Skip to main content
Log in

Network reinforcement

  • Published:
Mathematical Programming Submit manuscript

Abstract

We give an algorithm for the following problem: given a graph G=(V,E) with edge-weights and a nonnegative integer k, find a minimum cost set of edges that contains k disjoint spanning trees. This also solves the following reinforcement problem: given a network, a number k and a set of candidate edges, each of them with an associated cost, find a minimum cost set of candidate edges to be added to the network so it contains k disjoint spanning trees. The number k is seen as a measure of the invulnerability of a network. Our algorithm has the same asymptotic complexity as |V| applications of the minimum cut algorithm of Goldberg & Tarjan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithms for bipartite network flow. SIAM J. Comput. 23 (5), 906–933 (1994)

    MathSciNet  Google Scholar 

  2. Anglès d'Auriac, J.C., Iglói, F., Preissmann, M., Sebő, A.: Optimal cooperation and submodularity for computing Potts' partition functions with a large number of states. J. Phys. A 35 (33), 6973–6983 (2002)

    Google Scholar 

  3. Baïou, M., Barahona, F., Mahjoub, A.R.: Separation of partition inequalities. Math. Oper. Res. 25 (2), 243–254 (2000)

    MathSciNet  Google Scholar 

  4. Barahona, F.: Separating from the dominant of the spanning tree polytope. Op. Res. Lett. 12, 201–203 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Cheng, E., Cunningham, W.H.: A faster algorithm for computing the strength of a network. Inf. Process. Lett. 49, 209–212 (1994)

    MATH  Google Scholar 

  6. Cunningham, W.H.: Minimum cuts, modular functions, and matroid polyhedra. Networks 15, 205–215 (1985)

    MATH  MathSciNet  Google Scholar 

  7. Cunningham, W.H.: Optimal attack and reinforcement of a network. J. ACM 32, 549–561 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: R.K. Guy, E. Milner, N. Sauer (eds) Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 69–87

  9. Gabow, H.N.: Algorithms for graphic polymatroids and parametric -sets. J. Algorithms 26 (1), 48–86 (1998)

    MathSciNet  Google Scholar 

  10. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18 (1), 30–55 (1989)

    MathSciNet  Google Scholar 

  11. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. Assoc. Comput. Mach. 35(4), 921–940 (1988)

    Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, Algorithms and Combinatorics, vol. 2, second edn. Springer, Berlin, 1993

  13. Gusfield, D.: Connectivity and edge-disjoint spanning trees. Inform. Process. Lett. 16 (2), 87–89 (1983)

    MathSciNet  Google Scholar 

  14. Gusfield, D.: Computing the strength of a graph. SIAM J. Comput. 20 (4), 639–654 (1991)

    MathSciNet  Google Scholar 

  15. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph. J. Algorithms 17 (3), 424–446 (1994); Third Annual ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992)

    MathSciNet  Google Scholar 

  16. Jünger, M., Pulleyblank, W.R.: New primal and dual matching heuristics. Algorithmica 13, 357–380 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    MATH  MathSciNet  Google Scholar 

  18. Padberg, M.W., Wolsey, A.: Trees and cuts. Ann. Discrete Math. 17, 511–517 (1983)

    MATH  MathSciNet  Google Scholar 

  19. Picard, J.C., Queyranne, M.: Selected applications of minimum cuts in networks. INFOR-Canada J. Oper. Res. Inform. Process. 20, 394–422 (1982)

    MATH  Google Scholar 

  20. Roskind, J., Tarjan, R.E.: A note on finding minimum-cost edge-disjoint spanning trees. Math. Oper. Res. 10 (4), 701–708 (1985)

    MathSciNet  Google Scholar 

  21. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221–230 (1961)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Barahona.

Additional information

Received: April, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barahona, F. Network reinforcement. Math. Program. 105, 181–200 (2006). https://doi.org/10.1007/s10107-005-0648-6

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0648-6

Keywords

Navigation