Skip to main content

Advertisement

Log in

Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the vehicle routing problem where one can choose among vehicles with different costs and capacities to serve the trips. We develop six different formulations: the first four based on Miller-Tucker-Zemlin constraints and the last two based on flows. We compare the linear programming bounds of these formulations. We derive valid inequalities and lift some of the constraints to improve the lower bounds. We generalize and strengthen subtour elimination and generalized large multistar inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achuthan, N.R., Caccetta, L., Hill, S.P.: An improved branch and cut algorithm for the capacitated vehicle routing problem. Transportation Science 37, 153–169 (2003)

    Article  Google Scholar 

  2. Araque, J.R., Hall, L.A., Magnanti, T.L.: Capacitated trees capacitated routing and associated polyhedra. Discussion paper, Center for Operations Research and Econometrics, Catholic University of Louvain, Belgium, 1990

  3. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–164 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baldacci, R., Hadjiconstantinou, E., Mingozzi, A.: An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Operations Research 52, 723–738 (2004)

    Article  MathSciNet  Google Scholar 

  5. Christof, T.: PORTA - a POlyhedron Representation Transformation Algorithm. Version 1.3.2 available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/ 1999

  6. Desrochers, M., Verhoog, T.W.: A new heuristic for the fleet size and mix vehicle routing problem. Computers & Operations Research 18, 263–274 (1991)

    Article  MATH  Google Scholar 

  7. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters 10, 27–36 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fisher, M.: Vehicle routing. In: M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser (eds) Handbooks in OR MS, Vol. 8, Elsevier Science, 1995

  9. Gavish, B., Graves, S.C.: The traveling salesman problem and related problems. Working Paper 7905, Graduate School of Management, University of Rochester, Rochester, 1979

  10. Gendreau, M., Laporte, G., Musaraganyi, C., Taillard, E.D.: A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers & Operations Research 26, 1153–1173 (1999)

    Article  MATH  Google Scholar 

  11. Gheysens, F., Golden, B., Assad, A.: A new heuristic for determining fleet size and composition. Mathematical Programming Study 26, 233–236 (1986)

    MATH  MathSciNet  Google Scholar 

  12. Golden, B., Assad, A., Levy, L., Gheysens, F.: The fleet size and mix vehicle routing problem. Computers & Operations Research 11, 49–66 (1984)

    Article  MATH  Google Scholar 

  13. Gouveia, L.: A result on projection for the vehicle routing problem. European Journal of Operational Research 85, 610–624 (1995)

    Article  MATH  Google Scholar 

  14. Gouveia, L., Pires, J.M.: The asymmetric traveling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints. European Journal of Operational Research 112, 134–146 (1999)

    Article  MATH  Google Scholar 

  15. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0–1 polytopes. Mathematical Programming 8, 179–206 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kara, I., Laporte, G., Bektas, T.: A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem. European Journal of Operational Research 158, 793–795 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Langevin, A., Soumis, F., Desrosiers, J.: Classification of traveling salesman problem formulations. Operations Research Letters 9, 127–132 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59, 345–358 (1992)

    Article  MATH  Google Scholar 

  19. Laporte, G., Osman, I.H.: Routing problems: A bibliography. Annals of Operations Research 61, 227–262 (1995)

    Article  MATH  Google Scholar 

  20. Letchford, A.N., Salazar-Gonzalez, J.J.: Projection results for vehicle routing. To appear in Mathematical Programming

  21. Letchford, A.N., Eglese, R.W., Lysgaard, J.: Multistars partial multistars and the capacitated vehicle routing problem. Mathematical Programming 94, 21–40 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch and cut algorithm for the capacitated vehicle routing problem. Mathematical Programming 100, 423–445 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mazur, D.R.: Integer programming approaches to a multi-facility location problem. Ph.D. Thesis, John Hopkins University, 1999

  24. Miller, C., Tucker, A., Zemlin, R.: Integer programming formulations and traveling salesman problems. Journal of ACM 7, 326–329 (1960)

    Article  MATH  Google Scholar 

  25. Padberg, M., Sung, T.Y.: An analytical comparison of different formulations of the traveling salesman problem. Mathematical Programming 52, 315–357 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pochet, Y., Wolsey, L.A.: Integer knapsack and flow covers with divisible coefficients: Polyhedra optimization and separation. Discrete Applied Mathematics 59, 57–74 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Renaud, J., Boctor, F.F.: A sweep-based algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research 140, 618–628 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Salhi, v., Sari, M., Saidi, D., Touati, N.A.C.: Adaptation of some vehicle fleet mix heuristics. OMEGA 20, 653–660 (1992)

    Article  Google Scholar 

  29. Salhi, S., Rand, G.K.: Incorporating vehicle routing into the vehicle fleet composition problem. European Journal of Operational Research 66, 313–330 (1993)

    Article  MATH  Google Scholar 

  30. Taillard, E.D.: A heuristic column generation method for the heterogeneous fleet VRP. RAIRO 33, 1–14 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Toth, P., Vigo, D.: Models relaxations and exact approaches for the capacitated vehicle routing problem. Discrete Applied Mathematics 123, 487–512 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toth, P., Vigo, D.: The vehicle routing problem. SIAM monographs on discrete mathematics and applications. Philadelphia, 2002

  33. Wassan, N.A., Osman, I.H.: Tabu search variants for the mix fleet vehicle routing problem. Journal of the Operational Research Society 53, 768–782 (2002)

    Article  MATH  Google Scholar 

  34. Wolsey L.: Faces for a linear inequality in 0–1 variables. Mathematical Programming 8, 165–178 (1975)

    Article  MathSciNet  Google Scholar 

  35. Yaman, H.: The integer knapsack cover polyhedron. Working Paper

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hande Yaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaman, H. Formulations and Valid Inequalities for the Heterogeneous Vehicle Routing Problem. Math. Program. 106, 365–390 (2006). https://doi.org/10.1007/s10107-005-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0611-6

Keywords

Navigation