Skip to main content
Log in

Underlying paths in interior point methods for the monotone semidefinite linear complementarity problem

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

An interior point method defines a search direction at each interior point of the feasible region. The search directions at all interior points together form a direction field, which gives rise to a system of ordinary differential equations (ODEs). Given an initial point in the interior of the feasible region, the unique solution of the ODE system is a curve passing through the point, with tangents parallel to the search directions along the curve. We call such curves off-central paths. We study off-central paths for the monotone semidefinite linear complementarity problem (SDLCP). We show that each off-central path is a well-defined analytic curve with parameter μ ranging over (0, ∞) and any accumulation point of the off-central path is a solution to SDLCP. Through a simple example we show that the off-central paths are not analytic as a function of \(\sqrt{\mu}\) and have first derivatives which are unbounded as a function of μ at μ  =  0 in general. On the other hand, for the same example, we can find a subset of off-central paths which are analytic at μ  =  0. These “nice” paths are characterized by some algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler I., Monteiro R.D.C. (1991) Limiting behavior of the affine scaling continuous trajectories for linear programming problems. Math. Program. 50(1): Series A, 29–51

    Google Scholar 

  2. Amann, H. Ordinary Differential Equations : An Introduction to Nonlinear Analysis, (translated from German by Gerhard Metzen) de Gruyter Studies in Mathematics vol 13 (1990)

  3. Bayer, D.A., Lagarias, J.C. The nonlinear geometry of linear programming, I, II, III. Trans. Am. Math. Soc. 314, 499–526, 527–581 (1989) and 320, 193–225 (1990)

    Google Scholar 

  4. Birkhoff, G., Rota, G.-C. Ordinary Differential Equations, 4th edn (1989)

  5. Chua C.B. (2006) A new notion of weighted centers for semidefinite programming. SIAM J. Optimi. 16(4): 1092–1109

    Article  MATH  MathSciNet  Google Scholar 

  6. Güler, O. Limiting behavior of weighted central paths in linear programming. Math. Program. 65(3),Series A, 347–363 (1994)

    Google Scholar 

  7. Halická M. (2002) Analyticity of the central path at the boundary point in semidefinite programming. European J. Opera. Res. 143, 311–324

    Article  MATH  Google Scholar 

  8. Ince, E.L. Ordinary Differential Equations. Dover Publications (1956)

  9. Kojima, M., Shida, M., Shindoh, S. Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Math. Program. 80(72), Series A, 129–160 (1998)

  10. Kojima M., Shindoh S., Hara S. (1997) Interior-point methods for the monotone semidefinite linear complementarity problems. SIAM J. Optimi. 7, 86–125

    Article  MATH  MathSciNet  Google Scholar 

  11. Lu Z., Monteiro R.D.C. (2004) Error bounds and limiting behavior of weighted paths associated with the SDP map X 1/2 SX 1/2. SIAM J. Optimi. 15(2): 348–374

    Article  MATH  MathSciNet  Google Scholar 

  12. Lu, Z., Monteiro, R.D.C. Limiting behavior of the Alizadeh-Haeberly-Overton weighted paths in semidefinite programming, Preprint, July 24, 2003

  13. Megiddo N., Mizuno S., Tsuchiya T. (1998) A modified layered-step interior-point algorithm for linear programming. Math. Program. 82, 339–355

    MathSciNet  Google Scholar 

  14. Mehrotra S. (1993) Quadratic convergence in a primal-dual method. Math. Opera. Res. 18, 741–751

    MATH  MathSciNet  Google Scholar 

  15. Monteiro R.D.C. (1997) Primal-dual path following algorithms for semidefinite programming. SIAM J. Optimi. 7, 663–678

    Article  MATH  MathSciNet  Google Scholar 

  16. Monteiro R.D.C., Pang J.-S. (1996) Properties of an interior-point mapping for mixed complementarity problems. Math. Opera. Res. 21(3): 629–654

    MATH  MathSciNet  Google Scholar 

  17. Monteiro R.D.C., Pang J.-S. (1998) On two interior-point mappings for nonlinear semidefinite complementarity problems. Math. Opera. Res. 23(1): 39–60

    MATH  MathSciNet  Google Scholar 

  18. Monteiro R.D.C., Tsuchiya T. (1996) Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Math. Oper. Rese. 21(4): 793–814

    MATH  MathSciNet  Google Scholar 

  19. Monteiro R.D.C., Tsuchiya T. (2003) A variant of the Vavasis-Ye layered-step interior-point algorithm for linear programming. SIAM J. Optimi. 23(4): 1054–1079

    Article  MathSciNet  Google Scholar 

  20. Monteiro R.D.C., Zanjácomo P.R. (2000) General interior-point maps and existence of weighted paths for nonlinear semidefinite complementarity problems. Math. Oper. Res. 25(3): 381–399

    Article  MATH  MathSciNet  Google Scholar 

  21. Potra F.A., Sheng R. (1998) Superlinear convergence of interior-point algorithms for semidefinite programming. J. Optim. Theory Appl. 99(1): 103–119

    Article  MATH  MathSciNet  Google Scholar 

  22. Preiß M., Stoer, J. Analysis of infeasible-interior-point paths arising with semidefinite linear complementarity problems. Math. Program. 99(3), Series A, 499–520 (2004)

  23. Sim, C.-K. Underlying Paths and Local Convergence Behaviour of Path-following Interior Point Algorithm for SDLCP and SOCP. Ph.D. Thesis, National University of Singapore, (2004)

  24. Sonnevend G. (1985). An analytic center for polyhedrons and new classes for linear programming. In: Prekopa A. (eds). System Modelling and Optimization, Lecture Notes in Control and Information Sciences, vol. 84, Springer, Berlin Heidelberg New York, pp. 866–876

    Google Scholar 

  25. Sonnevend G., Stoer J., Zhao G. (1989) On the complexity of following the central path of linear programs by linear extrapolation. Methods Opera. Res. 62, 19–31

    MathSciNet  Google Scholar 

  26. Sonnevend G., Stoer J., Zhao G. (1991) On the complexity of following the central path of linear programs by linear extrapolation II. Math. Program. 52, 527–553

    Article  MATH  MathSciNet  Google Scholar 

  27. Stoer J., Wechs M. (1999) On the analyticity properties of infeasible-interior-point paths for monotone linear complementarity problems. Nume. Mathe. 81(4): 631–645

    Article  MATH  MathSciNet  Google Scholar 

  28. Stoer J., Wechs M., Mizuno S. (1998) High order infeasible-interior-point methods for solving sufficient linear complementarity problems. Mathe. Opera. Res. 23(4): 832–862

    MATH  MathSciNet  Google Scholar 

  29. Sturm J.F. (1999) Superlinear convergence of an algorithm for monotone linear complementarity problems, when no strictly complementary solution exists. Math. Oper. Res. 24(1): 72–94

    Article  MATH  MathSciNet  Google Scholar 

  30. Todd M.J., Toh K.C., Tütüncü R.H. (1998) On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optimi. 8(3): 769–796

    Article  MATH  Google Scholar 

  31. Tütüncü R.H. (2003) Asymptotic behavior of continuous trajectories for primal-dual potential-reduction methods. SIAM J. Optimi. 14(2): 402–414

    Article  MATH  Google Scholar 

  32. Vavasis S.A., Ye Y. (1996) A primal-dual interior point method whose running time depends only on the contraint matrix. Math. Program. 74(1): 79–120

    Article  MathSciNet  Google Scholar 

  33. Ye Y., Anstreicher K. (1993) On quadratic and \(o(\sqrt{n}l)\) convergence of a predictor-corrector algorithm for LCP. Math. Program. 62, 537–551

    Article  MathSciNet  Google Scholar 

  34. Ye Y., Güler O., Tapia R.A., Zhang Y. (1993) A quadratically convergence \(o(\sqrt{n}l)\)-iteration algorithm for linear programming. Math. Program. 59, 151–162

    Article  Google Scholar 

  35. Zhang Y. (1998) On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optimi. 8(2): 365–386

    Article  MATH  Google Scholar 

  36. Zhao G. (1996) On the relationship between the curvature integral and the complexity of path-following methods in linear programming. SIAM J. Optimi. 6(1): 57–73

    Article  MATH  Google Scholar 

  37. Zhao G., Stoer J. (1993) Estimating the complexity of a class of path-following methods for solving linear programs by curvature integrals. Appl. Math. Optim. 27(1): 85–103

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhao G., Sun J. (1999) On the rate of local convergence of high-order-infeasible-path-following algorithms for P *-linear complementarity problems. Computa. Optim. Appl. 14, 293–307

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhao G., Zhu J. (1996) The curvature integral and the complexity of linear complementarity problems. Math. Program. 70, 107–122

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongyun Zhao.

Additional information

This research was done during the author’s PhD study at the Department of Mathematics, NUS and as a Research Engineer at the NUS Business School.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, CK., Zhao, G. Underlying paths in interior point methods for the monotone semidefinite linear complementarity problem. Math. Program. 110, 475–499 (2007). https://doi.org/10.1007/s10107-006-0010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0010-7

Keywords

Navigation