Skip to main content
Log in

Active-constraint variable ordering for faster feasibility of mixed integer linear programs

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

The selection of the branching variable can greatly affect the speed of the branch and bound solution of a mixed-integer or integer linear program. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We present a new approach that relies on estimating the impact of the candidate variables on the active constraints in the current LP relaxation. We apply this method to the problem of finding the first feasible solution as quickly as possible. Empirical experiments demonstrate a significant improvement compared to a state-of-the art commercial MIP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balas E., Martin C. (1980) Pivot and Complement – a Heuristic for 0–1 Programming. Manage. Sci. 26, 224–234

    MathSciNet  Google Scholar 

  2. Balas E., Martin, C. Pivot and Shift – a Heuristic for Mixed Integer Programming. GSIA, Carnegie Mellon University (1986)

  3. Balas E., Ceria S., Dawande M., Margot F., Pataki G. (2001) OCTANE: a New Heuristic for Pure 0–1 Programs. Oper. Res. 49, 207–225

    Article  MathSciNet  Google Scholar 

  4. Balas E., Schmieta S., Wallace C. (2004) Pivot and Shift – a Mixed Integer Programming Heuristic. Discrete Optim. 1, 3–12

    Article  MATH  MathSciNet  Google Scholar 

  5. Beale, E.M.L. Mathematical Programming in Practice. Pitmans, London (1968)

  6. Beale, E.M.L., Tomlin, J.A. Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In: Proceedings of the fifth international conference on operational research, pp. 447–454. Tavistock publication, London (1970)

  7. Benichou M., Gauthier J.M., Girodet P., Hentges G., Ribiere G., Vincent O. (1971) Experiments in mixed-integer linear programming. Math. Prog. 1, 76–94

    Article  MATH  MathSciNet  Google Scholar 

  8. Bixby R.E., Ceria S., McZeal C.M., Savelsbergh M.W.P. (1998) An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15

    Google Scholar 

  9. Dakin R.J. (1965) A tree search algorithm for mixed integer programming problems. Comput. J. 8, 250–255

    Article  MATH  MathSciNet  Google Scholar 

  10. Danna E., Rothberg E., Le Pape C. (2005) Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Prog. Ser. A 102, 71–90

    Article  MATH  MathSciNet  Google Scholar 

  11. Dolan E.D., Moré J. (2002) Benchmarking optimization software with performance profiles. Math. Prog. Ser. A 91, 201–213

    Article  MATH  Google Scholar 

  12. Eckstein J. (1994) Parallel branch-and-bound algorithms for general mixed integer programming on the CM-5. SIAM J. Optim. 4, 794–814

    Article  MATH  MathSciNet  Google Scholar 

  13. Fischetti M., Glover F., Lodi A. (2005) The feasibility pump. Math. Prog. Ser. A 104, 91–104

    Article  MATH  MathSciNet  Google Scholar 

  14. Forest J.J.H., Hirst J.P.H., Tomlin J.A. (1974) Practical solution of large scale mixed integer programming problems with UMPIRE. Manage. Sci. 20, 736–773

    Google Scholar 

  15. Gauthier J.M., Ribiere G. (1977) Experiments in mixed-integer linear programming. Math. Prog. 12, 26–47

    Article  MATH  MathSciNet  Google Scholar 

  16. Glover F. (1968) Surrogate constraints. Oper. Res. 16, 741–749

    MATH  MathSciNet  Google Scholar 

  17. Glover F. (2003) Tutorial on surrogate constraint approaches for optimization in graphs. J. Heuristics 9, 175–227

    Article  MATH  Google Scholar 

  18. Greenberg, H.J. Mathematical programming glossary. Online: http://glossary.computing.society.informs.org (2005)

  19. Guieu O., Chinneck J.W. (1999) Analyzing infeasible mixed-integer and integer linear programs. INFORMS J. Comput. 11, 63–77

    MATH  MathSciNet  Google Scholar 

  20. Hirst, J.P.H. Features required in Branch-and-Bound Algorithms for (0–1) mixed integer linear programming. unpublished manuscript (1969)

  21. ILOG Corporation.: Cplex 9.0 Callable Library Reference Manual (2003)

  22. ILOG Corporation.: Cplex 9.0 C++ API Reference Manual (2003)

  23. ILOG Corporation.: Cplex 9.0 User’s Manual (2003)

  24. Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P. (2000) Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23

    Article  MATH  MathSciNet  Google Scholar 

  25. Land A.H., Doig A.G. (1960) An automatic method for solving discrete programming problems. Econometrica 28, 497–520

    Article  MATH  MathSciNet  Google Scholar 

  26. Linderoth J.T., Savelsbergh M.W.P. (1999) A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187

    MATH  MathSciNet  Google Scholar 

  27. Lokketangen A., Glover F. (1997) Surrogate constraint analysis – new heuristics and learning schemes for satisfiability problems. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 35, 537–572

    MathSciNet  Google Scholar 

  28. Mitra G. (1973) Investigation of some branch-and-bound strategies for the solution of mixed integer linear programs. Math. Progr. 5, 155–170

    Article  Google Scholar 

  29. MIPLIB2003. Library of mixed-integer linear programming test models at http://miplib.zib.de/miplib2003.php (2005)

  30. Mittelman, H. Benchmark for Optimization Software web-site at http://plato.la.asu.edu/bench.html (2001)

  31. Padberg M.W., Rinaldi G. (1991) A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100

    Article  MATH  MathSciNet  Google Scholar 

  32. Small R.E. (1965) Mixed integer programming by a branch and bound technique. Proc. the 3rd IFIP Congress 2: 450–451

    MathSciNet  Google Scholar 

  33. Tomlin J.A. (1969) An improved branch-and-bound method for integer programming. Oper. Res. 19, 1070–1075

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chinneck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, J., Chinneck, J.W. Active-constraint variable ordering for faster feasibility of mixed integer linear programs. Math. Program. 110, 445–474 (2007). https://doi.org/10.1007/s10107-006-0009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0009-0

Keywords

Navigation