Skip to main content
Log in

Semidefinite programming relaxations for graph coloring and maximal clique problems

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The semidefinite programming formulation of the Lovász theta number does not only give one of the best polynomial simultaneous bounds on the chromatic number χ(G) or the clique number ω(G) of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This semidefinite programming formulation can be tightened toward either χ(G) or ω(G) by adding several types of cutting planes. We explore several such strengthenings, and show that some of them can be computed with the same effort as the theta number. We also investigate computational simplifications for graphs with rich automorphism groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benson, S., Ye, Y.: Approximating maximum stable set and minimum graph coloring problems with the positive semidefinite relaxation. In: Applications and Algorithms of Complementarity, pp. 1–18. Kluwer, Dordrecht (2000)

  2. Benson S., Ye Y., Zhang X. (2000): Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10, 443–461

    Article  MathSciNet  MATH  Google Scholar 

  3. Bomze I.M., de Klerk E. (2002): Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Global Optim. 24, 163–185

    Article  MathSciNet  MATH  Google Scholar 

  4. Burer S., Monteiro R.D.C. (2003): A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95, 329–357

    Article  MathSciNet  MATH  Google Scholar 

  5. Burer S., Vandenbussche D. (2006): Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16, 726–750

    Article  MathSciNet  MATH  Google Scholar 

  6. Busygin, S., Pasechnik, D.V.: On \(\bar\chi(G)-\alpha(G)>0\) gap recognition and α(G)-upper bounds. Electronic Colloquium on Computational Complexity, Report No. 52 pp. 1–5 (2003)

  7. Charikar, M.: On semidefinite programming relaxations for graph coloring and vertex cover. In: Proceedings of the 41th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 616–620 (2002)

  8. Dukanovic, I.: Semidefinite programming applied to graph coloring problem. PhD Thesis, University of Klagenfurt, Austria (2006) (forthcoming)

  9. Dukanovic, I., Rendl, F.: A semidefinite programming based heuristic for graph coloring. Discrete Appl. Math. (to appear)

  10. Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the clique and the chromatic number of a graph. Preprint (2006)

  11. Gatermann K., Parrilo P.A. (2004): Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192, 95–128

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel M., Lovász L., Schrijver A. (1988): Geometric Algorithms and Combinatorial Optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  13. Gruber G., Rendl F. (2003): Computational experience with stable set relaxations. SIAM J. Optim. 13, 1014–1028

    Article  MathSciNet  MATH  Google Scholar 

  14. Gvozdenović, N., Laurent, M.: Approximating the chromatic number of a graph by semidefinite programming. Working paper (2005)

  15. Helmberg C., Rendl F. (2000): A spectral bundle method for semidefinite programming. SIAM J. Optim. 10, 673–696

    Article  MathSciNet  MATH  Google Scholar 

  16. Hertz A., Werra D.D. (1987): Using tabu search for graph coloring. Computing 39, 345–351

    Article  MathSciNet  MATH  Google Scholar 

  17. Karger D., Motwani R., Sudan M. (1998): Approximate graph coloring by semidefinite programming. J. Assoc. Comput. Mach. 45, 246–265

    MathSciNet  MATH  Google Scholar 

  18. de Klerk, E., Pasechnik, D.V., Schrijver, A.: Reduction of symmetric semidefinite programs using the regular *-representation. Math. Program. (2005)(to appear)

  19. de Klerk E., Pasechnik D.V., Warners J.P. (2004): On approximate graph colouring and max-k-cut algorithms based on the θ-function. J. Combinat. Optim. 8, 267–294

    Article  MATH  Google Scholar 

  20. Knuth D.E. (1994): The sandwich theorem. Elect. J. Combinat. 1, 1–48

    Google Scholar 

  21. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: R.W.e. K. Aardal G. Nemhauser (ed.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)

  22. Lovász L. (1979): On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7

    Article  MATH  Google Scholar 

  23. Lovász L., Schrijver A. (1991): Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190

    Article  MathSciNet  MATH  Google Scholar 

  24. Malick, J., Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Working paper (2006)

  25. Margot F. (2001): Pruning by isomorphism in branch-and-cut. Lect. Notes Comput. Sci. 2081, 304–317

    Article  MathSciNet  Google Scholar 

  26. McEliece J.R., Rodemich E., Rumsey H. (1978): The Lovász bound and some generalizations. J. Combinat. Syst. Sci. 3, 134–152

    MathSciNet  MATH  Google Scholar 

  27. McKay B.D. (1981): Practical graph isomorphism. Congressus Numer. 30, 45–87

    MathSciNet  Google Scholar 

  28. Meurdesoif P. (2005): Strengthening the Lovász \(\theta(\overline{G})\) bound for graph coloring. Math. Program. 102, 577–588

    Article  MathSciNet  MATH  Google Scholar 

  29. Murty K.G., Kabadi S.N. (1987): Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129

    MathSciNet  MATH  Google Scholar 

  30. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD Thesis, California Institute of Technology (2000)

  31. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: S. Basu, L.G.V. (eds.) Algorithmic and quantitative real algebraic geometry. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp. 83–99. AMS New york (2003)

  32. Schrijver A. (1979): A comparison of the Delsarte and Lovász bounds. IEEE Trans. Info. Theory IT-25, 425–429

    Article  MathSciNet  MATH  Google Scholar 

  33. Schrijver A. (2004): New code upper bounds from the Terwilliger algebra. IEEE Trans. Infor. Theory 51, 2859–2866

    Article  MathSciNet  Google Scholar 

  34. Szegedy, M.: A note on the theta number of Lovász and the generalized Delsarte bound. In: 35th Annual Symposium on Foundations of Computer Science, pp. 36–39 (1994)

  35. Toh K., Kojima M. (2002): Solving some large scale semidefinite programs via the conjugate residual method. SIAM J. Optim. 12, 669–691

    Article  MathSciNet  MATH  Google Scholar 

  36. Vesel A., Žerovnik J. (2002): Improved lower bound on the Shannon capacity of C7. Inf. Process. Lett. 81 (5): 277–282

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Rendl.

Additional information

Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukanovic, I., Rendl, F. Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program. 109, 345–365 (2007). https://doi.org/10.1007/s10107-006-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0026-z

Keywords

Navigation