Skip to main content
Log in

Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse

  • Published:
Mathematical Programming Submit manuscript

Abstract

In classical two-stage stochastic programming the expected value of the total costs is minimized. Recently, mean-risk models - studied in mathematical finance for several decades - have attracted attention in stochastic programming. We consider Conditional Value-at-Risk as risk measure in the framework of two-stage stochastic integer programming. The paper addresses structure, stability, and algorithms for this class of models. In particular, we study continuity properties of the objective function, both with respect to the first-stage decisions and the integrating probability measure. Further, we present an explicit mixed-integer linear programming formulation of the problem when the probability distribution is discrete and finite. Finally, a solution algorithm based on Lagrangean relaxation of nonanticipativity is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, C., Tasche, D.: On the coherence of Expected Shortfall. Journal of Banking and Finance 26, 1487–1503 (2002)

    Google Scholar 

  2. Artstein, Z., Wets, R.J-B: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4, 537–550 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization. Akademie-Verlag, Berlin (1982)

  5. Bank, B., Mandel, R.: Parametric integer optimization. Akademie-Verlag, Berlin (1988)

  6. Benson, H.P.: Multi-objective optimization: Pareto optimal solutions, properties. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of optimization, Vol. III Kluwer, Dordrecht, 2001, pp 489–493

  7. Billingsley, P.: Convergence of probability measures. Wiley, New York (1968)

  8. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer, New York (1997)

  9. Birge, J.R., Wets, R.J-B: Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Program. Study 27, 54–102 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program: I. Discrete Math. 19, 121–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Operations Res. Lett. 24, 37–45 (1999)

    MATH  Google Scholar 

  12. Engell, S., Märkert, A., Sand, G., Schultz, R.: Aggregated scheduling of a multiproduct batch plant by two-stage stochastic integer programming, Optimization and Engineering 5, 335–359 (2004)

    Google Scholar 

  13. Engell, S., Märkert, A., Sand, G., Schultz, R., Schulz, Ch.: Online scheduling of multiproduct batch plants under uncertainty. In: M. Grötschel, S.O. Krumke, J. Rambau (eds.) Online Optimization of Large Scale Systems. Springer, Berlin, 2001, pp 649–676

  14. Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Programming 93, 173–194 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. ILOG CPLEX, User's Manual (ILOG, Inc., Mountain View, CA 2002) Information available online from http://www.cplex.com.

  16. Kall, P., Ruszczyński, A., Frauendorfer, K.: Approximation techniques in stochastic programming. In: Yu. Ermoliev, R.J-B Wets (eds.) Numerical techniques for stochastic optimization. Springer, Berlin, 1988, pp 33–64

  17. Kall, P., Wallace, S.W.: Stochastic programming. Wiley, Chichester (1994)

  18. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Programming 46, 105–122 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kiwiel, K.C.: User's Guide for NOA 2.0/3.0: A fortran package for convex nondifferentiable optimization. Systems Research Institute, Polish Academy of Sciences, Warsaw (1994)

  20. Korhonen, P.: Multiple objective programming support. In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of optimization, Vol. III, Kluwer, Dordrecht, 2001, pp 566–574

  21. Markowitz, H.M.: Portfolio selection. Journal of Finance 7, 77–91 (1952)

    Google Scholar 

  22. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley, New York (1988)

  23. Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: Semideviations as risk measures. European J. Oper. Res. 116, 33–50 (1999)

    Article  MATH  Google Scholar 

  24. Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13, 60–78 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pflug, G.C.: Some remarks on the Value-at-Risk and the Conditional Value-at-Risk. In: S. Uryasev (ed.) Probabilistic constrained optimization: methodology and applications. Kluwer, Dordrecht, 2000 pp 272–281

  26. Pollard, D.: Convergence of stochastic processes. Springer, New York (1984)

  27. Prékopa, A.: Stochastic programming. Kluwer, Dordrecht (1995)

  28. Robinson, S.M.: Local epi-continuity and local optimization. Math. Programming 37, 208–222 (1987)

    MATH  MathSciNet  Google Scholar 

  29. Rockafellar, R.T., Uryasev, S.: Optimization of Conditional Value-at-Risk. Journal of Risk 2, 21–41 (2000)

    Google Scholar 

  30. Rockafellar, R.T., Uryasev, S.: Conditional Value-at-Risk for General Loss Distributions. Journal of Banking & Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  31. Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Math. Programming 70, 73–89 (1995)

    MATH  MathSciNet  Google Scholar 

  32. Schultz, R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6, 1138–1152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schultz, R., Tiedemann, S.: Risk Aversion via Excess Probabilities in Stochastic Programs with Mixed-Integer Recourse. SIAM J. Optim. 14, 115–138 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tiedemann, S.: Risk measures with preselected tolerance levels in two-stage stochastic mixed-integer programming, Dissertation Thesis, Department of Mathematics, University Duisburg-Essen Cuvillier Verlag Göttingen (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schultz.

Additional information

Received: April, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, R., Tiedemann, S. Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse. Math. Program. 105, 365–386 (2006). https://doi.org/10.1007/s10107-005-0658-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0658-4

Keywords

Navigation