Skip to main content
Log in

Robust optimal feedback for terminal linear-quadratic control problems under disturbances

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider a linear dynamic system in the presence of an unknown but bounded perturbation and study how to control the system in order to get into a prescribed neighborhood of a zero at a given final moment. The quality of a control is estimated by the quadratic functional. We define optimal guaranteed program controls as controls that are allowed to be corrected at one intermediate time moment. We show that an infinite dimensional problem of constructing such controls is equivalent to a special bilevel problem of mathematical programming which can be solved explicitely. An easy implementable algorithm for solving the bilevel optimization problem is derived. Based on this algorithm we propose an algorithm of constructing a guaranteed feedback control with one correction moment. We describe the rules of computing feedback which can be implemented in real time mode. The results of illustrative tests are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bemporad, A., Borrelli, F., Morari, M.: Min-Max control of constrained uncertain discrete-time linear systems. IEEE Trans. Automat. Cont. 48, 1600–1606 (2003)

    Article  MathSciNet  Google Scholar 

  2. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht, 2002

  3. De Nicolao, G., Magni, L., Scattolini, R.: On the robustness of receding horizon control with terminal constraints. IEEE Trans. Automat. Cont. 41, 451–453 (1996)

    Article  MATH  Google Scholar 

  4. Gabasov, R., Kirillova, F., Kostina, E.: Closed state-feedback for optimization of uncertain control systems. P.1. Single contact. Automation and Remote Control 57, 1008–1015 (1996)

    Google Scholar 

  5. Gollmer, R., Guddat, J., Guerra, F., Nowack, D., Rückmann, J.-J.: Parth-following method in nonlinear optimization I: Penalty embedding. In: Guddat, J., et al. (eds.), Parametric Optimization and Related Topics III, Peter Lang Verlag, Frankfurt a. M., Bern, New York, 1993, pp. 163–214

  6. Kerrigan, E., Maciejowski, J.M.: Feedback min-max model predictive control using a single linear program: Robust stability and explicit solution. Int. J Robust Nonlinear Cont. 14, 395–413 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kothare, M.V., Balakrishnan, V., Morari M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32 (10), 1361–1379 (1996)

    Article  MathSciNet  Google Scholar 

  8. Krasovskii, N.N.: Theory of motion control. Nauka, Moscow, 1968

  9. Langson, W., Chryssochoos, I., Rakovic, S.V., Mayne, D.Q.: Robust model predictive control using tubes. Automatica 40, 125–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lau, M.K., Boyd, S., Kosut, R.L., Franklin, G.F.: Robust control design for ellipsoidal plant set. In: Proceedings of the 30th Conference on Decision and Control, England, 1991

  11. Lee, J.H., Yu, Z.: Worst-case formulation of model predictive control for systems with bounded parameters. Automatica 33, 763–781 (1997)

    Article  MATH  Google Scholar 

  12. Magni, L., De Nicolao, G., Scattolini, R., Allgöwer, F.: H receding horizon control for non-linear discrete-time system. In: Proceedings of the 15th IFAC World Congress, Spain, 2002

  13. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding-horizon control via inverse optimality. Syst. Cont. Lett. 32, 241–245 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matveev, A.S., Yakubovich V.A.: Nonconvex global optimization in optimal control theory. Itogi nauki i tekhniki, Seriya Sovremennaya matematika i ee prilozheniya 60, 128–175 (1998)

    MATH  Google Scholar 

  15. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mayne, D.Q., Scokaert, P.O.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Automat. Cont. 43 (8), 1136–1142 (1998)

    MathSciNet  Google Scholar 

  17. More, J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4 (3), 553–572 (1983)

    Article  MathSciNet  Google Scholar 

  18. Pontryagin, L.S., Boltyanskij, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Selected works. Vol. 4. The mathematical theory of optimal processes. In: R.V. Gamkrelidze (ed.), Classics of Soviet Mathematics. Gordon and Breach Science Publishers, New York, 1986

  19. Savkin, A., Skafidas, E., Evans, R.: Robust output feedback stabilizability via controller switching. Automatica 35, 69–74 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vanderberghe, L., Boyd, S., Nouralishahi, M.: Robust linear programming and optimal control, In: Proceedings of the 15th IFAC World Congress on Automatic Control, Spain, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kostina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyukova, O., Kostina, E. Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Math. Program. 107, 131–153 (2006). https://doi.org/10.1007/s10107-005-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-005-0682-4

Mathematics Subject classification (2000)

Keywords

Navigation