Skip to main content
Log in

Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization

  • Published:
Mathematical Programming Submit manuscript

Abstract

We show that a locally Lipschitz homeomorphism function is semismooth at a given point if and only if its inverse function is semismooth at its image point. We present a sufficient condition for the semismoothness of solutions to generalized equations over cone reducible (nonpolyhedral) convex sets. We prove that the semismoothness of solutions to the Moreau-Yosida regularization of a lower semicontinuous proper convex function is implied by the semismoothness of the metric projector over the epigraph of the convex function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, 2000

  2. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM Journal on Numerical Analysis 38, 1200–1216 (2000)

    Article  Google Scholar 

  3. Chua, C.B.: Relating homogeneous cones and positive definite cones via T-algebras. SIAM Journal on Optimization 14, 500–506 (2004)

    Article  Google Scholar 

  4. Clarke, F.H.: On the inverse function theorem. Pacific Journal of Mathematics 64, 97–102 (1976)

    Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983

  6. Dontchev, A.L., Qi, H.-D., Qi, L.: Convergence of Newton's method for convex best interpolation. Numerische Mathematik 87, 435–456 (2001)

    Google Scholar 

  7. Dontchev, A.L., Qi, H.-D., Qi, L.: Quadratic convergence of Newton's method for convex interpolation and smoothing. Constructive Approximation 19, 123–143 (2003)

    Article  Google Scholar 

  8. Eaves, B.C.: On the basic theorem of complementarity. Mathematical Programming 1, 68–75 (1971)

    Article  Google Scholar 

  9. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols I and II. Springer-Verlag, New York, 2003

  10. Faybusovich, L.: On Nesterov's approach to semi-infinite programming. Acta Applicandae Mathematicae 74, 195–215 (2002)

    Article  Google Scholar 

  11. Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Mathematical Programming 76, 513–532 (1997)

    Article  Google Scholar 

  12. Fukushima, M., Qi, L.: A global and superlinear convergent algorithm for nonsmooth convex minimization. SIAM Journal on Optimization 6, 1106–1120 (1996)

    Article  Google Scholar 

  13. Gowda, M.S.: Inverse and implicit function theorems for H-differentiable and semismooth functions. Optimization Methods and Software 19, 443–461 (2004)

    Article  Google Scholar 

  14. Higham, N.J.: Computing the nearest correlation matrix – a problem from finance. IMA Journal of Numerical Analysis 22, 329–343 (2002)

    Article  Google Scholar 

  15. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active strategy as a semismooth Newton method. SIAM Journal on Optimization 13, 865–888 (2003)

    Article  Google Scholar 

  16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin, 1993

  17. Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson, S. M. ed., Analysis and Computation of Fixed Points. Academic Press, New York, 1980, pp 93–138

  18. Kruskal, J.: Two convex counterexamples: A discontinuous envelope function and a nondifferentiable nearest-point mapping. Proceedings of the American Mathematical Society 23, 697–703 (1969)

    Google Scholar 

  19. Kummer, B.: Newton's method for non-differentiable functions. In: Guddat, J., et al., eds., Advances in Mathematical Optimization. Akademie-Verlag, Berlin, 1988, pp 114–125

  20. Kummer, B.: Lipschitzian inverse functions, directional derivatives, and applications in C1,1-optimization. Journal of Optimization Theory and Applications 70, 559–580 (1991)

    Article  Google Scholar 

  21. Kummer, B.: An implicit-function theorem for C0,1-equations and parametric C1,1-optimization. Journal of Mathematical Analysis and Applications 158, 35–46 (1991)

    Article  Google Scholar 

  22. Kummer, B.: Newton's method based on generalized derivatives for nonsmooth functions-convergence analysis. In: Oettli, W., Pallaschke D. eds., Lecture Notes in Economics and Mathematical Systems 382; Advances in Optimization. Springer, Berlin, 1992, pp 171–194

  23. Lemaréchal, C., Sagastizábal, C.: An approach to variable metric methods. In: Henry, J., Yvon, J. P. eds., Systems Modelling and Optimization, Lecture Notes in Control and Information Sciences 197, Springer-Verlag, Berlin, 1994 pp 144–162

  24. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization I: theoretical preliminaries. SIAM Journal on Optimization 7, 367–385 (1997)

    Article  Google Scholar 

  25. Lemaréchal, C., Strodiot, J.-J., Bihain, A.: On a bundle algorithm for nonsmooth optimization. Nonlinear Programming 4, (Madison, Wisconsin, 1980), Academic Press, New York, 1981 pp 245–282

  26. Levy, A.B.: Nonsingularity conditions for multifunctions. Set-Valued Analysis 7, 89–99 (1999)

    Article  Google Scholar 

  27. Levy, A.B.: Lipschitzian multifunctions and a Lipschitzian inverse mapping theorem. Mathematics of Operations Research 26, 105–118 (2001)

    Article  Google Scholar 

  28. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM Journal on Control and Optimization 15, 957–972 (1977)

    Article  Google Scholar 

  29. Mifflin, R.: Convergence of a modification of Lemaréchal's algorithm for nonsmooth optimization. Progress in nondifferentiable optimization, 85–95, IIASA Collaborative Proc. Ser. CP-82, 8, Internat. Inst. Appl. Systems Anal., Laxenburg, 1982

  30. Mifflin, R., Qi, L., Sun, D.: Properties of the Moreau-Yosida regularization of a piecewise C2 convex function. Mathematical Programming 84, 269–281 (1999)

    Google Scholar 

  31. Moreau, J.J.: Proximite et dualite dans un espace hilbertien. Bulletin de la Societe Mathematique de France 93, 273–299 (1965)

    Google Scholar 

  32. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970

  33. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to optimization Problems with Equlibrium Constraints: Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht, 1998

  34. Pang, J.S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research 28, 39–63 (2003)

    Article  Google Scholar 

  35. Penot, J. P.: Private Communication. 2001

  36. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research 18, 227–244 (1993)

    Google Scholar 

  37. Qi, L.: Second-order analysis of the Moreau-Yosida regularization. in Nonlinear Analysis and Convex Analysis (Niigata, 1998), World Scientific Publishing, River Edge, New Jersey, 1999 pp 16–25

  38. Qi, L., Sun, J.: A nonsmooth version of Newton's method. Mathematical Programming 58, 353–367 (1993)

    Article  Google Scholar 

  39. Robinson, S.M.: Strongly regular generalized equations. Mathematics of Operations Research 5, 43–62 (1980)

    Google Scholar 

  40. Robinson, S.M.: First order conditions for general nonlinear optimization. SIAM Journal on Applied Mathematics 30, 597–607 (1976)

    Article  Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton, New Jersey, 1970

  42. Rockafellar, R.T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, New York, 1998

  43. Schramm, H., J. Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization 2, 121–152 (1992)

    Article  Google Scholar 

  44. Shapiro, A.: Directionally nondifferentiable metric projection. Journal of Optimization Theory and Applications 81, 203–204 (1994)

    Article  Google Scholar 

  45. Shapiro, A.: Private Communication. March, 2003

  46. Shapiro, A.: Sensitivity analysis of generalized equations. Journal of Mathematical Sciences 115, 2554–2565 (2003)

    Article  Google Scholar 

  47. Sun, D.: A further result on an implicit function theorem for locally Lipschitz functions. Operations Research Letters 28, 193–198 (2001)

    Article  Google Scholar 

  48. Sun, D., J. Sun, J.: Semismooth matrix valued functions. Mathematics of Operations Research 27, 150–169 (2002)

    Article  Google Scholar 

  49. Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its applications in inverse eigenvalue problems. SIAM Journal on Numerical Analysis 40, 2352–2367 (2003)

    Article  Google Scholar 

  50. Thibault, L.: Subdifferentials of compactly Lipschitzian vector-valued functions. Annali di Matematica Pura ed Applicata 125, 157–192 (1980)

    Article  Google Scholar 

  51. Thibault, L.: On generalized differentials and subdifferentials of Lipschitz vector-valued functions. Nonlinear Analysis: Theory, Methods, and Applications 6, 1037-1053 (1982)

    Google Scholar 

  52. Yosida, K.: Functional analysis. Springer Verlag, Berlin, 1964

  53. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In Zarantonello, E. H. ed., Contribution to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp 237–424

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Sun.

Additional information

This paper is dedicated to Terry Rockafellar on the occasion of his seventieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, F., Sun, D. & Zhao, G. Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Math. Program. 104, 561–581 (2005). https://doi.org/10.1007/s10107-005-0629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0629-9

Keywords

Mathematics Subject Classification (1991)

Navigation