv = (vα)α∈Z

n+ (v ∈ V ), and Z̃ is the |V | × |Zn+| matrix with rows pv

(v ∈ V ), where pv are interpolation polynomials at the points of V (see Section 1.1).

Link between combinatorial moment matrices and Hermite’s forms. As observed
at the end of Section 1.2, the class of Hermite’s matrices coincides with the class of matri-
ces H = ZBdiag(a)(ZB)T = ∑

v∈V avζ
B
v (ζB

v )T , where a ∈ C
V satisfies: av = av for

v ∈ V . Hence, any Hermite’s matrix H is a combinatorial moment matrix; namely,
H = MB(y), after setting y := ∑

v∈V avζ
B
v . Conversely, a combinatorial moment
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matrix MB(y) is a Hermite’s matrix in any of the following two cases: if MB(y) 	 0
(by Theorem 14), or if I is radical (by Lemma 17). On the other hand, if I is not radical,
we give in the next example an instance y ∈ R

|B| for which the matrix MB(y) is not a
Hermite’s matrix.

Example 18. Let I be the ideal in R[x] generated by h(x) := x2. Then, B = {1, x} is a
basis of R[x]/I and V (I) = {v := 0}. For y = (y0, y1)

T ∈ R
|B|, we have: MB(y) =

(
1 x

1 y0 y1
x y1 0

)

. Hence, MB(y) 	 0 implies that y1 = 0 and thus MB(y) = y0ζ
B
v (ζB

v )T .

When y1 �= 0, MB(y) is not a multiple of ζB
v (ζB

v )T and thus it is not a Hermite’s matrix.
Consider now the problem of computing p∗ = min x s.t. x2 = 0. Obviously,

p∗ = 0. By Corollary 16, 0 = min y1 s.t. MB(y) 	 0, y0 = 1 and 0 = ρ∗. Indeed,

for any ε > 0, x + ε =
(√

ε + 1
2
√

ε
x
)2 − 1

4ε
x2, which shows that ρ∗ ≥ −ε. This also

shows that the relaxation (16) is exact at order t = 1; that is, σ ∗
1 = p∗ = 0. Observe that

the program (23) does not attain its optimum, since the polynomial x cannot be written
as u0 + ux2, where u0, u ∈ R[x] and u0 is a s.o.s. This also shows that Parrilo’s result
in Theorem 11 does not hold when I is not radical.

We conclude with an example illustrating the notions introduced in this section.

Example 19 ([5], p. 229). Consider an optimization problem over the set

F := {(x, y) | h1(x) = x2 + y − 1 = 0, h2(x)

= xy − 2y2 + 2y = 0, h(x) = x2 − y + 1/2 ≥ 0}.

Let I be the ideal in R[x, y] generated by h1, h2. W.r.t. the lexicographic order with
x > y, the polynomials h1, h2 and h3(x) = y3 − 7

4y2 + 3
4y form a Groebner basis of I .

Hence, the set of standard monomials is B = {1, x, y, y2}, V = S = {v1 = (1, 0), v2 =
(−1, 0), v3 = (0, 1), v4 = (− 1

2 , 3
4 )}, and F = V \ {v3}. The Zeta matrix w.r.t. B and its

inverse read:

ZB =







v1 v2 v3 v4

1 1 1 1 1
x 1 −1 0 − 1

2
y 0 0 1 3

4
y2 0 0 1 9

16





, Z−1

B =







1 x y y2

v1
1
2

1
2

1
6 − 2

3
v2

1
2 − 1

2 − 5
2 2

v3 0 0 −3 4
v4 0 0 16

3 − 16
3







and the multiplication table in R[x, y]/I is







1 x y y2

1 1 x y y2

x x 1 − y 2y2 − 2y 3
2y2 − 3

2y

y y 2y2 − 2y y2 7
4y2 − 3

4y

y2 y2 3
2y2 − 3

2y 7
4y2 − 3

4y 37
16y2 − 21

16y





.
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The ‘multiplication by h’ matrix reads:

Mh =







1 x y y2

1 3/2 0 0 0
x 0 3/2 0 0
y −2 4 3/2 3/2
y2 0 −4 −2 −2





.

Therefore, a vector u = (1, a, b, c) ∈ R
B belongs to the polytope PB(F ), the convex

hull of the columns of ZB indexed by F , if and only if MB(u) 	 0 and MB(h ∗ u) 	 0,
where h ∗ u = MT

h u = (3/2 − 2b, 3a/2 + 4b − 4c, 3b/2 − 2c, 3b/2 − 2c)T . We find
again that h ∗ u = MT

h u = MB(u)λ(h), where λ(h) = −2y + 3/2 is the residue of h.
Recall that

MB(u) =








1 x y y2

1 1 a b c

x a 1 − b 2c − 2b 3
2 c − 3

2 b

y b 2c − 2b c 7
4 c − 3

4 b

y2 c 3
2 c − 3

2 b 7
4 c − 3

4 b 37
16 c − 21

16 b








	 0 ⇐⇒






1
2 + 1

2 a + 1
6 b − 2

3 c ≥ 0
1
2 − 1

2 a − 5
2 b + 2c ≥ 0

−3b + 4c ≥ 0
16
3 b − 16

3 c ≥ 0.

3. Finite Convergence of Lasserre’s Hierarchy

As mentioned in Section 1.3, there is finite convergence of the Lasserre hierarchies (15)
and (16) when the ideal I is radical. We extend here the finite convergence result for
(15) to the non-radical case and the finite convergence result for (16) to the case when
h1, . . . , hm form a Groebner basis of I (w.r.t. some monomial ordering). In that case
we can also prove estimates on the order t for which σ ∗

t = µ∗
t = p∗; in the grid case,

these estimates are sharper than those given in [12, 13]. We use the following result of
Curto and Fialkow [7].

Theorem 20. [7] Given y ∈ R
S2t , assume that Mt(y) 	 0 and that Mt(y) is a flat

extension of Mt−1(y). Then, y is the sequence of moments of a nonnegative measure.

Hence a strategy for proving equivalence of the programs (1) and (15) is to show that
Mt(y) is a flat extension of MdB (y), where dB is the maximum degree of a monomial in
a monomial basis B of R[x1, . . . , xn]/I , which allows us to apply Theorem 20. A way
to achieve this is to show that, for all α ∈ St , the polynomials f (α)(x) := xα − λ(α)(x),
where λ(α)(x) is the residue modulo I of xα w.r.t. B, belong to the kernel of Mt(y). For
this, the following property of the kernel of moment matrices will be useful; it comes
from [7] and its proof is included for completeness.

Lemma 21. Assume that Mt(y) 	 0 and let f, g be two polynomials whose product
h = fg has degree deg(h) ≤ t − 1. Then, Mt(y)f = 0 implies Mt(y)h = 0.

Proof. It suffices to show the result for g(x) = xi since the general result follows from
repeated applications of this special case. Assume deg(f ) ≤ t − 2. We have: h(x) =∑

α fαxα+ei = ∑
α|α≥ei

fα−ei
xα. As deg(h) ≤ t − 1 and Mt(y) 	 0, Mt(y)h = 0

holds if (Mt(y)h)α = 0 for all α ∈ St−1. Let α ∈ St−1. The αth component of Mt(y)h

is equal to
∑

γ hγ yα+γ = ∑
γ |γ≥ei

fγ−ei
yα+γ = ∑

γ fγ yα+γ+ei
, which is equal to the

(α + ei)th component of Mt(y)f and thus to zero. ��
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Recall the definition of dj , d from (14) and define d0 := max(d1, . . . , dm), d+ :=
max(dm+1, . . . , dm+k), d+ = 0 if k = 0; thus, d = max(d0, d+).

Theorem 22. Assume that V is finite. There is finite convergence of the Lasserre hier-
archy (15); that is, µ∗

t = p∗ for t large enough.

Proof. Let B be a monomial basis of R[x1, . . . , xn]/I and let dB be the maximum
degree of a monomial in B. Set t0 := max(�deg(f )/2�, dB + 1, dB + d+, 2d0). Given
α ∈ St0 , let λ(α)(x) be the residue of xα modulo I w.r.t. B. Then, f (α)(x) = xα −
λ(α)(x) belongs to I . Say, f (α)(x) = ∑m

j=1 u
(α)
j hj , where u

(α)
j ∈ R[x1, . . . , xn]. Next,

define T0 := max(t0, 1 + deg(u
(α)
j hj ) for j = 1, . . . , m, α ∈ St0). We now show that

µ∗
t = p∗ for t ≥ T0. Fix t ≥ T0 and let y ∈ S2t be a feasible solution to (15). As

t ≥ 2d0, Mt−dj
(hj ∗ y) = 0 implies that Mt(y)hj = 0 for all j = 1, . . . , m. There-

fore, Mt(y)f (α) = 0 for all α ∈ St0 (we can apply Lemma 21, since deg(u
(α)
j hj ) ≤

T0 − 1 ≤ t − 1 for all j ). This implies that Mt0(y) is a flat extension of MdB (y) (in
fact, of its submatrix indexed by B). As t0 ≥ dB + 1, we deduce from Theorem 20 that
(yα)|α|≤2t0 has a representing measure µ. Now, for j = 1, . . . , m, Mt(y)hj = 0 implies
that Mt0(y)hj = 0 since t0 ≥ 2d0. Hence, the support of µ is contained in S = V ∩ R

n.
Say, µ = ∑

v∈S avδv where av ≥ 0. For v ∈ S \ F , let p ∈ R
B be a polynomial such

that p(v) = 1 and p(v′) = 0 for v′ ∈ S \ {v}, and let j ≥ m + 1 for which hj (v) < 0.
Then, pT Mt0−dj

(hj ∗ y)p = ∫
p(x)2hj (x)µ(dx) = avhj (v) ≥ 0, which implies that

av = 0 (we have used here the fact that t0 − dj ≥ dB as t0 ≥ dB + d+). Hence, the
support of µ is contained in F . Therefore, f T y = ∑

v∈F avf (v) ≥ p∗, which implies
that µ∗

t ≥ p∗ and thus µ∗
t = p∗. ��

Theorem 23. Assume that V is finite and that h1, . . . , hm form a Groebner basis of I

(w.r.t. some monomial ordering) and let dB be the maximum degree of a polynomial in
a basis B of R[x1, . . . , xn]/I . For t ≥ max(dB + d+, d0, �deg(f )/2�), σ ∗

t = µ∗
t = p∗.

Proof. Fix t ≥ max(dB + d+, d0, �deg(f )/2�). We show that, for any ε > 0, σ ∗
t ≥

p∗ − ε, which implies σ ∗
t ≥ p∗ and thus σ ∗

t = p∗. As the polynomial f (x) − p∗ + ε is
positive on F , Theorem 10 implies that f (x)−p∗+ε ∈ M(F ); that is, f (x)−p∗+ε =
s0+∑m+k

j=m+1 sjhj +q, where sj are s.o.s. and q ∈ I . Such a decomposition exists where
each sj is a sum of squares of polynomials that are linear combinations of members of B.
Hence, deg(s0), deg(sjhj ) ≤ 2(dB + d+) ≤ 2t , implying deg(q) ≤ 2t . As h1, . . . , hm

is a Groebner basis of I , one can find (using the division algorithm) a decomposition
q = ∑m

j=1 ujhj , where deg(ujhj ) ≤ deg(q) ≤ 2t . Therefore, p∗ − ε is feasible for the
program (16), which implies that σ ∗

t ≥ p∗ − ε. ��
Therefore, one obtains a tighter bound on the order t at which finite convergence

takes place if one can find a basis B of R[x1, . . . , xn]/I with small maximum degree
dB. For instance, we have seen in Example 3 two instances of bases with respective
maximum degrees dB = 4 and 11.

Example 24. The grid case. In the 0/1 case, Theorem 23 gives the finite convergence
result in dB + d+ = n + d+ steps from [12]. Consider now the general grid case as in
[13]. For j = 1, . . . , n, let a

(j)
1 , . . . , a

(j)
mj

be distinct real numbers and define the poly-

nomial hj (x) = ∏mj

i=1(xj − a
(j)
i ) of degree mj . W.r.t. the graded lexicographic order,
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h1, . . . , hn form a Groebner basis of I and the set B of standard monomials consists of
the monomials xβ with 0 ≤ βj ≤ mj −1 for all j ; thus, dB = ∑n

j=1(mj −1). Here, d =
d0 = maxj=1,... ,n�mj/2�. Note that the ideal I is radical, since |V | = |B| = ∏n

j=1 mj .
Lasserre [13] shows the finite convergence of σ ∗

t to p∗ in d + dB steps; Theorem 23
shows the finite convergence in max(dB, d) steps (assuming the polynomial f in the
objective has degree at most max(2dB, 2d)).

4. Semidefinite approximations of low order

From a practical point of view, the semidefinite formulation (22) for problem (1) is not
very useful, since it involves matrices of size |B| × |B|, with |B| ≥ |S| being at least as
large as the size of the set of points to be searched. One can instead consider semidefinite
approximations of the problem (1), obtained by restricting our attention to some princi-
pal submatrix MA(y) of the combinatorial moment matrix MB(y) indexed by a small
subset A of B. For instance, when the polynomial f in the objective function is linear or
quadratic and V = {0, 1}n or {±1}n (the most common case in combinatorial applica-
tions), one can choose A = Bt consisting of the residues modulo I of all the monomials
xα for α ∈ St , for any given t ≥ 1. Increasing values of t yield tighter approximations
of (1) at an increasing computational cost, however. The approximation solves problem
(1) exactly at t = n, but this may sometimes already happen for smaller values of t . We
present below some conditions on the rank of the optimum matrix MBt

(y) ensuring that
the corresponding semidefinite relaxation solves, in fact, problem (1) exactly. We give
our result in the case when

S = {x ∈ R
n | (xj − aj )(xj − bj ) = 0 for all j = 1, . . . , n}, (24)

where a1 �= b1, . . . , an �= bn are given real numbers. Therefore, this contains both the
0/1 and ±1 cases, which are very important in combinatorial optimization. Define the
polynomials

hj (x) = (xj − aj )(xj − bj ) = x2
j − sj xj − tj , setting sj := aj + bj , tj := −ajbj

(25)

for j = 1, . . . , n. Let I be the ideal generated by h1, . . . , hn and S = V the associated
variety, given by (24). W.r.t. the graded lexicographic order, the set of standard mono-
mials is the set B (also denoted as B(n)) from (21). Given an integer t = 1, . . . , n, Bt

(also denoted as Bt (n)) consists of the standard monomials xA = ∏
i∈A xi having degree

|A| ≤ t and can be identified with the collection of subsets of the set N := {1, . . . , n}
having size ≤ t . Given y ∈ R

B2t , we can define its truncated combinatorial moment
matrix MBt

(y) as the matrix indexed by Bt , whose (A, B)th entry is equal to rT y, where
r is the residue modulo I of xAxB , and thus to

∑

C⊆A∩B




∏

i∈C

si
∏

i∈(A∩B)\C
ti



 y(A
B)∪C. (26)
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Indeed, xAxB = xA
B(xA∩B)2 ≡ xA
B ·∏i∈A∩B(sixi +ti ) (modulo I ), which is equal

to xA
B
(∑

C⊆A∩B

∏
i∈C(sixi)

∏
i∈(A∩B)\C ti

)
= ∑

C⊆A∩B

(∏
i∈C si

∏
i∈(A∩B)\C ti

)

x(A
B)∪C. In the 0/1 case, ai = 0, bi = 1, si = 1, ti = 0 for all i and thus (26) reads
yA∪B ; in the ±1 case, ai = −1, bi = 1, si = 0, ti = 1 for all i and thus (26) reads
yA
B .

Theorem 25. Let S and h1, . . . , hn be as in (24) and (25). Let y ∈ R
B2t (n) with y0 = 1

and n ≥ t ≥ 1. If MBt
(y) 	 0 and rank MBs

(y) ≤ ∑s
i=1

(
t
s

)
for some 1 ≤ s ≤ t , then

y is the sequence of moments of a probability measure µ supported by S. If, moreover,
rank MB1(y) ≤ t , then µ is supported by a subset of S of size at most 2t−1.

We first establish a stronger version of Lemma 21, valid in the combinatorial setting.

Lemma 26. Let n ≥ t , y ∈ R
B2t (n), assume that MBt

(y) 	 0, and let f, g be two poly-
nomials in R

Bt such that the residue h modulo I of their product fg satisfies deg(h) ≤ t .
Then, MBt

(y)f = 0 implies MBt
(y)h = 0.

Proof. It suffices to show the result for g(x) = xi . Write f (x) = ∑
m∈M fmxAm +∑

�∈L f�x
A� , where the Am (resp., A�) are distinct subsets of N containing (resp., not

containing) the element i, and fm, f� �= 0. Then, xif (x) = ∑
m∈M fmxAm\ix2

i +
∑

�∈L f�x
A�+i is congruent modulo I to the polynomial

∑
m∈M fmxAm\i (sixi + ti ) +∑

�∈L f�x
A�+i .Therefore,h(x)=si

∑
m∈M fmxAm+ti

∑
m∈M fmxAm\i+∑

�∈L f�x
A�+i .

As MBt
(y) 	 0, MBt

(y)h = 0 holds if we can show that its components indexed by
Am, Am \ i (m ∈ M) and A� + i (� ∈ L) are equal to 0. Let X denote the principal
submatrix of MBt

(y) indexed by the sets Am (m ∈ M), Am \ i (m ∈ M), and A� + i

(� ∈ L), and set u := (fm)m∈M , v := (f�)�∈L. We have to prove that X




siu

tiu

v



 = 0. By

assumption, MBt
(y)f = 0. Therefore, Y

(
u

v

)

= 0, where Y is the submatrix of MBt
(y)

with columns indexed by Am (m ∈ M) and A� (� ∈ L), and with rows indexed by Am

(m ∈ M), Am \ i (m ∈ M), A� (� ∈ L), and A� + i (� ∈ L). The matrices have block
decompositions:

Y =







Am A�

Am C D

Am \ i E F

A� DT G

A� + i HT K





, X =





Am Am \ i A� + i

Am C E H

Am \ i E R S

A� + i HT ST T



.

Here are some equations relating the above matrices: (a) S = D; (b) H = siD + tiF ;
(c) C = siE + tiR; (d) T = siK + tiG. To see this, we use the fact that the (A, B)th
entry of MBt

(y) is obtained by computing the residue modulo I of xAxB and line-
arizing, which means replacing any occurrence of xC by yC . In this way, equation:
xAm\ixA�+i = xAmxA� yields (a). Moreover, xAmxA�+i = xAm\ixA�x2

i is congruent
modulo I to xAm\ixA�(sixi + ti ) = six

AmxA� + tix
Am\ixA� , which yields (b). Finally,

for m, m′ ∈ M , xAmxAm′ ≡ xAm\ixAm′ \i (sixi + ti ) and, for �, �′ ∈ L, xA�+ixA�′+i ≡
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xA�xA�′ (sixi + ti ), yielding (c) and (d). We can now show that X




siu

tiu

v



 = 0. Indeed,

siCu + tiEu + Hv = siCu + tiEu + (siD + tiF )v (using (b)) which is equal to

si(Cu+Dv)+ ti (Eu+Fv) and thus to 0, using the fact that Y

(
u

v

)

= 0. The identities:

siEu + tiRu + Sv = 0 and siH
T u + tiS

T u + T v = 0 follow analogously. ��
Lemma 27. Let y ∈ R

B(n) and B(n) = B as in (21). Assume that MB(y) 	 0 and
rank MBs

(y) ≤ ∑s
i=1

(
n
i

)
for some 1 ≤ s ≤ n. Then, the column of MB(y) indexed by

the set N = {1, . . . , n} is a linear combination of the remaining columns.

Proof. By assumption, rank MBs
(y) < |Bs |. Therefore, there exists a nonzero vector

u belonging to the kernel of MBs
(y); let u(x) = ∑

I∈Bs
uI x

I be the corresponding
polynomial with degree k ≤ s and let K with uK �= 0 and |K| = k. Multiplying u(x) by
xN \K yields the polynomial uKxN + ∑

I∈Bs ,I �=K uIx
I xN \K , whose residue modulo

I belongs to the kernel of MB(y) (by Lemma 26, applied with n = t). The result now
follows since, for each I �= K with uI �= 0, the residue modulo I of xI xN \K is a linear
combination of monomials xH with H ⊆ I ∪(N \K) which is strictly contained in N .��
Proof of Theorem 25. Suppose first that t = 1. Then, rank MB1(y) = 1 by assumption.

The submatrix of MB1(y) indexed by ∅ and i has the form

(
1 yi

yi siyi + ti

)

; as its rank is 1,

this implies that y2
i = siyi + ti and thus yi = ai or bi . The submatrix of MB1(y) indexed

by ∅, i, j has the form




1 yi yj

yi y2
i yij

yj yij y2
j



 ; as it has rank 1, this implies that yij = yiyj .

Therefore, y = (vA)A∈B2 for some v ∈ S and the conclusion of Theorem 25 holds.
We can now assume that t ≥ 2. Given a subset A ⊆ N with |A| = t , we deduce

from Lemma 27 (applied (with n = t) to the principal submatrix of MBt
(y) indexed by

all subsets of A) that the column of MBt
(y) indexed by A is a linear combination of col-

umns indexed by sets of size ≤ t −1. Therefore, MBt
(y) is a flat extension of MBt−1(y).

We can extend y to a vector of R
S2t , again denoted by y, in such a way that Mt(y) is a

flat extension of MBt
(y). [Indeed, for α ∈ S2t , let r(x) = ∑

β∈B rβxβ be the residue
of xα modulo I w.r.t. B. As r(x) uses only monomials of degree ≤ 2t , one can define
yα := ∑

β∈B2t
rβyβ .] As Mt(y) is a flat extension of Mt−1(y), Theorem 20 implies that

(yα)α∈S2t is the sequence of moments of a nonnegative measure µ. By construction, each
polynomial hi(x) = x2

i − sixi − ti belongs to the kernel of Mt(y) and, therefore, by
Lemma 7 (i), the support of µ is contained in the grid S. Say, µ = λ1δv1 + . . . + λLδvL ,
where λ1, . . . , λL > 0 and v1, . . . , vL are distinct points of S.

Remains to show that L ≤ 2t−1 in the case when rank MB1(y) ≤ t . We have that
MB1(y) = ∑L

�=1 λ�z�z
T
� , setting z� := (1, v�

1, . . . , v�
n)

T . Let X denote the L × (n + 1)

matrix with zT
1 , . . . , zT

L as rows. Each component v�
i is equal to ai or bi for all �. There-

fore, the 0th column of X is the all ones vector χW (setting W := {1, . . . , L}), and
the ith column of X is of the form aiχ

Wi + biχ
W\Wi , for some set Wi ⊆ W . The two

matrices MB1(y) and X have the same rank, which is also equal to the rank of the set
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of vectors {χW , χW1 , . . . , χWn}; this rank is at most t by assumption. The next claim
permits to conclude that L = |W | ≤ 2t−1, which finishes the proof of Theorem 25. ��
Claim 28. Let A1, . . . , AL be subsets of {1, . . . , n} and let Y be the L× (n+1) matrix
whose rows are (1, (χA1)T ), . . . , (1, (χAL)T ). If rank Y ≤ t , then L ≤ 2t−1.

Proof of the Claim. The proof is by induction on n ≥ t . Suppose first that n = t . As
rank Y ≤ n, there exists a nonzero vector u ∈ ker Y . This vector can be chosen to be
integral valued with at least one of u1, . . . , un odd. Let O denote the set of i = 1, . . . , n

for which ui is odd. Then |A� ∩ O| ≡ u0 (modulo 2) for all � = 1, . . . , L. This implies
that L ≤ 2n−1. Suppose now that n ≥ t + 1 and that the claim holds for n − 1. Set
L0 := {� | n �∈ A�} and L1 := {� | n ∈ A�}; for i = 0, 1, let Yi be the submatrix
of Y with rows those indexed by Li and Y ′

i the submatrix of Yi with columns those
indexed by 0, 1, . . . , n − 1. If L0 = ∅, then rank Y ′

1 = rank Y1 ≤ t ; by the induction
assumption, this implies that L = |L1| ≤ 2t−1; analogously, if L1 = ∅. If L0, L1 �= ∅,
then rank Y0, rank Y1 ≤ t −1, since no row of Y0 (resp., of Y1) is a linear combination of
rows of Y1 (resp., of Y0). Using the induction assumption, we find that |L1|, |L2| ≤ 2t−2

and thus L = |L1| + |L2| ≤ 2t−1. ��
In the case when S = {±1}n and s = 1, the result from Theorem 25 was proven1

in [15]; the proof given there is elementary (by induction on the number n of variables)
and, in particular, it does not use Curto and Fialkow’s result from Theorem 20. In our
proof of Theorem 25, we have used the following fact:

Theorem 29. Let S and h1, . . . , hn be as in (24) and (25). Given y ∈ R
B2t , if MBt

(y)

is a flat extension of MBt−1(y), then y is the sequence of moments (of order β ∈ B2t ) of
a nonnegative measure supported by S.

This result can be proved as an application of Theorem 20. Alternatively, one can pro-
ceed as follows: First, show that y has an extension to R

B2t+2 , again denoted as y, for
which the matrix MBt+1(y) is a flat extension of MBt

(y), iterate and apply Theorem 14
to conclude.

The condition about the rank of MBs
(y) in Theorem 25 is best possible. For instance,

in the 0/1 case with n = 2 and s = t = 1, the matrix MB1(y) :=




∅ 1 2

∅ 1 3/4 3/4
1 3/4 3/4 3/8
2 3/4 3/8 3/4





is positive semidefinite with rank 2, but y = (1, 3/4, 3/4, 3/8) ∈ R
B2 is not the sequence

of moments of a nonnegative measure supported by S = {0, 1}2. Indeed, the matrix

MB2(y) =







∅ 1 2 12

∅ 1 3/4 3/4 3/8
1 3/4 3/4 3/8 3/8
2 3/4 3/8 3/4 3/8
12 3/8 3/8 3/8 3/8





 is not positive semidefinite, since the vector

1 The paper [15] proves the result in the special case when the entries of y indexed by odd sets are all equal
to 0 (because the paper is devoted to an application to the max-cut problem, in which the odd indexed entries
do not play a role). The proof given there extends, however, to the general case when y is arbitrary.
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x := (−3, 2, 2) belongs to the kernel of MB1(y) while (x, 0) does not belong to the
kernel of MB2(y).

In combinatorial applications, the polynomial in the objective function of problem
(1) is often linear. This is the case, e.g., for the maximum stable set problem, in which
case we are, in fact, interested in finding some conditions on MBt

(y) ensuring that the
vector (y1, . . . , yn)

T (i.e., the projection of y on the space indexed by the singletons)
can be written as a convex combination of stable sets. [The (A, B)th entry of MBt

(y)

being defined as yA∪B , as we are in the 0/1 setting.] The following result has this flavor.

Proposition 30. Let G = (N , E) be a graph with node set N = {1, . . . , n}. Let
y ∈ R

B2(n) with y0 = 1 and yij = 0 for all ij ∈ E. If MB1(y) 	 0 and rank MB1(y) ≤ 2,
then (y1, . . . , yn)

T is a convex combination of incidence vectors of stable sets of G.

Proof. We can assume w.l.o.g. that yi > 0 for all i ∈ V (if needed, delete the nodes
with yi = 0). We can also assume that E �= ∅ (for, otherwise, the result is trivial). Let
C0, C1, . . . , Cn denote the columns of MB1(y). Then,

(a) yi + yj = 1 and C0 = Ci + Cj for any edge ij ∈ E.

Indeed, the submatrix of MB1(y) indexed by ∅, i and j has the form




1 yi yj

yi yi 0
yj 0 yj



. As

it has rank ≤ 2, its determinant is equal to 0, which implies that yi + yj = 1. Now
the vector (1, −1, −1)T belongs to the kernel of this submatrix and thus to the kernel
of MB1(y), whch shows (a). Denote by V1, . . . , Vq the connected components of G.
By (a), there exists αp ∈ [0, 1] such that yi ∈ {αp, 1 − αp} for all i ∈ Vp, for each
p = 1, . . . , q. We claim that

(b) the subgraph of G induced by Vp is bipartite.

If (b) holds, then Vp can partitioned into two stable sets Sp and Tp such that yi = αp

for i ∈ Sp, yi = 1 −αp for i ∈ Tp. Say, α1 ≤ . . . ≤ αp. Then, the vector (y1, . . . , yn)
T

is equal to
∑q

p=1 αpχSp + (1 − αp)χTp and thus to α1χ
S1∪...∪Sp + ∑p−1

q=1(αq+1 −
αq)χT1∪...Tq∪Sq+1∪...∪Sp + (1 − αp)χT1∪...∪Tp . This concludes the proof since the latter
is a convex combination of incidence vectors of stable sets.

Remains to verify (b). Suppose, for contradiction, that C is an odd circuit contained
in Vp. Choose such circuit of minimum length; then C is chordless. Moreover, yi = 1

2
for all i ∈ Vp (using (a) applied to the edges in C). Say, C = (1, 2, . . . , 2k+1). We have
from (a) that C0 = Ci + Ci+1 for i = 1, . . . , 2k + 1 (taking indices modulo 2k + 1).
It is not difficult to see that this implies that yij is equal to 1

2 (resp., to 0) if the distance
between nodes i and j along the circuit C is even (resp., odd). Therefore, y1,k+2 = y2,k+2
since the two pairs (1, k + 2) and (2, k + 2) are at the same distance along C. We now
reach a contradiction, since C0 = C1 + C2 implies that 1

2 = yk+2 = y1,k+2 + y2,k+2. ��
Therefore, if we add the condition that rank MB1(y) ≤ 2 in the formulation (5) of the
theta number ϑ(G), we obtain a program which is, in fact, equivalent to the maximum
stable set problem. Another formulation for ϑ(G) is given by

ϑ(G) = max
n∑

i,j=1

Xij s.t. X 	 0,

n∑

i=1

Xii = 1, Xij = 0 (ij ∈ E).
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Burer, Monteiro and Zhang [4] proved that adding the constraint rank(X) ≤ 2 in the
above program yields again a formulation of the stable set problem. Thus, Proposition
30 is an analogue of their result.

Let us conclude with a question related to the max-cut problem. Given weights
w = (wij )1≤i<j≤n, this is the problem: max

x2
1=1,... ,x2

n=1

∑

1≤i<j≤n

wij (1 − xixj ). Therefore,

it can be reformulated as

max
∑

1≤i<j≤n

wij (1 − yij ) s.t. MB(y) 	 0, y0 = 1,

where MB(y) is the combinatorial moment matrix indexed by all subsets of {1, . . . , n},
with (A, B)th entry yA
B . (See [15] for a detailed treatment.) Heuristics for max-cut
based on low rank formulations are explored in [3]. It would be of interest to determine
the smallest integer t for which the semidefinite relaxation:

max
∑

1≤i<j≤n

wij (1 − yij ) s.t. MBt
(y) 	 0, y0 = 1

solves the max-cut problem exactly, for any weight function w. (MBt
(y) being the trun-

cation of MB(y) indexed by all subsets of size at most t .) It is shown in [16] that t ≥ �n
2 �

and equality is conjectured (it holds for n ≤ 7). In other words, it is conjectured that,
for t = �n

2 �,

MBt
(y) 	 0, y0 = 1 �⇒ (yij )1≤i<j≤n is a convex combination of the

‘cut’ vectors (vivj )1≤i<j≤n (v ∈ {±1}n).

5. Concluding Remarks

In this paper, we have given a semidefinite representation for the problem (1) of com-
puting the minimum value p∗ taken by a polynomial over the set of real solutions to a
system of polynomial equations and inequalities, assuming the equations have a finite set
V of complex solutions. Our semidefinite representation involves combinatorial moment
matrices MB(y), which are indexed by a basis B of the quotient space R[x1, . . . , xn]/I .
We also show the finite convergence of the hierarchy (15) of semidefinite relaxations
introduced by Lasserre [11] and, in the case when the polynomial equations form a
Groebner basis of I , the finite convergence of the dual hierarchy (16). The matrices
MB(y) involved in the new semidefinite representation have size |B| which is usually
much smaller than the size |St | of the classical moment matrices Mt(y) appearing in the
program (15) for any t ensuring the finite convergence. In the non-radical case, |B| > |V |.
In order to give a semidefinite representation involving matrices of smaller size |V |, it
suffices to replace the ideal I by the larger ideal I (V ), consisting of the polynomials
vanishing at all points of V . One can find I (V ) by some Groebner bases computations
(see, e.g., Proposition 2.7 in [6]). A more efficient alternative might be to use the fact
that I (V ) is the radical {f ∈ R[x1, . . . , xn] | herh(f, g) = 0 ∀g ∈ R[x1, . . . , xn]} of
the Hermite’s form Herh, where h is the constant polynomial 1 (see [2], Theorem 4.71).
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We also consider in this paper semidefinite approximations for problem (1) obtained
by taking truncated combinatorial moment matrices and we have given rank conditions
ensuring that the relaxation solves the original problem to optimality.A concrete applica-
tion of the technique developed in the present paper to unconstrained global optimization
can be found in the recent paper [9].

The new semidefinite representation for problem (1) in terms of combinatorial mo-
ment matrices can be proved using a result of Curto and Fialkow (Theorem 9) about
finite rank (infinite) moment matrices. In the radical case, it can also be proved using a
combinatorial identity expressing a combinatorial moment matrix in terms of the Zeta
matrix of the ideal (see Lemma 17); this is a direct extension of an idea used in the 0/1
or ±1 cases. As mentioned in the Comment in Section 2.2, an analogous combinatorial
identity underlies the new proof given in [17] for Theorem 9. Hence, in some sense, the
non-radical case reduces to the radical case. Let us say a few words about the ‘history’
of the present paper. An earlier version of the paper (posted on the home webpage of the
author in December 2002) was dealing exclusively with the radical case, as the proofs
were based on the combinatorial facts about the Zeta matrix which need the radicality
assumption. We realized later that this idea could also be used for proving Theorem 9,
which led to the paper [17], and that Theorem 9 could be used in the non-radical case,
which led to the present version of this paper.

Acknowledgements. We are grateful to a referee, Dima Pasechnik, for several suggestions that helped improve
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