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Abstract

In this paper we study ambiguous chance constrained problems where the distributions of the

random parameters in the problem are themselves uncertain. We primarily focus on the special

case where the uncertainty set Q of the distributions is of the form Q = {Q : ρp(Q, Q0) ≤

β}, where ρp denotes the Prohorov metric. The ambiguous chance constrained problem is

approximated by a robust sampled problem where each constraint is a robust constraint centered

at a sample drawn according to the central measure Q0. The main contribution of this paper

is to show that the robust sampled problem is a good approximation for the ambiguous chance

constrained problem with high probability. This result is established using the Strassen-Dudley

Representation Theorem that states that when the distributions of two random variables are

close in the Prohorov metric one can construct a coupling of the random variables such that the

samples are close with high probability. We also show that the robust sampled problem can be

solved efficiently both in theory and in practice.

1 Introduction

A large class of decision problems in finance and engineering can be formulated as optimization

problems of the form

min cTx

s.t. f(x,h) = max1≤i≤l {fi(x,h)} ≤ 0,

x ∈ X ,

(1)

where x ∈ X is the decision vector, X ⊆ Rn is a closed convex set, h ∈ Rm are problem parameters

and each of the functions fi(x,h) : X ×H 7→ R are convex in x for a fixed h. We assume, without

loss of generality, that the objective is linear and independent of h.
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The deterministic optimization approach to solving optimization problems computes a solution

to (1) assuming that the problem parameters h are known and fixed. In practice, however, the

parameters h are the result of some measurement or estimation process, and are, therefore, never

known for certain. This uncertainty is of serious concern in applications because solutions of

optimization problems are often very sensitive to fluctuations in the problem parameters. This

phenomenon is well documented in several different application areas [3, 26].

Recently robust optimization has emerged as an attractive optimization framework for reducing

the sensitivity of the optimal solution to perturbations in the parameter values. In this framework,

the uncertain parameters h are assumed to belong to a bounded uncertainty set H and the robust

optimization problem corresponding to the nominal problem (1) is given by

min cTx

s.t. f(x,h) ≤ 0, ∀ h ∈ H,

x ∈ X

(2)

This framework was introduced in Ben-Tal and Nemirovski [4, 5, 6]. There is also a parallel

literature on robust formulations of optimization problems originating from robust control [18, 20].

In many applications the uncertainty set H is given by the confidence region around the point

estimates of the parameter allowing one to provide probabilistic guarantees on the performance of

the optimal solution of the robust problem [26]. The robust problem (2) is solved by reformulating

the semi-infinite constraints, f(x,h) ≤ 0, for all h ∈ H, as a finite collection of constraints. Such

a reformulation is only possible when the uncertainty set H and the function f(x,h) satisfy some

regularity conditions. See [4, 6, 7] for robust formulations that can be solved efficiently. Even when

the reformulation is possible, the resulting problem is typically harder than the nominal problem (1)

([7] proposes a new framework wherein the robust problem remains in the same complexity class

as the nominal problem). In general, however, the robust problem is intractable.

Another criticism of the robust framework is that it gives the same “weight” to all perturbations

h ∈ H. Also, in certain applications one might have the flexibility of violating the constraints

corresponding to a small fraction of the set H. An alternative optimization framework that mitigates

this criticism to some extent is called chance-constrained optimization. In this framework, one

assumes the parameters are h are distributed according to a known distribution Q on H, and

replaces the nominal problem (1) by the following chance-constrained problem

min cTx

s.t. x ∈ Xε(Q),
(3)

where

Xε(Q) =
{
x ∈ X : Q(H : f(x,H) > 0) ≤ ε

}
, (4)

for some 0 < ε < 1. The parameter ε controls the probability that the optimal solution of (3)

violates the constraints – as ε ↓ 0 the chance-constrained problem starts to resemble the robust
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problem (2). Although chance-constrained problems have a long history dating back to at least the

work of Charnes and Cooper [12], they have not found wide applicability. This is primarily because

computing the optimal solution for chance-constrained problems is extremely hard. To begin with

just evaluating Q(H : f(x,H) > 0) involves a multidimensional integral that becomes hard as the

number of parameters grows. Moreover, even if the function f(x,h) is convex (or even linear)

in x the feasible set Xε(Q) of (3) is not convex. A detailed discussion of the chance-constrained

programs and, more generally, stochastic programs can be found in [35].

Recently, Calafiore and Campi [10, 11] and de Farias and Van Roy [14] independently proposed

tractable approximations to (3) based on constraint sampling and statistical learning techniques. In

this approach, one approximates chance-constrained problem (3) by the following sampled problem

min cTx

s.t. f(x,Hi) ≤ 0, i = 1, ..., N,

x ∈ X ,

(5)

where Hi, i = 1, . . . , N , are N independent, identically distributed (IID) samples from the distri-

bution Q. de Farias and Van Roy [14] consider the special case where f(x,h) = hTx + h0 and use

results from Computational Learning Theory [1, 30, 43] to show that for all N ≥ 4n
ε ln

(
12
ε

)
+ 4

ε ln
(

2
δ

)
,

the feasible set of the sampled problem (5) is contained in Xε(Q) with probability at least 1 − δ.

Thus, in this sampling based method there are two possible sources of errors: with probability δ, the

feasible set of (5) (and consequently, the optimal solution of (5)) may not be contained in Xε(Q);

and, in event that this is not the case, the feasible points of (5) can still violate the constraint

f(x,H) ≤ 0 with a probability ε. The analysis in [14] can be extended to general f(x,h) (see

Section 3 for details). Calafiore and Campi [10, 11] consider general convex functions f(x,h) and

show that for N ≥ 2n
ε ln

(
12
ε

)
+ 2

ε ln
(

2
δ

)
+ 2n, the optimal solution of the sampled problem (5) is

feasible for (3) with probability at least 1 − δ. On the one hand, this bound is weak in the sense

that it is only valid for the optimal solution, and not the entire feasible set. On the other hand,

the number of samples required to ensure that the optimal solution is feasible for (3) with high

probability can be orders of magnitude lower. The result in [10, 11] is proved using a fundamental

fact that the optimal solution of a convex program is “supported” by at most n constraints. We will

briefly review this work in Section 3.3. Recently, Nemirovski and Shapiro [33, 32] established loga-

rithmically separated upper and lower bounds on the number of samples required to approximate

a chance constrained problem when the measure Q has well defined moment generating function.

Although the bounds on the sample size N are distribution-free in the sense that they do not

depend on the underlying measure Q, in order to construct the sampled problem (5) one requires

samples from this probability measure. Also, there is an implicit assumption that the distribution Q

of the random parameters H is fixed. A major criticism raised against chance constrained problems

and, more generally, stochastic programs is that, in practice, the measure is never known exactly.

Just as the point estimates for the parameters, the distribution Q is also estimated from data or
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measurements, and is, therefore, known only to within some error, i.e. the measure Q ∈ Q where

Q is a set of measures. Since our primary interest in the chance constrained problem (3) was to

use it as an approximation (or even a refinement) of the robust problem (2), the natural problem

to consider when the measure Q is uncertain is given by

min cTx

s.t. x ∈ X̄ε,
(6)

where

X̄ε =
{
x ∈ X : Q(H : f(x,H) > 0) ≤ ε, ∀Q ∈ Q

}
. (7)

We will call (6) an ambiguous chance-constrained problem. A problem of the form (6) has two

sources of uncertainty: the distribution Q of the parameter h is uncertain, and, given a measure

Q, the particular realization of the parameter h is also uncertain. In the decision theory literature

the uncertainty in the distribution is referred to as ambiguity, and hence the name for the problem.

Modeling ambiguity and its consequence has been receiving attention in several different fields.

The minimax formulation has a long history in stochastic programing [44, 8, 16, 17, 29, 40, 38, 39].

Ruszczynski and Shapiro [36] show the equivalence between minimax stochastic programming and

minimizing a convex risk measure [2, 23] of the second-stage cost. [37] extends the minimax

approach to a multiperiod setting. The study of ambiguity in Economics began with the work

of Gilboa and Schmeidler [25]. This work was extended to a multiperiod setting by Hansen and

Sargent [27] and Epstein and his co-authors [13, 21, 22]. Ambiguity in the context of Markov

decision processes was independently investigated by Iyengar [28] and El Ghaoui and Nilim [19].

The main contributions of this paper are as follows.

(a) We consider uncertainty sets Q of measures that are of the form Q = {Q : ρ(Q, Q0) ≤ β}

where ρ(·, ·) denotes a suitable metric between probability measures, i.e. the uncertainty sets

are “balls” centered around the central measure Q0. We approximate the ambiguous chance-

constrained problem (6) by a robust sampled problem defined as follows

min cTx

s.t. f(x, z) ≤ 0, ∀ z s.t. ‖z − H0
i ‖ ≤ β, i = 1, . . . , N,

(8)

where H0
i , i = 1, . . . , N , denote IID samples drawn according to the central measure Q0 and

the norm ‖ · ‖ on the H space is related to the probability metric ρ(·, ·) (details are given

in Section 4). Results in [7] imply that for a large class of constraint functions f(x,h) and

suitably defined norms ‖ · ‖ the robust sampled problem (8) is in the same complexity class as

the nominal problem (1).

(b) We combine results from Computational Learning Theory with results for coupling of random

variables [42] to compute upper bounds on the number of samples N required to ensure that

the feasible set of the robust sampled problem (8) is contained in X̄ε with high probability.

This bound depends on the Vapnik-Chervonenkis (VC) dimension of the function f(x,h).
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(c) We use coupling to extend the results of Calafiore and Campi [10, 11] to the ambiguous chance

constrained problems, i.e. we compute upper bounds on the number of samples required to

ensure that the optimal solution of the robust sampled problem (8) is contained in X̄ε with

high probability. The bound in this case depends on the number of “support” constraints, and

is independent of the VC dimension of f(x,h).

The issue of ambiguity of measures was also raised in [11] where the authors considered a finite

uncertainty set Q. They proposed a solution strategy where one samples from all of these measures

and showed that the samples from different measure “help” each other. In contrast, we consider

the case where Q is uncountably infinite and we draw samples from only the central measure Q0.

The rest of this paper is structured as follows. In Section 3 we briefly review the known results

for chance constrained problem. The results in this section are not new – they have been included

to set the context for our extensions. Section 4 introduces probability metrics, coupling and the

Strassen-Dudley Representation Theorem. Section 5 uses this Representation Theorem to establish

bounds for ambiguous chance constrained problems. In Section 6 we identify particular classes of

functions f(·, ·) and norms ‖·‖ on the parameter space H that allow the robust sampled problem (8)

to be solved efficiently. Section 7 has some concluding remarks.

2 Notation

Sets will be denoted by calligraphic letters, e.g. A. For a finite set A, we will denote the size of A

by |A|. All (deterministic) vectors will be denoted by boldface lowercase letters, e.g. x. Random

vectors and samples of random vectors will be denoted by boldface uppercase letters, e.g. H, and

measures will be denoted by mathematical boldface letters, e.g. P. We will denote that a random

vector H has distribution Q by H ∼ Q, a σ-algebra on a space H by F(H), and the set of all

probability measures on H by M(H). We will denote the n-th binomial coefficient N !
(N−n)!n! by

(
N
n

)
.

3 Chance constrained problems and Learning Theory

In this section our goal is to relate the sampled problem (5) to the chance constrained problem (3).

We assume that the distribution Q of the perturbations H is known and fixed. Let H1,N =

{H1,H2, ...,HN} denote N IID samples of the random vector H ∼ Q. Then the feasible set of the

sampled problem (5) is given by

Y[H1,N ] = {x ∈ X : f(x,Hi) ≤ 0, i = 1, ..., N} (9)

In the sequel, we will often abbreviate Y[H1,N ] as Y[N ] with the understanding that the set Y[N ]

is defined using a particular sequence of IID samples H1,N of length N . In the first half of this

section we appropriately interpret concepts from Computational Learning Theory [1, 43, 30] to
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establish bounds on the number of samples N required for Y[N ] to be a good approximation for

the feasible set Xε = {x : Q(H : f(x,H) ≤ 0) ≤ ε} of the chance constrained problem (3). Next, we

briefly summarize the result in [10, 11] that provides a bound for the number of samples required to

ensure that the optimal solution of the sampled problem (5) is contained in Xε with high probability.

As mentioned in Section 1, the results in this section are not new – they simply provide the context

for the new results in Section 5.

3.1 Decision vectors, concepts and Vapnik-Chervonenkis (VC) dimension

With each decision vector x ∈ X we associate the concept or classification

Cx = {h ∈ H : f(x,h) ≤ 0} .

Let Cf = {Cx : x ∈ X} denote the class of all concepts induced on H as the decision vector x runs

over the set X . Thus, the set Xε = {x ∈ X : Q(H 6∈ Cx) ≤ ε}. To apply the results from Learning

Theory to the problem at hand we pretend that our goal is to learn the set X0 of concepts Cx that

cover H with probability 1, i.e. X0 = {x : Q(H ∈ Cx) = 1}. Since Learning algorithms only have

access to a finite number of samples of the random variable H, it is impossible to learn the concepts

in X0; instead any such algorithm will have to be satisfied with learning a concept with a small error

ε, i.e. a concept Cx with Q(H 6∈ Cx) ≤ ε or equivalently x ∈ Xε. For the particular case considered

in this paper, learning Xε is equivalent to producing a good approximation for the function f(x, ·)

using a finite number of samples. Thus, one should expect that the complexity of learning Xε

when the function f(x,h) = hTx is linear, or equivalently the associated concept Cx is a half

space, should be smaller than the complexity of learning Xε when the function f(·, ·) is nonlinear.

Learning Theory quantifies the complexity of a concept class Cf by its Vapnik-Chervonenkis (VC)

dimension [43].

Let S = {s1, . . . , sN} ⊂ H denote a finite subset of H with |S| = N . Define

Πf (S) =
{(

1Cx(s1), . . . ,1Cx(sN )
)

: x ∈ X
}

, (10)

where 1C(·) denotes the characteristic function of the set C. The set Πf is the set of dichotomies

or behaviors induced by the concept class Cf , or equivalently the function f(·, ·). From (10), it is

clear that the number of elements |Πf (S)| ≤ 2N . We say that a set S is shattered by the concept

class Cf if Πf (S) = {0, 1}N , or equivalently |Πf (S)| = 2N . Note that if a set S is shattered by the

concept class Cf it does not yield any information about the concept class. Thus, the size of largest

shattered set is a measure of the complexity of the concept class Cf .

Definition 1 (VC dimension of f(·, ·)) The VC dimension df of the function f(·, ·) is the car-

dinality of the largest set S ⊂ H that is shattered by the concept class Cf , i.e

df = sup
{
|S| : Πf (S) = {0, 1}N

}
,

= sup
{
|S| : |Πf (S)| = 2N

}
. (11)
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In the sequel we will find it convenient to work with the growth function πf (N) defined as follows.

πf (N) = max {|Πf (S)| : |S| = N} . (12)

The growth function πf is another measure of the complexity of the concept class: the faster this

function grows, the more behaviors on sets of size m that can be realized by Cf ; consequently, the

less is the information that this finite set conveys about the class Cf . A surprising and fundamental

result in Computational Learning Theory asserts that if the VC dimension df < ∞, the growth

function πf (N) is bounded by a polynomial in N of degree df .

Proposition 1 (Sauer’s Lemma [9, 1, 30]) Suppose the VC dimension df of the function f(·, ·)

is finite. Then

πf (N) ≤ 1 +

(
N

1

)
+

(
N

2

)
+ ... +

(
N

df

)
≤

(
eN

df

)df

, (13)

where e denotes the base of natural logarithm.

In this paper we assume that the VC dimension df < ∞. This is not a very restrictive assumption

since many functions f(·, ·) used in practice have finite VC dimension.

Proposition 2 Let df denote the VC dimension of the function f(·, ·).

(a) X = Rn, H = {(h0,h) : h0 ∈ R,h ∈ Rn} = Rn+1 and f(x,h) = h0 + hTx. Then df ≤ n.

(b) X = Rn, H = {(A,b,u, v) : A ∈ Rp×n,b, c ∈ Rn, v ∈ R}, and f(x,h) = ‖Ax+b‖−uTx− v.

Then df ≤ O(n2).

(c) Suppose the VC dimension of the function fi(·, ·) is di, i = 1, . . . , l. Then the VC dimension df

of the function f(x,h) = max1≤i≤l{fi(x,h)} is bounded above by df ≤ O(10l max1≤i≤l{di}).

Proof: Part (a) is proved on p.77 in [1] (see also [14]), part (b) is established in [9] and part (c)

can be established using techniques in [31].

Part (c) states that the best known bound on the VC dimension of a pointwise maximum of

l functions grows exponentially in l. Thus, the VC dimension of the concept class induced by

constraint function f(·, ·) of the nominal problem (1) can be quite large. We will remark on this at

the end of the next section.

3.2 Learning the chance constrained set Xε

For x ∈ X let err(x) = Q(H 6∈ Cx). Thus, Xε = {x ∈ X : err(x) ≤ ε}. The feasible set Y[N ] of

the sampled problem (5) is the set of all decision vectors x, or equivalently concepts Cx, that are

consistent with the given sample H1,N . Intuitively speaking, if the sample size is large enough one

would expect that Y[N ] is a good estimate of the set Xε. The next two results make this rigorous.
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Lemma 1 Fix ε > 0. Suppose x̄ ∈ X with err(x̄) > ε. Then, for all N ≥ 1,

QN (H1,N : x̄ ∈ Y[N ]) ≤ e−εN , (14)

where QN denotes the product measure Q × Q × . . . × Q with N terms.

Proof: Recall that H1,N are IID samples of the random vector H ∼ Q. Therefore,

QN (H1,N : x̄ ∈ Y[N ]) = (Q(H : f(x̄,H) ≤ 0))N ≤ (1 − ε)N ≤ e−εN ,

where the last inequality follows from the fact that 1 − ε ≤ e−ε.

Lemma 1 establishes that the probability that a given concept Cx with err(x) > ε is contained

in Y[N ] decays exponentially with the number of samples N . Suppose the set X is finite. Then

the union bound implies that QN (H1,N : Y[N ] 6⊆ Xε) ≤ |X| e−εN ≤ δ, for all N ≥ 1
ε log

(
|X|
δ

)
, i.e

O
(

1
ε log

(
|X|
δ

))
samples are needed to learn Xε with a probability of error bounded by δ. Since

the complexity of learning a concept is determined by the VC dimension of the concept class, we

expect that a similar bound should hold with |X| replaced by πf (N).

Lemma 2 (Proposition 8.2.3 in [1]) Let πf denote the growth function associated with concept

class Cf induced by f(·, ·). Then, for all N ≥ 8/ε,

QN (H1,N : Y[N ] 6⊆ Xε) ≤ 2πf (2N)2−εN/2. (15)

This result and the upper bound (13) imply the following corollary.

Corollary 1 Fix ε, δ > 0. Suppose the VC dimension df of f(·, ·) is finite. Then

QN (H1,N : Y[N ] 6⊆ Xε) ≤ δ,

for all

N ≥ max

{
8

ε
,

(
4df

ε
log
(12

ε

)
+

4

ε
log
(2

δ

))}
.

We conclude this section with the following lower bound.

Lemma 3 (Theorem 3.5 in [30]) Suppose the VC dimension df of the function by f(·, ·) is fi-

nite. Then the worst case number of samples required to learn Xε is Ω(df/ε).

Corollary 1 and Lemma 3 establish that the number of samples N = Θ(df/ε). From Proposi-

tion 2 (c) we have that the VC dimension of the constraint f(·, ·) in the nominal problem (1) could

be as large as 10l max1≤i≤l{di} where di is VC dimension of the functions fi, i = 1, . . . , l. Thus,

the number of samples required to learn Xε could be prohibitive even for well behaved constraint

functions.
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3.3 Quality of the optimal solution of the sampled problem

In this section the goal is more modest – we want to compute the number of samples required

to ensure that only the optimal solution of the sampled problem (5), as opposed to the entire

set Y[N ], is feasible for the chance constrained problem (3) with high probability. Calafiore and

Campi [10, 11] recently showed that N = O(n/ε) is enough to achieve this goal. In this section we

briefly review the results in [10, 11].

Let (P ) denote the following convex program

min cTx

s.t. fi(x) ≤ 0, i = 1, . . . , N,

where fi(x) is a convex function of x for all i = 1, . . . , N . Let x̂ denote the unique optimal solution

of (P ). Let (Pk) denote the convex program obtained by dropping the k-th constraint, k = 1, . . . , N ,

and let x̂k denote the unique optimal solution of the problem (Pk). See [10, 11] for the case where

the optimal solutions are not unique.

Definition 2 (Support constraint) The k-th constraint fk(x) ≤ 0 is called a support constraint

for the problem (P ) if cT x̂k < cT x̂.

Theorem 3 (Theorem 2 in [11]) The convex program has at most n support constraints.

Lemma 4 Fix ε > 0. Let x̂ denote the optimal solution of the sampled problem (5). Then

QN (H1,N : x̂ 6∈ Xε) ≤
(
N
n

)
e−ε(N−n).

Proof: The sampled problem (5) is a convex program with N constraints. Let I ⊆ {1, . . . , N}

with |I| = n. Let HN
I = {(h1, . . . ,hN ) : (hi)i∈I are the support constraints}. Then Theorem 3

implies HN = ∪{I⊆{1,...,N}:|I|=n}H
N
I . Thus,

QN (H1,N : x̂ 6∈ Xε) =
∑

{I⊆{1,...,N}:|I|=n}

QN (H1,N ∈ HN
I : x̂I 6∈ Xε)

=
∑

{I⊆{1,...,N}:|I|=n}

(
Qn(Hi∈I : x̂I 6∈ Xε)

∏

i6∈I

Q(Hi : f(x̂I ,Hi) ≤ 0|AI)
)
,

where x̂I denotes the optimal solution of the sampled problem (5) with only the samples i ∈ I

present, AI is the event AI = {Hi∈I : x̂I 6∈ Xε} and each probability in the sum can be written as

a product because H1,N are IID samples. Since x̂ 6∈ Xε, it follows that Q(Hi : f(x̂I ,Hi) ≤ 0|AI) ≤

(1 − ε), for all i 6∈ I. Thus,

QN (H1,N : x̂ 6∈ Xε) ≤ (1 − ε)(N−n)
∑

{I⊆{1,...,N}:|I|=n}

Qn(Hi∈I : x̂I 6∈ Xε)

≤

(
N

n

)
(1 − ε)(N−n) ≤

(
N

n

)
e−ε(N−n).

Lemma 4 immediately implies the following.
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Corollary 2 Fix ε, δ > 0. Let x̂ denote the optimal solution of the sampled problem (5). Then

QN (H1,N : x̂ 6⊆ Xε) ≤ δ,

for all

N ≥
2n

ε
log
(1

ε

)
+

2

ε
log
(1

δ

)
+ 2n

4 Probability metrics and Coupling

In Section 1 we had introduced the following robust chance constrained set (see (7))

X̄ε =
{
x ∈ X : sup

Q∈Q
Q(H : f(x,H) > 0) ≤ ε

}
,

where Q = {Q : ρ(Q, Q0) ≤ β} for an appropriately chosen metric ρ on the space M(H) of

probability measures on H. Recall that X ⊆ Rn, H ⊆ Rm and we denote the norm in H space

by ‖ · ‖. In this section we first review properties of some basic probability metrics. Next, we

introduce the concept of coupling of random variables that plays an important role in constructing

approximations of the robust chance constrained set X̄ε via samples. In this paper we will be

primarily using the Prohorov metric ρp defined as follows.

ρp(Q
1, Q2) = inf

{
ε : Q1(B) ≤ Q2(Bε) + ε, ∀B ∈ F(H)

}
, (16)

where

Bε =
{
x ∈ X : inf

z∈B
‖x − z‖ ≤ ε

}
.

Although the definition appears asymmetric, ρp is a metric. It plays an important role in prob-

ability because it metrizes weak convergence. Moreover, ρp(Q1, Q2) is the minimum distance “in

probability” between random variables distributed according to Qi, i = 1, 2. Some other metrics

of interest are as follows.

(a) Wassestein or Kantorovich metric ρw:

ρw(Q1, Q2) = sup

{∣∣∣∣
∫

H
g(h)

(
Q1(dh) − Q2(dh)

)∣∣∣∣ : g ∈ C1,1(H)

}
,

where C1,1(H) denotes the set of Lipschitz continuous functions with Lipschitz constant at

most 1.

(b) Total variation metric ρtv:

ρtv(Q1, Q2) = sup {|Q1(B) − Q2(B)| : B ∈ F(H)} .
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(c) Hellinger metric ρh: Let fi, i = 1, 2 denote the densities of measures Qi, i = 1, 2, with respect

to a common dominating measure (e.g. Q = (Q1 + Q2)/2). Then

ρh(Q1, Q2) =
(∫

H

(√
f1 −

√
f2

)2
Q(dh)

) 1

2

.

(d) Relative entropy distance ρe: Let fi, i = 1, 2 denote the densities of measures Qi, i = 1, 2, with

respect to a common dominating measure (e.g. Q = (Q1 + Q2)/2). Then

ρe(Q1, Q2) =

∫

H
f1(h) log

(f1(h)

f2(h)

)
dh

The relative entropy distance ρe is not a metric because it is not symmetric and does not satisfy

the triangle inequality.

The following lemma relates the Prohorov metric ρp to the other distance functions.

Lemma 5 ([24]) The distances ρw, ρh, ρtv and ρe are related to the Prohorov metric as follows.

(a) Prohorov and Wasserstein metrics: ρ2
p ≤ ρw ≤ (diam(H)+1)ρp, where diam(H) = sup{‖h1−

h2‖ : hi ∈ H, i = 1, 2}.

(b) Prohorov and Total variation metrics: ρp ≤ ρtv

(c) Prohorov and Hellinger metrics: ρp ≤ ρh

(d) Prohorov metric and the relative entropy distance: ρp ≤
√

ρe/2

These bounds imply that for any uncertainty set of the form Q = {Q : ρ(Q, Q0) ≤ δ}, where the

metric ρ is given by ρw, ρtv, ρh or ρe, one can choose β(δ) > 0 such that Q ⊆ Q̃ = {Q : ρp(Q, Q0) ≤

β(δ)}, i.e. Q̃ is a conservative approximation of Q. Next we introduce the concept of coupling of

random variables and relate it to the probability metrics.

Definition 3 (Coupling of random variables) A random variable X̃ is said to be a copy or a

representation of the random variable X if and only if they have the same distribution, i.e. X̃
D

= X.

A collection of random variables {X̃α : α ∈ A} defined on a common probability space (Ω,F(Ω), P)

is said to be a coupling of the collection {Xα : α ∈ A} if and only if X̃α D

= X, for all α ∈ A.

Note that only the individual X̃α are copies of the individual Xα, the whole collection is {X̃α : α ∈

A} is not a copy of {Xα : α ∈ A}, i.e. the joint distribution of {X̃α : α ∈ A} need not be the same

as that of {Xα : α ∈ A}.

Theorem 4 (Strassen-Dudley) Let X1 ∼ Q1 and X2 ∼ Q2 be two random variables taking

values in H. Suppose ρp(Q1, Q2) ≤ β. Then there exists a coupling (X̃1, X̃2) of (X1,X2) such that

P

(
‖X̃1 − X̃2‖ > β

)
≤ β. (17)

11



Proof: This result was established by Strassen [41] for complete separable metric spaces and

extended to arbitrary separable metric spaces by Dudley [15]. See also Rachev [34].

This result establishes that if two probability measures Qi, i = 1, 2, are “close” in the Prohorov

metric then there exists a coupling (X̃1, X̃2) such that the samples are “close” with high probability.

This result can be improved if the random variables Xi, i = 1, 2, are bounded w.p.1.

Theorem 5 Let X1 ∼ Q1 and X2 ∼ Q2 are two random variables taking values in H. Suppose

ρp(Q1, Q2) ≤ β and ‖Xi‖ ≤ R a.s., i = 1, 2. Then there exists a coupling (X̃1, X̃2) of (X1,X2)

such that

E

(
‖X̃1 − X̃2‖

)
≤ (1 + 2R)β, (18)

where the expectation is with respect to the common probability measure P.

Proof: The Wasserstein metric ρw(Q1, Q2) between probability measures Q1 and Q2 can be

equivalently characterized as follows.

ρw(Q1, Q2) = inf
{

E

[
‖X̃1 − X̃2‖

]
: Xi ∼ Qi, i = 1, 2, (X̃1, X̃2) is a coupling of (X1,X2)

}
.

Since ‖Xi‖ ≤ R a.s., one can without loss of generality assume that diam(H) ≤ 2R. Thus, the

bound ρw ≤ (diam(H) + 1)ρp together with the characterization above, yields the result.

5 Robust chance constrained sets

In this section we show how to construct sampling based approximation for the robust chance

constrained set

X̄ε =
{
x ∈ X : sup

Q∈Q
Q(H : f(x,H) > 0) ≤ ε

}
,

where Q = {Q : ρp(Q, Q0) ≤ β}, and ρp denotes the Prohorov metric. Note that the bounds in

Lemma 5 imply that one can conservatively approximate an uncertainty set defined in terms of any

of the metrics discussed in Section 4 by a set defined in terms of the Prohorov metric. The main

results of this section are the robust analogs of Lemma 1, Lemma 2 and Lemma 4.

In this section we define err(x) as follows.

err(x) = sup
Q∈Q

Q(H : f(x,H) > 0) (19)

Thus, X̄ε = {x ∈ X : err(x) ≤ ε}. Let H0
1,N = {H0

1, . . . ,H
0
N} denote N IID samples drawn

according to the central probability measure Q0. Let Y[N, β] denote the set

Y[N, β] =
{
x : f(x, z) ≤ 0, ∀z s.t. ‖z − H0

i ‖ ≤ β, i = 1, . . . , N
}

. (20)

As in Section 3, the set Y[N, β] is defined using a particular sequence of IID samples H0
1,N of length

N drawn according to the measure Q0.

12



Lemma 6 Fix ε > 0. Suppose x̄ ∈ X with err(x̄) > ε. Then, for all N ≥ 1,

QN
0

(
H0

1,N : x̄ ∈ Y[N, β]
)
≤ e−(ε−β)N . (21)

Remark 1 The probability QN
0 (x̄ ∈ Y[N, β]) decays exponentially with N only if ε > β. Thus,

uncertainty in the measure manifests itself as a lower bound on the acheivable error probability.

Proof: Fix 0 < η ≤ ε. Since err(x̄) > ε we can select Q1 ∈ Q such that Q1(H : f(x̄,H) >

0) > ε − η. Let H0 ∼ Qi, i = 1, 2. Since ρp(Q1, Q0) ≤ β, the Strassen-Dudley Representation

Theorem implies that there exists a coupling (H̃1, H̃0) of the pair (H1,H0) such that (17) holds,

i.e. P
(
‖H̃1 − H̃0‖ > β

)
≤ β. Let

{
(H̃1

1, H̃
0
1), . . . , (H̃

1
N , H̃0

N )
}

denote N IID samples of the jointly

distributed pair of random vectors (H̃1, H̃0). Let Ỹ[N, β] denote the set

Ỹ[N, β] =
{
x : f(x, z) ≤ 0, ∀z s.t. ‖z − H̃0

i ‖ ≤ β, i = 1, . . . , N
}

. (22)

Since H0 D

= H̃0 and x̄ is fixed, we have that

QN
0

(
H0

1,N : x̄ ∈ Y[N, β]
)

= PN
(
H̃0

1,N : x̄ ∈ Ỹ[N, β]
)

. (23)

Moreover,

PN
(
H̃0

1,N : x̄ ∈ Ỹ[N, β]
)

=

N∏

i=1

P

(
H̃0

i : f(x̄, z) ≤ 0, ∀‖z − H̃0
i ‖ ≤ β

)
,

=
(
P

(
H̃ : f(x̄, z) ≤ 0, ∀‖z − H̃0‖ ≤ β

))N
. (24)

Each term in (24) can be bounded as follows.

P

(
f(x̄, z) ≤ 0, ∀‖z − H̃0‖ ≤ β

)

= P

(
f(x̄, z) ≤ 0, ∀‖z − H̃0‖ ≤ β, ‖H̃1 − H̃0‖ ≤ β

)

+ P

(
f(x̄, z) ≤ 0, ∀‖z − H̃0‖ ≤ β, ‖H̃1 − H̃0‖ > β

)
,

≤ P

(
f(x̄, H̃1) ≤ 0

)
+ P

(
‖H̃1 − H̃0‖ > β

)
, (25)

≤ (1 − ε + η) + β, (26)

where (25) follows from the fact that the probability only increases if one removes restrictions, and

(26) follows from the bound (17) and the fact that H̃1 D

= H1. From (23), (26) and (24), we have

QN
0

(
H0

1,N : x̄ ∈ Y[N, β]
)

= PN
(
H̃0

1,N : x̄ ∈ Ỹ[N, β]
)
≤ (1 − ε + β + η)N ≤ e−N(ε−β−η). (27)

Since η ≤ ε was arbitrary, the result follows.

Note that we only generate samples according to the central measure Q0. The coupling is a construct

needed to translate the bound on extremal measure that achieves the supremum in the definition

of err(x) to the measure Q0.
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Suppose Q(H : ‖H‖ > R) = 0 for all Q ∈ Q. Define the set Yλ[N ] as follows.

Yλ[N ] =
{
x : f(x, z) ≤ 0, ∀z s.t. ‖z − H0

i ‖ ≤ λβ, i = 1, . . . , N
}

(28)

Then Theorem 5 and Markov’s inequality implies the following corollary.

Corollary 3 Fix ε > 0 and x̄ ∈ X with err(x̄) > ε. Suppose Q(H : ‖H‖ > R) = 0 for all Q ∈ Q.

Then

P (x̄ ∈ Yλ[N ]) ≤
(
1 − ε +

1 + 2R

λ

)N
. (29)

Unlike in Lemma 6, here we have a parameter λ that can be controlled to achieve any desired

probability of error ε.

Next, we establish a robust analog of Lemma 2. We show that if the VC dimension df of the

function f(·, ·) is finite, ρp(Q, Q0) ≤ β, and the number of samples N = O(
df

ε−β ) (a precise bound

is given in Lemma 7),

QN
0

(
H0

1,N : Y[N, β] ⊆ Xε(Q)
)
≥ 1 − δ.

This result should be interpreted as follows. The distribution of the parameters H is uncertain and

is only known to lie in the uncertainty set Q = {Q : ρp(Q, Q0) ≤ β} and we want to characterize

the set of decisions x that satisfy Q(H : f(x,H) > 0) ≤ ε no matter which probability measure

Q is selected from the uncertainty set Q. The bound above shows that for N = O(
df

ε−β ) the set

Y[N, β] is a good approximation for Xε(Q) for any fixed Q with high probability.

Lemma 7 Fix δ > 0, ε > β and Q1 ∈ Q. Suppose the VC dimension df of the function f(·, ·) is

finite and β + 2−β/2 < 1. Then QN
0

(
H0

1,N : Y[N, β] 6⊆ Xε(Q1)
)
≤ δ, for all N satisfying

N ≥ max
{

d, 8
ε ,

2df

e(1−β) ln
(

e
1−β

)
+ 2

1−β ln
(

e
(e−1)δ

)
+ 1,

4df

ε−µ log
(

12
ε−µ

)
+ 4

ε−µ log
(

2
δ(1−β)

)}
,

where µ = 2
(

ε
2 + log(β + 2−ε/2)

)
.

Remark 2 Since β = 0 implies µ = 0, we recover the non-robust result in Lemma 2 when β = 0.

Proof: Since the measure Q1 ∈ Q is fixed, we will abbreviate Xε(Q1) by Xε. Let X c
ε denote the

complement of the set Xε. As in the proof of Lemma 6, let Hi ∼ Qi, i = 1, 2 and let (H̃1, H̃0)

denote a coupling of the pair (H1,H0) such that (17) holds, i.e. P
(
‖H̃1 − H̃0‖ > β

)
≤ β. Let{

(H̃1
1, H̃

0
1), . . . , (H̃

1
N , H̃0

N )
}

denote N IID samples of the jointly distributed pair of random vectors

(H̃1, H̃0). Then

QN
0

(
H0

1,N : Y[N, β] 6⊆ Xε

)
= PN

(
H0

1,N : Ỹ[N, β] ∩ X c
ε 6= ∅

)
,

=
N∑

j=0

PN
(
Ỹ[N, β] ∩ X c

ε 6= ∅, |I| = j
)

,
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where I =
{
i ∈ {1, ..., N} : ‖H̃1

i − H̃0
i ‖ ≤ β

}
. For a set I ⊂ {1, . . . , N} let A(I) denote the event

A(I) =
{

(H̃0
i , H̃

1
i )i=1,...,N : ‖H̃1

k − H̃0
k‖ ≤ β, ∀k ∈ I, ‖H̃1

k − H̃0
k‖ ≤ β, ∀k 6∈ I

}

and let Y[I, β] =
{
x : f(x, z) ≤ 0, ∀z s.t. ‖z − H̃0

i ‖ ≤ β, i ∈ Ij

}
. Fix I1, I2 ⊆ {1, ..., N} with

|I1| = |I2|. Since {(H̃i
1
, H̃i

0
)}, i = 1, ..., N are IID, it is clear that

PN
(
(H̃0

i , H̃
1
i )i=1,...,N : Ỹ[N, β] ∩ X c

ε 6= ∅,A(I1)
)

= PN
(
(H̃0

i , H̃
1
i )i=1,...,N : Ỹ[N, β] ∩ X c

ε 6= ∅,A(I2)
)

. (30)

Set I0 = ∅, and Ij = {1, . . . , j}, j = 1, . . . , N . Since there are
(
N
j

)
possible selections for the set Ij

of cardinality j, (30) implies that

N∑

j=0

PN
(
(H̃0

i , H̃
1
i )i=1,...,N : Ỹ[N, β] ∩ X c

ε 6= ∅, |I| = j
)

=

N∑

j=0

(
N

j

)
PN
(
(H̃0

i , H̃
1
i )i=1,...,N : Ỹ[N, β] ∩ X c

ε ,A(Ij)
)

,

≤
N∑

j=0

(
N

j

)
PN
(
(H̃0

i , H̃
1
i )i=1,...,N : X c

ε ∩ Y[Ij , β] 6= ∅,A(Ij)
)

(31)

=
N∑

j=0

(
N

j

)
Pj
(
(H̃0

k, H̃
1
k)k∈Ij

: X c
ε ∩ Y[Ij , β] 6= ∅,A(Ij)

)
·

PN−j
(
(H̃0

k, H̃
1
k)k 6∈Ij

: ‖H̃k
ᾱ
− H̃k

0
‖ > β, ∀k 6∈ Ij

)
, (32)

≤
N∑

j=0

(
N

j

)
βN−jPj

(
(H̃0

i , H̃
1
i )i=1,...,j : X c

ε ∩ Y[Ij , β] 6= ∅,A(Ij)
)

(33)

≤
N∑

j=0

(
N

j

)
βN−jPj

(
H̃1

1,j : ∃x ∈ X c
ε s.t. f(x, H̃1

k) ≤ 0, ∀k ∈ Ij

)
, (34)

where (31) and (34) follows from the fact that the probability only increases if one removes restric-

tions, (32) follows from the fact that {(H̃i
1
, H̃i

0
)}, i = 1, ..., N are IID, and (33) follows from the

bound (17). Note that the bound (34) only involves the random vector H1, or equivalently the

(unknown) true measure Q1. Thus, once again we have used coupling to translate a bound in terms

of the central measure Q0 to one involving the measure Q1. We do not need coupling beyond this

stage of the proof. In the rest of this proof we bound (34) using Lemma 2 applied to the (unknown)
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measure Q1. Let N0 = b8
ε c. Then

N∑

j=0

(
N

j

)
βN−jPj

(
H̃1

1,j : ∃x ∈ X c
ε s.t. f(x, H̃1

k) ≤ 0, ∀k ∈ Ij

)

=

N0∑

j=0

(
N

j

)
βN−jPj

(
H̃1

1,j : ∃x ∈ X c
ε s.t. f(x, H̃1

k) ≤ 0, ∀k ∈ Ij

)

+

N∑

j=N0+1

(
N

j

)
βN−jPj

(
H̃1

1,j : ∃x ∈ X c
ε s.t. f(x, H̃1

k) ≤ 0, ∀k ∈ Ij

)
,

≤
N0∑

j=0

(
N

j

)
βN−j +

N∑

j=N0+1

(
N

j

)
βN−jPj

(
H̃1

1,j : ∃x ∈ X c
ε s.t. f(x, H̃1

k) ≤ 0, ∀k ∈ Ij

)

≤
N0∑

j=0

(
N

j

)
βN−j +

N∑

j=N0+1

(
N

j

)
βN−j

(
2ej

df

)df

21−εj/2, (35)

where (35) follows from Lemma 2 and the bound (13). The rest of this proof is tedious algebra to

prove a “nice” bound on (35).

N0∑

j=0

(
N

j

)
βN−j +

N∑

j=N0+1

(
N

j

)
βN−j

(
2ej

df

)df

21−εj/2

=

N0∑

j=0

(
N

j

)
βN−j

(
1 −

(
2ej

df

)df

21−εj/2

)

︸ ︷︷ ︸
τ1

+

N∑

j=0

(
N

j

)
βN−j

(
2ej

df

)df

21−εj/2

︸ ︷︷ ︸
τ2

(36)

To complete the proof we show that if N is large enough the terms τ1 and τ2 are bounded by

τ1 ≤ δβ and τ2 ≤ δ(1 − β), which implies that τ1 + τ2 ≤ δ. We can bound τ1 as follows. Let

d0 = b
df

e c where e is the base of natural logarithm. Then

τ1 =

d0∑

j=0

(
N

j

)
βN−j

(
1 −

(
2ej

df

)df

21−εj/2

)
+

N0∑

j=d0+1

(
N

j

)
βN−j

(
1 −

(
2ej

df

)df

21−εj/2

)
.

Note that for
df

e ≤ d0 + 1 ≤ j ≤ N0 ≤ 8
ε . Thus, we have

1 −

(
2ej

df

)df

21−εj/2 ≤ 1 −

(
2ej

df

)df

21−εN0/2,

≤ 1 −

(
2ej

df

)df

21−ε 8

2ε ,

= 1 −

(
2ej

df

)df

2−3,

≤ 1 −

(
2edf

dfe

)df

2−3,

= 1 − 2df−3 ≤ 0.
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The last inequality follows from the assumption that df > 3. Therefore,

τ1 ≤
d0∑

j=0

(
N

j

)
βN−j

(
1 −

(
2ej

d

)d

21−εj/2

)
,

≤
d0∑

j=0

(
N

j

)
βN−j ,

≤
βN

N − d0

d0∑

j=0

(
N − 1

j

)
βN−1−j ,

≤
Nβ(1 − β)−d0

N − d0

d0∑

j=0

(
N − 1

j

)
βN−1−j(1 − β)j ,

=

(
Nβ(1 − β)−d0

N − d0

)
P (1 − β, N − 1, d0), (37)

where P (p, N, s) denotes the probability of at most s successes in N IID Bernoulli trials, each with

a success probability p. Let θ = 1 − d0

(N−1)(1−β) . Then, Chernoff bound implies that

τ1 ≤
Nβ(1 − β)−d0

N − d0
exp

{
−

(N − 1)(1 − β)

2
+ d0

}
.

For N ≥ df ≥ ed0 we have N
N−d0

≤ e
e−1 . Therefore,

τ1 ≤
eβ(1 − β)−df /ε

e − 1
exp

{
−

(N − 1)(1 − β)

2
+

d

ε

}
. (38)

Thus, τ1 ≤ δβ for all

N ≥
2df

e(1 − β)
ln

(
e

1 − β

)
+

2

1 − β
ln

(
e

(e − 1)δ

)
+ 1 (39)

Next, we bound τ2 as follows.

τ2 =
N∑

j=0

(
N

j

)
βN−j

(
2ej

df

)df

21−εj/2,

= 2

(
2e

df

)df N∑

j=0

(
N

j

)
jdf βN−j2−εj/2,

≤ 2

(
2e

df

)df

Ndf

N∑

j=0

(
N

j

)
βN−j2−εj/2,

≤ 2

(
2e

df

)df

Ndf (β + 2−ε/2)N , (40)
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Since β +2−ε/2 ≤ β +2−β/2 < 1, µ = 2( ε
2 +log(β +2−ε/2)) is well defined. Then an analysis similar

to the one given in [9] (see also [1] pg. 95 for details) shows that

τ2 ≤ 2

(
2e

df

)df

Ndf (2−(ε−µ)/2)N

Thus, τ2 ≤ (1 − δ)β for all

N ≥
4df

ε − µ
log

(
12

ε − µ

)
+

4

ε − µ
log

(
2

δ(1 − β)

)
(41)

The result follows from (36), (39), and (41).

The last result in this section is the robust analog of Lemma 4.

Lemma 8 Fix ε > 0. Let x̂ denote the optimal solution of the robust sampled problem (8). Then

QN
0 (H0

1,N : x̂ 6∈ X̄ε) ≤
(

eN
n

)n
e−(ε−β)(N−n).

Proof: The robust chance constrained problem (8) has constraints of the form

f(x, z) ≤ 0, ‖z − H0
i ‖ ≤ β, i = 1, . . . , N.

Suppose a constraint of the form f(x, z̄) ≤ 0 is a support constraint for the robust chance con-

strained problem (8). We will associate this support constraint with k = argmin
{
i : ‖z̄ − H0

i ‖ ≤ β
}
.

Let I ⊆ {1, . . . , N} with |I| ≤ n and let

HN
I = {(h1, . . . ,hN ) : all support constraints are associated with some i ∈ I} .

Then Theorem 3 implies HN = ∪{I⊆{1,...,N}:|I|≤n}H
N
I . Thus,

QN
0 (H1,N : x̂ 6∈ X̄ε)

=
∑

{I⊆{1,...,N}:|I|≤n}

QN
0 (H1,N ∈ HN

I : x̂I 6∈ X̄ε)

=
∑

{I⊆{1,...,N}:|I|=n}

(
Qn

0 (Hi∈I : x̂I 6∈ X̄ε)
∏

i6∈I

Q0(Hi : f(x̂I , z) ≤ 0, ∀‖z − Hi‖ ≤ β|AI)
)
,

where x̂I denotes the optimal solution of the robust sampled problem (5) with only the robust

constraints corresponding to the samples i ∈ I present, AI is the event AI = {Hi∈I : x̂I 6∈ X̄ε}

and each term in the sum can be written as the product because H0
1,N are IID samples. Lemma 1

implies that Q0(H : f(x̂I , z) ≤ 0, ∀‖z − H‖ ≤ β|AI) ≤ e−(ε−β). Thus,

QN
0 (H1,N : x̂ 6∈ Xε) ≤ e−(ε−β)(N−n)

∑

{I⊆{1,...,N}:|I|=n}

Qn
0 (Hi∈I : x̂I 6∈ X̄ε),

≤ e−(ε−β)(N−n)
( n∑

k=1

(
N

k

))
≤
(eN

n

)n
e−(ε−β)(N−n),

where the last inequality follows from the bound (13).

18



6 Tractability of the robust sampled problem

In Section 1 we introduced the robust sampled problem (8) as an approximation for the ambiguous

chance constrained problem (6) and in Section 5 we established bounds on the number of samples

N required to approximate the robust feasible set X̄ε and also on the number of samples required

to only ensure that the optimal solution x̂ of the robust problem (8) is feasible for (6). All along we

have implicitly assumed that the robust sampled problem (8) is efficiently solvable. In this section,

we characterize the functions f(·, ·), the probability metric ρ and the norm ‖ · ‖ on the parameter

space H for which the robust sampled problem (8) is tractable both in theory and in practice. The

results in this section are motivated by [7].

We restrict attention to the following two classes of constraint functions.

(a) Affine functions: X = Rn, H = Rn+1, and f(x, (h0,h)) = h0 + hTx.

(b) Second-order cone functions: x ∈ Rn, H =
{
h = (A,b,u, v) : A ∈ Rp×n,b ∈ Rp,u ∈ Rn, v ∈ R

}
,

and f(x,h) =
√

(Ax + b)T (Ax + b) − uTx − v.

The uncertainty set Q considered in this paper is given by Q = {Q : ρp(Q, Q0) ≤ β} where ρp

denotes the Prohorov metric. Since the Prohorov metric is defined in terms of the norm ‖ · ‖ on

the space H, we first select this norm. We restrict attention to norms that satisfy

‖u‖ = ‖ |u| ‖, (42)

where |u| denotes the vector obtained by taking the absolute value of each of the components.

For a given norm ‖ · ‖, the constant β defining the uncertainty set Q is set by the desired level of

confidence. Note that β can also be set in terms of any distance measure that is an upper bound

for the Prohorov metric. See Section 4 for details.

First we consider the case of affine constraint functions f(x,h) = h0 + hTx. Let ej , j =

1, . . . , n+1 denote the j-th basis vector in Rn+1. Define U(h) =
{
z : z = h+

∑n+1
i=1 wjej , ‖w‖ ≤ β

}
.

Then the robust sampled problem (8) is given by

min cTx

s.t. z0 + zTx ≤ 0, ∀z ∈ U(H0
i ), i = 1, . . . , N,

x ∈ X .

(43)

Results in [7] show that (43) can be reformulated as follows.

min cTx

s.t. f(x,H0
i ) ≤ −βyi, i = 1, . . . , N,

|xj | ≤ tij , j = 1, . . . , n, i = 1, . . . , N,

1 ≤ tin+1, i = 1, . . . , N,

‖ti‖∗ ≤ yi, i = 1, ..., N,

y ∈ RN , ti ∈ Rn+1, i = 1, . . . , N,

x ∈ X .

(44)
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where ‖s‖∗ = max{‖r‖≤1}{s
T r} denotes the dual norm of ‖·‖. For the L1 or L∞ norms (44) reduces

to a linear program; whereas when the norm ‖ · ‖ is an Lp-norm, p 6= {1,∞}, (44) is equivalent to

a second-order cone program.

Next, consider the same of the second-order cone constraints. Let ej ∈ R(p+1)(n+1) denote the

j-th standard basis vector in R(p+1)(n+1). For A = [a1, . . . ,an] ∈ Rp×n let

vec(A) =
[
aT

1 · · · aT
n

]T
∈ Rpn,

and, for h ∈ R(p+1)(n+1), define U(h) =
{
z : z = h +

∑(p+1)(n+1)
j=1 wjej , ‖w‖ ≤ β

}
. It is shown

in [7] that any feasible solution to the problem (45) below is also feasible for the robust sampled

problem (8).

min cTx

s.t. f(x,H0
i ) ≤ −βyi, i = 1, . . . , N,

gi
j(x) ≤ tij , j = 1, . . . , (p + 1)(n + 1), i = 1, . . . , N,

‖ti‖∗ ≤ yi, i = 1, . . . , N,

y ∈ RN , ti ∈ R(p+1)(n+1), i = 1, . . . , N,

x ∈ X ,

(45)

where

gi
j(x) =





|xl| j = p(l − 1) + k, k = 1, . . . , p, l = 1, . . . , n,

1 j = pn + k, k = 1, . . . , p

|xl| j = (p + 1)n + l, l = 1, . . . , n

1 j = (p + 1)(n + 1),

The problem (45) is a second-order cone program for all Lp norms.

7 Conclusion

In this paper we extend the sample complexity results known for chance constrained problems to

ambiguous chance constrained problems where the uncertainty set is given by a ball defined in terms

of the Prohorov metric. We approximate the ambiguous chance constrained problem by a robust

sampled problem where each constraint is a robust constraint centered at a sample drawn according

to the center of the uncertainty set defining the ambiguous chance constrained problem. The main

contribution of this paper is to show that the robust sampled problem is a good approximation for

the ambiguous chance constrained problem with high probability. Our extensions are based on the

Strassen-Dudley Representation Theorem that states that when the distributions of two random

variables are close in the Prohorov metric one can construct a coupling of the random variables

such that the samples are close with high probability. Coupling is just a construct needed to prove

the results; it is never used in computing the solution to the robust sampled problem.
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The results in this paper should be viewed as a first step towards solving ambiguous chance

constrained problems. Several issues still remain unresolved. We only consider uncertainty sets that

are norm balls defined in terms of the Prohorov metric. One could consider “tiling” a more general

uncertainty set by norm balls of a given radius and construct a robust sampled problem by drawing

samples according to the centers of the balls (a simplified version of this idea appears in [11]). Since

the constant ε that controls the violation probability in the ambiguous chance constrained problem

has to be greater that the radius β of the norm ball, such an approach is attractive even when the

uncertainty is a norm ball. However, it is not clear how to efficiently select the centers of the balls

to “tile” the uncertainty set.

In Section 4 we introduce several probability metrics and show that uncertainty set Q = {Q :

ρ(Q, Q0) ≤ δ} can be conservatively approximated by a uncertainty set Q̃ = {Q : ρp(Q, Q0) ≤ δ(β)}

defined in terms of the Prohorov metric. However, we have no way of measuring the “blow-up”

of the uncertainty set that occurs in changing the metrics. This issue can be resolved by either

establishing tight lower bounds on the Prohorov metric or by constructing Representation results

for the other metrics. Ideally one would like to get logarithmically separated upper and lower

bounds as in [32, 33].

Finally, there is the issue of proving worst-case lower bounds on the number of samples required

to learn the solution of an ambiguous chance constrained problem, i.e. a refinement of Lemma 3

that accounts for ambiguity in the measure.
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[44] J. Žáčková. On minimax solutions of stochastic linear programs. Čas. Pěst. Mat., pages
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