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1 Introduction

In recent years, interior-point methods for solving linearsemidefinite programs
(SDPs) have received a lot of attention, and as a result, these methods are now
very well developed; see, e.g., [36,38], the papers in [41],and the references given
there. At each iteration of an interior-point method, the complementarity condi-
tion is relaxed, symmetrized, and linearized. Various symmetrization operators are
known. The choice of the symmetrization operator and of the relaxation parameter
determine the step length at each iteration, and thus the efficiency of the overall
method. The computation of the search direction is often carried out by forming a
Schur complement matrix. For the HKM search direction [16,19,22] and the NT
search direction [24,25], this matrix is positive definite,and this is the essential
property that guarantees a descent property of the search step. On the other hand,
for the AHO search direction [2], the Schur complement matrix is not symmetric.

In this paper, we are concerned with the solution of nonlinear semidefinite
programs (NLSDPs). We consider an approach that separates the linearization
and the symmetrization in a natural way, namely a generalization of the sequen-
tial quadratic programming (SQP) method for standard nonlinear programs. Such
a generalization has already been mentioned by Robinson [31] within the more
general framework of nonlinear programs over convex cones.This framework
includes NLSDPs as a special case. While Robinson did not discuss implemen-
tational issues of such a generalized SQP approach, the recent progress in the
solution of linear SDPs makes this approach especially interesting for the solution
of NLSDPs.

We first present a derivation of a generalized SQP method, namely the se-
quential semidefinite programming (SSP) method, for solving NLSDPs. In order
to analyze the convergence of the SSP method, we present a sensitivity result for
certain local optimal solutions of general, possibly nonconvex, quadratic semidef-
inite programs. We then use this result to derive a self-contained proof of local
quadratic convergence of the SSP method under the assumptions that the optimal
solution is locally unique, strictly complementary, and satisfies a second-order
sufficient condition. Our analysis avoids the consideration of the symmetrization
operator, because we assume that the linear or quadratic SDPsubproblems are
solved to optimality by using any of the common symmetrization techniques.

One of the first numerical approaches for solving a class of NLSDPs was given
in [27,28]. Other recent approaches for solving NLSDPs are the program pack-
age LOQO [39] based on a primal-dual method; see also [40]. Another promising
approach for solving large-scale SDPs is the modified-barrier method proposed
in [18]. This modified-barrier approach does not require thebarrier parameter to
converge to zero, and may thus overcome some of the problems related to ill-
conditioning in traditional interior-point methods. Further approaches to solving
NLSDPs have been presented in [11,12,37]. In [11], the augmented Lagrangian
method is applied to NLSDPs, while the approach proposed in [12] is based on
an SQP method generalized to NLSDPs. The paper [12] also contains a proof of
local quadratic convergence. However, in contrast to this paper, the algorithm [12]
is not derived from a comparison with interior-point algorithms, and the proof of
convergence does not use any differentiability propertiesof the optimal solutions.
In [10], Correa and Ramı́rez present a proof of global convergence of a modifi-
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cation of the method proposed in [12]. The modification employs certain merit
functions to control the step lengths of the SQP algorithm.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some notation. In Section 3, we describe a class of nonlinear semidefinite
programs that arise in passive reduced-order modeling. In Section 4, we recall
known results for linear SDPs in a form that can be easily transferred to NLSDPs.
In Section 5, we discuss primal-dual systems for NLSDPs, andin Section 6, the
SSP method is introduced as a generalized SQP method. In Section 7, we present
sensitivity results, first for a certain class of quadratic SDPs, and then for general
NLSDPs. Based on these sensitivity results, in Section 8, wegive a self-contained
proof of local quadratic convergence of the SSP method. In Section 9, we present
results of some numerical experiments. Finally, in Section10, we make some con-
cluding remarks.

2 Notation

Throughout this article, all vectors and matrices are assumed to have real entries.
As usual,Y T =

[

yji

]

denotes the transpose of the matrixY =
[

yij

]

. The vector
norm‖x‖ :=

√
xT x is always the Euclidean norm and‖Y ‖ := max‖x‖=1 ‖Y x‖ is

the corresponding matrix norm. For vectorsx ∈ Rn, x ≥ 0 means that all entries
of x are nonnegative, andDiag(x) denotes then×n diagonal matrix the diagonal
entries of which are the entries ofx. Then×n identity matrix is denoted byIn.

The trace inner product on the space of realn×m matrices is given by

〈Z,Y 〉 := Z •Y := trace(ZT Y ) =

n
∑

i=1

m
∑

j=1

zijyij

for any pairY =
[

yij

]

andZ =
[

zij

]

of n×m matrices. The space of real sym-
metricm×m matrices is denoted bySm. The notationY � 0 (Y ≻ 0) is used to
indicate thatY ∈ Sm is symmetric positive semidefinite (positive definite).

Semidefiniteness constraints are expressed by means of matrix-valued func-
tions from Rn to Sm. We use the symbolA : Rn → Sm if such a function is
linear, and the symbolB : Rn →Sm if such a function isnonlinear.

Note that any linear functionA : Rn →Sm can be expressed in the form

A(x) =

n
∑

i=1

xiA
(i) for all x ∈ R

n, (1)

with symmetric matricesA(i) ∈Sm, i = 1,2, . . . ,n. Based on the representation (1)
we introduce the norm

‖A‖ :=

( n
∑

i=1

∥

∥A(i)
∥

∥

2
)

1

2

(2)

of A. The adjoint operatorA∗ : Sm → Rn with respect to the trace inner product
is defined by

〈A(x),Y 〉 = 〈x,A∗(Y )〉 = xTA∗(Y ) for all x ∈ R
n and Y ∈ Sm.
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It turns out that

A∗(Y ) =







A(1) •Y
...

A(n) •Y






for all Y ∈ Sm. (3)

We assume that nonlinear functionsB : Rn →Sm are at leastC2-differentiable.
We denote by

B(i)(x) :=
∂

∂xi

B(x) and B(i,j)(x) :=
∂2

∂xi∂xj

B(x), i, j = 1,2, . . . ,n,

the first and second partial derivatives ofB, respectively. For eachx ∈ R
n, the

derivativeDxB atx induces a linear functionDxB(x) : Rn →Sm, which is given
by

DxB(x)[∆x] :=
n

∑

i=1

(∆x)iB
(i)(x) ∈ Sm for all ∆x ∈ R

n.

In particular,

B(x+∆x) ≈ B(x)+DxB(x)[∆x], ∆x ∈ R
n,

is the linearization ofB at the pointx. For any linear functionA : Rn →Sm, we
have

DxA(x)[∆x] = A(∆x) for all x, ∆x ∈ R
n. (4)

We always use the expression on the right-hand side of (4) to describe derivatives
of linear functions.

We remark that for any fixed matrixY ∈ Sm, the mapx 7→ B(x) • Y is a
scalar-valued function ofx ∈ Rn. Its gradient atx is given by

∇x (B(x)•Y ) =
(

Dx (B(x)•Y )
)T

=







B(1)(x)•Y
...

B(n)(x)•Y






∈ R

n (5)

and its Hessian by

∇2
x (B(x)•Y ) =







B(1,1)(x)•Y · · · B(1,n)(x)•Y
...

...
B(n,1)(x)•Y · · · B(n,n)(x)•Y






∈ Sn.

In particular, for any linear functionA : Rn →Sm, in view of (1), (3), and (5), we
have

∇x (A(x)•Y ) = A∗(Y ). (6)
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3 An application in passive reduced-order modeling

We remark that applications of linear SDPs include relaxations of combinatorial
optimization problems and problems related to Lyapunov functions or the pos-
itive real lemma in control theory; we refer the reader to [1,3,8,14,36,38] and
the references given there. In this section, we describe an application in passive
reduced-order modeling that leads to a class of NLSDPs.

Roughly speaking, a system is called passive if it does not generate energy. For
the special case of time-invariant linear dynamical systems, passivity is equivalent
to positive realness of the frequency-domain transfer function associated with the
system. More precisely, considertransfer functionsof the form

Zn(s) = BT
2

(

G+ sC
)−1

B1, s ∈ C, (7)

whereG, C ∈ Rn×n andB1, B2 ∈ Rn×m are given data matrices. The integern
is thestate-space dimensionof the time-invariant linear dynamical system, andm
is the number of inputs and outputs of the system. In (7), the matrix pencilG+sC
is assumed to beregular, i.e., the matrixG+sC is singular for only finitely many
values ofs ∈ C. Note thatZn is anm×m-matrix-valued rational function of the
complex variables ∈ C.

In reduced-order modeling, one is given a large-scale time-invariant linear dy-
namical system of state-space dimensionN , and the problem is to construct a
‘good’ approximation of that system of state-space dimension n ≪ N ; see, e.g.,
[13] and the references given there. If the large-scale system is passive, then for
certain applications, it is crucial that the reduced-ordermodel of state-space di-
mensionn preserves the passivity of the original system. Unfortunately, some of
the most efficient reduced-order modeling techniques do notpreserve passivity.
However, the reduced-order models are often ‘almost’ passive, and passivity of
the models can be enforced by perturbing the data matrices ofthe models. Next,
we describe how the problem of constructing such perturbations leads to a class
of NLSDPs.

An m×m-matrix-valued rational functionZ is calledpositive realif the fol-
lowing three conditions are satisfied:

(i) Z is analytic inC+ := {s ∈ C | Re(s) > 0};
(ii) Z(s) = Z(s) for all s ∈ C;

(iii) Z(s)+
(

Z(s)
)T � 0 for all s ∈ C+.

For functionsZn of the form (7) positive realness (and thus passivity of the
system associated withZn) can be characterized via linear SDPs; see, e.g., [3,14]
and the references given there. More precisely, if the linear SDP

PT G+GT P � 0,

PT C = CT P � 0,

PT B1 = B2,

(8)

has a solutionP ∈ Rn×n, then the transfer function (7),Zn, is positive real. Con-
versely, under certain additional assumptions (see [14]),positive realness ofZn

implies the solvability of the linear SDP (8).
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Now assume thatZn in (7) is the transfer function of a non-passive reduced-
oder model of a passive large-scale system. Our goal is to perturb some of the
data matrices in (7) so that the perturbed transfer functionis positive real. For the
special casem = 1, such an approach is discussed in [5]. In this case, there is a
simple eigenvalue-based characterization [4] of positiverealness. However, this
characterization cannot be extended to the general casem ≥ 1. Another special
case, which leads to linear SDPs, is described in [9].

In the general casem ≥ 1, we employ perturbationsXG andXC of the matri-
cesG andC in (7). The resulting perturbed transfer function is then ofthe form

Z̃n(s) = BT
2

(

G+XG + s(C +XC)
)−1

B1, (9)

and the problem is to construct the perturbationsXG andXC such thatZ̃n is pos-
itive real. Applying the characterization (8) of positive realness to (9), we obtain
the following nonconvex NLSDP:

PT (G+XG)+ (G+XG)T P � 0,

PT (C +XC) = (C +XC)T P � 0,

PT B1 = B2.

(10)

Here, the unknowns are the matricesP, XG, XC ∈ Rn×n. If (10) has a solution
P, XG, XC , then choosing the matricesXG andXC as the perturbations in (9)
guarantees passivity of the reduced-order model given by the transfer function
Z̃n.

4 Linear semidefinite programs

In this section, we briefly review the case of linear semidefinite programs.
Given a linear functionA : Rn →Sm, a vectorb ∈ Rn, and a matrixC ∈ Sm,

a pair of primal and dual linear semidefinite programs is as follows:

maximize C •Y subject to Y ∈ Sm, Y � 0,

A∗(Y )+ b = 0,
(11)

and

minimize bT x subject to x ∈ R
n,

A(x)+C � 0.
(12)

We remark that this formulation is a slight variation of the standard pair of primal-
dual programs. We chose the above version in order to facilitate the generalization
of problems of the form (12) to nonlinear semidefinite programs in standard form.

If there exists a matrixY ≻ 0 that is feasible for (11), then we callY strictly
feasible for (11) and say that (11) satisfies Slater’s condition. Likewise, if there
exists a vectorx such thatA(x)+ C ≺ 0, then we call (12) strictly feasible and
say that (12) satisfies Slater’s condition.

The following optimality conditions for linear semidefinite programs are well
known; see, e.g., [33]. If problem (11) or (12) satisfies Slater’s condition, then
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the optimal values of (11) and (12) coincide. Furthermore, if in addition both
problems are feasible, then optimal solutionsY opt and xopt of both problems
exist andY := Y opt andx := xopt satisfy the complementarity condition

Y S = 0, where S := −C−A(x). (13)

Conversely, ifY and x are feasible points for (11) and (12), respectively, and
satisfy the complementarity condition (13), thenY opt := Y is an optimal solution
of (11) andxopt := x is an optimal solution of (12).

These optimality conditions can be summarized as follows. If problem (12)
satisfies Slater’s condition, then for a pointx ∈ Rn to be an optimal solution of
(12) it is necessary and sufficient that there exist matricesY � 0 andS � 0 such
that

A(x)+C +S = 0,

A∗(Y )+ b = 0,

Y S = 0.

(14)

Note that, in view of (6), the second equation in (14) can alsobe written in the
form

∇x

(

(A(x)+C)•Y
)

+ b = A∗(Y )+ b = 0. (15)

Furthermore, the last equation in (14) is equivalent to its symmetric form,Y S +
SY = 0; see, e.g., [2]. In the case of strict complementarity, the derivatives of
Y S = 0 andY S +SY = 0 are also equivalent. For later use, we state these facts
in the following lemma.

Lemma 1 LetY, S ∈ Sm.

a) If Y � 0 or S � 0, then

Y S = 0 ⇐⇒ Y S +SY = 0. (16)

b) If Y andS are strictly complementary, i.e.,Y, S � 0, Y S = 0, andY +S ≻ 0,
then for anyẎ , Ṡ ∈ Sm,

Y Ṡ + Ẏ S = 0 ⇐⇒ Y Ṡ + Ẏ S + ṠY +SẎ = 0. (17)

Moreover,Y, S have representations of the form

Y = U

[

Y1 0
0 0

]

UT , S = U

[

0 0
0 S2

]

UT , (18)

whereU is anm×m orthogonal matrix,Y1 ≻ 0 is ak×k diagonal matrix, and
S2 ≻ 0 is an(m−k)× (m−k) diagonal matrix, and any matriceṡY , Ṡ ∈ Sm

satisfying(17) are of the form

Ẏ = U

[

Ẏ1 Ẏ3

Ẏ T
3 0

]

UT , Ṡ = U

[

0 Ṡ3

ṠT
3 Ṡ2

]

UT , where Y1Ṡ3 + Ẏ3S2 = 0.

(19)



8 R. W. Freund et al.

Proof The equivalence (16) is well known; see, e.g., [2, Page 749].
We now turn to the proof of part b). The strict complementarity of Y andS

readily implies thatY andS have representations of the form (18); see, e.g., [20,
Page 62]. Then, any matricesẎ , Ṡ ∈ Sm can be written in the form

Ẏ = U

[

Ẏ1 Ẏ3

Ẏ T
3 Ẏ2

]

UT , Ṡ = U

[

Ṡ1 Ṡ3

ṠT
3 Ṡ2

]

UT , (20)

whereU is the matrix from (18) and the block sizes in (20) are the sameas in (18).
Using (18), it follows that the matrices (20) satisfy the equation on the left-

hand side of (17) if, and only if,

Y1Ṡ1 = 0, Ẏ2S2 = 0, Y1Ṡ3 + Ẏ3S2 = 0.

SinceY1 andS2 are in particular nonsingular, these relations are equivalent to

Ṡ1 = 0, Ẏ2 = 0, Y1Ṡ3 + Ẏ3S2 = 0. (21)

Similarly, using (18), it follows that the matrices (20) satisfy the equation on the
right-hand side of (17) if, and only if,

Y1Ṡ1 + Ṡ1Y1 = 0, Ẏ2S2 +S2Ẏ2 = 0, Y1Ṡ3 + Ẏ3S2 = 0.

SinceY1 ≻ 0 andS2 ≻ 0, these relations are also equivalent to (21). Thus, we have
established the equivalence of the two equations in (17). Furthermore, in view
of (20) and (21), any solutions of (17) are indeed of the form (19), and the proof
is complete. ⊓⊔

5 Nonlinear semidefinite programs

In this section, we consider nonlinear semidefinite programs, which are extensions
of the dual linear semidefinite programs (12).

Given a vectorb∈Rn and a matrix-valued functionB : Rn →Sm, we consider
problems of the following form:

minimize bT x subject to x ∈ R
n,

B(x) � 0.
(22)

Here, the functionB is nonlinear in general, and thus (22) represents a class of
nonlinear semidefinite programs. We assume that the function B is at leastC2-
differentiable.

For simplicity of presentation, we have chosen a simple formof problem (22).
We stress that problem (22) may also include additional nonlinear equality and
inequality constraints. The corresponding modifications are detailed at the end of
this paper. Furthermore, the choice of the linear objectivefunction bT x in (22)
was made only to simplify notation. A nonlinear objective function can always
be transformed into a linear one by adding one artificial variable and one more
constraint. In particular, all statements about (22) in this paper can be modified so
that they apply to additional nonlinear equality and inequality constraints and to
nonlinear objective functions.
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Note that the class (22) reduces to linear semidefinite programs of the form
(12) if B is an affine function.

The LagrangianL : Rn ×Sm → R of (22) is defined as follows:

L(x,Y ) := bT x+B(x)•Y. (23)

Its gradient with respect tox is given by

g(x,Y ) := ∇xL(x,Y ) = b+∇x (B(x)•Y ) (24)

and its Hessian by

H(x,Y ) := ∇2
xL(x,Y ) = ∇2

x (B(x)•Y ) . (25)

If the problem (22) is convex and satisfies Slater’s condition [21], then for each
optimal solutionx of (22) there exists anm×m matrix Y � 0 such that the pair
(x,Y ) is a saddle point of the Lagrangian (23),L.

More generally, for nonconvex problems (22), letx ∈ Rn be a feasible point
of (22), and assume that the Robinson or Mangasarian-Fromovitz constraint qual-
ification [21,30,31] is satisfied atx, i.e., there exists a vector∆x 6= 0 such that
B(x)+DxB(x)[∆x] ≺ 0. Then, ifx is a local minimizer of (22), the first-order
optimality condition is satisfied, i.e., there exist matricesY, S ∈ Sm such that

B(x)+S = 0,

g(x,Y ) = 0,

Y S = 0,

Y, S � 0.

(26)

The system (26) is a straightforward generalization of the optimality conditions
(14) and (15), with the affine functionA(x)+C in (15) replaced by the nonlinear
functionB(x).

Primal-dual interior-point methods for solving (22) roughly proceed as fol-
lows. For some sequence of duality parametersµk > 0, µk → 0, the solutions of
the perturbed primal-dual system,

B(x)+S = 0,

g(x,Y ) = 0,

Y S = µkIm,

Y, S ≻ 0,

(27)

are approximated by some variant of Newton’s method. Since,in general, New-
ton’s method does not preserve inequalities, the parameters µk > 0 are used to
maintain strict feasibility, i.e.,Y, S ≻ 0 for all iterates.

The solutions of (27) coincide with the solutions of the standard logarithmic-
barrier problems for (22). Moreover, the logarithmic-barrier approach for solving
(22) can be interpreted as a certain choice of the ‘symmetrization operator’ for
the equation,Y S = µkIm, in the third row of (27); see Section 6 below. With
this choice, the barrier function yields a very natural criterion for the step-size
control in trust-region algorithms. The authors have implemented various versions
of predictor-corrector trust-region barrier methods for solving (22). For a number
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of examples, the running times of the resulting algorithms were comparable to
the behavior of interior-point methods for convex programs. However, the authors
also encountered several instances in which the number of iterations for these
methods was very high compared to the typical number of iterations needed for
solving linear SDPs. For such negative examples it may be more efficient to solve
a sequence of linear SDPs in order to obtain an approximate solution of (22). This
observation motivated the SSP method described in the next section.

6 An SSP method for nonlinear semidefinite programs

In this section, we introduce the sequential semidefinite programming (SSP) meth-
od, which is a generalization of the SQP method for standard nonlinear programs
to nonlinear semidefinite programs of the form (22). For an overview of SQP
methods for standard nonlinear programs, we refer the reader to [6] and the refer-
ences given there.

In analogy to the SQP method, at each iteration of the SSP method one solves
a subproblem that is slightly more difficult than the linearization of (26) at the cur-
rent iterate. More precisely, let(xk,Y k) denote the current point at the beginning
of thek-th iteration. One then determines corrections(∆x,∆Y ) and a matrixS
such that

B(xk)+DxB(xk)[∆x]+S = 0,

b+Hk∆x+∇x

(

B(xk)• (Y k +∆Y )
)

= 0,

(Y k +∆Y )S = 0,

Y k +∆Y, S � 0.

(28)

Here and in the sequel, we use the notation

Hk := H
(

xk,Y k
)

. (29)

Recall from (24) and (25) thatg(x,Y ) andH(x,Y ) denote the gradient and Hes-
sian with respect tox, respectively, of the Lagrangian (23),L(x,Y ), of the nonlin-
ear semidefinite program (22). Moreover, from (24) it follows that the linearization
of g(x,Y ) at the point(xk,Y k) is given by

g
(

xk +∆x,Y k +∆Y
)

≈ b+Hk∆x+∇x

(

B(xk)• (Y k +∆Y )
)

.

Thus, the second equation in (28) is just the linearization of the second equation
in (26). Furthermore, the first equation of (28) is a straightforward linearization of
the first equation in (26). This linearization is used in the same way in primal-dual
interior-point methods.

The last two rows in (28) and (26) are identical whenY in (26) is rewritten
asY = Y k +∆Y . In analogy to SQP methods for standard nonlinear programs,
the problem of how to guarantee the nonnegativity constraints, namelyB(x) �
0, is thus shifted to the subproblem (28). If the iteratesxk generated from (28)
converge, then their limitx automatically satisfiesB(x) � 0.

In contrast, interior-point methods use perturbations, symmetrizations, and lin-
earizations for the last two rows in (26), resulting in cheaper linear subproblems
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that are typically less ‘powerful’ than the subproblems (28). When using (28),
both the problem of choosing a suitable symmetrization scheme and the problem
of how to guarantee the nonnegativity constraints are shifted to the subproblem
(28).

Note that the conditions (28) are the optimality conditionsfor the problem

minimize bT ∆x+
1

2
(∆x)T Hk∆x subject to ∆x ∈ R

n,

B(xk)+DxB(xk)[∆x] � 0.
(30)

The conditions (28) and (30) have been considered in [31, Equations (2.1) and
(2.2)], with the remark that they have “been found to be an appropriate approxi-
mation of” (22) “for numerical purposes”.

In order to be able to solve the subproblem (28) efficiently, in practice, one
replaces the matrixHk in (28), respectively (30), by a positive semidefinite ap-
proximationĤk of Hk. As in the case of standard SQP methods, a BFGS update
for the Hessian of the Lagrangian (23),L, can be used to approximateHk by some
positive semidefinite matrix̂Hk. Given an estimatêHk−1 of Hk−1 for the previ-
ous, (k − 1)-th, SSP iteration, the quasi-Newton condition to generatea BFGS
updateĤk approximating the matrixHk for the current,k-th, SSP iteration can
be derived as follows:

Ĥk∆x = ∇x

(

B(xk)•Y k
)

−∇x

(

B(xk−1)•Y k
)

= ∇xL
(

xk,Y k
)

−∇xL
(

xk−1,Y k
)

≈∇2
xL

(

xk,Y k
)(

xk −xk−1
)

.

(31)

If Ĥk−1 is positive semidefinite, the BFGS update with the above condition can
be suitably damped such thatĤk is also positive semidefinite; see, e.g., [29]. At
each iteration of the SSP method, problem (30) is solved withHk replaced by
the matrixĤk that is obtained by the BFGS update ofĤk−1 from the previous
SSP iteration. IfĤk is positive semidefinite, problem (30) essentially reducesto a
linear SDP, since the convex quadratic term in the objectivefunction can be writ-
ten as a semidefiniteness constraint or a second-order-coneconstraint. While the
formulation as a second-order-cone constraint is more efficient, and for example,
can be specified as input for the program package SeDuMi [34] in order to solve
(30), it was pointed out by [26] that it may be most efficient touse a program
that is designed for SDPs with linear constraints and a convex quadratic objective
function.

It seems that many results for standard SQP methods carry over in a straight-
forward fashion to the SSP method. For example, the SSP method can be aug-
mented by a penalty term in case that the subproblems (30) become infeasible.
In this case, the right-hand sides, “0”, of the first three rows in (28) are replaced
by weaker, penalized right-hand sides. Moreover, the convergence analysis of the
method proposed in [10,12] yields results that are comparable to the ones for stan-
dard SQP methods.

The standard analysis of quadratic convergence of SQP methods for nonlinear
programs that satisfy strict complementarity conditions proceeds by first showing
that the active constraints will be identified correctly in the final stages of the
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algorithm and then using the equivalence of the SQP iteration and the Newton
iteration for the simplified KKT-system in which only the active constraints are
used.

For nonlinear semidefinite programs the situation is slightly more complicated
since it is difficult to identify active constraints. The paper [12] presents a proof
that is based on a new approach by Bonnans et al. [7] and uses some general results
due to Robinson [31]. This approach does not require strict complementarity, and
it allows the use of approximate Hessian matrices in (31).

In the next two sections, we present a more elementary and self-contained ap-
proach to analyze convergence of the SSP method under a strict complementarity
condition.

7 Sensitivity results

In this section, we establish sensitivity results, first forthe special case of quadratic
semidefinite programs and then for general nonlinear semidefinite programs of the
form (22). More precisely, we show that strictly complementary solutions of such
problems depend smoothly on the problem data.

We start with quadratic semidefinite programs of the form

minimize f(x) subject to x ∈ R
n,

A(x)+C � 0.
(32)

Here,A : R
n →Sm is a linear function,C ∈ Sm, andf : R

n → R is a quadratic
function defined byf(x) = bT x+ 1

2xT Hx, whereb ∈ Rn andH ∈ Sn. Note that
we make no further assumptions on the matrixH. Thus, problem (32) is a general,
possibly nonconvex, quadratic semidefinite program.

The problem (32) is described by the data

D := [A, b,C,H ]. (33)

In Theorem 1 below, we present a sensitivity result for the solutions (32) when the
dataD is changed toD+∆D where

∆D := [∆A,∆b,∆C,∆H ] (34)

is a sufficiently small perturbation. We use the norm

‖D‖ :=
(

‖A‖2 +‖b‖2 +‖C‖2 +‖H‖2
)

1

2

for data (33) and perturbations (34). Recall that‖A‖ is defined in (2).
We denote by

L(q)(x,Y ) := f(x)+ (A(x)+C)•Y

the Lagrangian of problem (32). Note that∇xf(x) = b+Hx. Together with (6),
it follows that

∇xL(q)(x,Y ) = b+Hx+A∗(Y ) and ∇2
xL(q)(x,Y ) = H.
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Recall that problem (32) is said to satisfy Slater’s condition if there exists a
vectorx ∈ Rn with A(x)+C ≺ 0. Moreover, the triple(x̄, Ȳ , S̄), wherex̄ ∈ Rn

andȲ , S̄ ∈ Sm, is called astationary pointof (32) if

A(x̄)+C + S̄ = 0,

b+Hx̄+A∗(Ȳ ) = 0,

Ȳ S̄ + S̄Ȳ = 0,

Ȳ , S̄ � 0.

(35)

Here, we have used equivalence (16) of Lemma 1 and replacedȲ S̄ = 0 by its
symmetric version, which is stated as the third equation of (35). If in addition
to (35), one has

Ȳ + S̄ ≻ 0, (36)

then(x̄, Ȳ , S̄) is said to be astrictly complementarystationary point of (32).
Let x̄ ∈ Rn be a feasible point of (32). We say thath ∈ Rn, h 6= 0, is afeasible

directionat x̄ if x = x̄+ǫh is a feasible point of (32) for all sufficiently smallǫ > 0.
Following [31, Definition 2.1], we say that thesecond-order sufficient condition
holds atx̄ with modulusµ > 0 if for all feasible directionsh ∈ Rn at x̄ with
hT (b+Hx̄) = hT∇xf(x̄) = 0 one has

hT Hh = hT
(

∇2
xL(q)(x̄, Ȳ )

)

h ≥ µ‖h‖2. (37)

After these preliminaries, our main result of this section can be stated as follows.

Theorem 1 Assume that problem(32) satisfies Slater’s condition. Let the point
(x̄, Ȳ , S̄) be a locally unique and strictly complementary stationary point of (32)
with data(33),D, and assume that the second-order sufficient condition holds atx̄
with modulusµ > 0. Then, for all sufficiently small perturbations(34), ∆D, there
exists a locally unique stationary point

(

x̄(D+ ∆D), Ȳ (D+ ∆D), S̄(D+ ∆D)
)

of the perturbed program(32) with dataD+ ∆D. Moreover, the point
(

x̄(D+

∆D), Ȳ (D+ ∆D), S̄(D + ∆D)
)

is a differentiable function of the perturbation
(34), and for∆D = 0, we have

(

x̄(D), Ȳ (D), S̄(D)
)

= (x̄, Ȳ , S̄). The derivative
DD

(

x̄(D), Ȳ (D), S̄(D)
)

of
(

x̄(D), Ȳ (D), S̄(D)
)

with respect toD evaluated at
(x̄, Ȳ , S̄) is characterized by the directional derivatives

(ẋ, Ẏ , Ṡ) := DD

(

x̄(D), Ȳ (D), S̄(D)
)

[∆D]

for any∆D. Here(ẋ, Ẏ , Ṡ) is the unique solution of the system of linear equations,

A(ẋ)+ Ṡ = −∆C−∆A(x̄),

Hẋ+A∗(Ẏ ) = −∆b−∆Hx̄−∆A∗(Ȳ ),

Ȳ Ṡ + Ẏ S̄ + ṠȲ + S̄Ẏ = 0,

(38)

for the unknownṡx ∈ Rn, Ẏ , Ṡ ∈ Sm. Finally, the second-order sufficient condi-
tion holds atx̄(∆D) whenever∆D is sufficiently small.
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Remark 1Theorem 1 is an extension of the sensitivity result for linear semi-
definite programs presented in [15]. A related sensitivity result for linear semidef-
inite programs for a more restricted class of perturbations, but also under weaker
assumptions, is given in [35]. A local Lipschitz continuityproperty of unique
and strictly complementary solutions of linear semidefinite programs is derived
in [23]. A weaker form of second-order necessary and sufficient conditions is
given in Theorem 9 in [32]. Furthermore, in Theorem 11 of [32], the directional
derivativeẋ is expressed as the solution of a certain quadratic program.

Remark 2While we did not explicitly state a linear independence constraint qual-
ification, commonly referred to as LICQ, it is implied by our condition of unique-
ness of the stationary point; see, e.g., [15]. Moreover, ourassumptions on the
stationary point(x̄, Ȳ , S̄) imply that x̄ is a strict local minimizer of (32).

Remark 3The first and third equations in (38) are symmetricm×m matrix equa-
tions, and so only their upper triangular parts have to be considered. Thus, the
total number of scalar equations in (38) ism2 +m+n. On the other hand, there
arem2 +m+n unknowns, namely the entries ofẋ ∈ Ren and of the upper trian-
gular parts ofẎ , Ṡ ∈ Sm. Hence, (38) is a square system.

Remark 4In view of part b) of Lemma 1, the last equation of (38) is equivalent
to

Ȳ Ṡ + Ẏ S̄ = 0. (39)

Thus, Theorem 1 can be stated equivalently with (39) in (38).However, the result-
ing system of equations (38) would then be overdetermined.

Proof (Theorem 1)The proof is divided into four steps.
Step 1. In this step, we establish the following result. If the perturbed program
has a local solution that is a differentiable function of theperturbation, then the
derivative is indeed a solution of (38).

Slater’s condition is invariant under small perturbationsof the problem data.
Hence, if there exists a local solution̄x+∆x, S̄ +∆S of the perturbed problem
nearx̄, S̄, then the necessary first-order conditions of the perturbedproblem apply
at x̄+∆x, S̄ +∆S, and state that there exists a matrix∆Y such that̄Y +∆Y � 0,
S̄ +∆S � 0, and

(A+∆A)(x̄+∆x)+C +∆C + S̄ +∆S = 0,

b+∆b+(H +∆H)(x̄+∆x)+ (A∗ +∆A∗)(Ȳ +∆Y ) = 0,

(Ȳ +∆Y )(S̄ +∆S)+ (S̄ +∆S)(Ȳ +∆Y ) = 0.

(40)

Subtracting from these equations the first three equations of (35) yields

(A+∆A)(∆x)+∆S = −∆C −∆A(x̄),

(H +∆H)∆x+(A∗+∆A∗)(∆Y ) = −∆b−∆Hx̄−∆A∗(Ȳ ),

Ȳ ∆S +∆Y S̄ +∆S Ȳ + S̄∆Y = −∆Y ∆S−∆S ∆Y.

(41)

Neglecting the second-order terms in (41), and using (39), we obtain the result
claimed in (38). It still remains to verify the existence anddifferentiability of∆x,
∆Y , ∆S.
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Step 2.In this step, we prove that the system of linear equations (38) has a unique
solution. To this end, we show that the homogeneous version of (38), i.e., the
system

A(ẋ)+ Ṡ = 0,

Hẋ+A∗(Ẏ ) = 0,

Ȳ Ṡ + Ẏ S̄ + ṠȲ + S̄Ẏ = 0,

(42)

only has the trivial solutioṅx = 0, Ẏ = Ṡ = 0.
Let ẋ ∈ Rn, Ẏ , Ṡ ∈ Sm be any solution of (42). Recall that, in view of part b)

by Lemma 1 we may assume thatȲ andS̄ are given in diagonal form:

Ȳ =

[

Ȳ1 0
0 0

]

, S̄ =

[

0 0
0 S̄2

]

, (43)

whereȲ1, S̄2 ≻ 0 andȲ1, S̄2 are diagonal.
Indeed, this can be done by replacing, in (42),Ȳ , S̄, Ẏ , Ṡ, A(x) by UT Ȳ U ,

UT S̄U , UT Ẏ U , UT ṠU , UTA(x)U , respectively, whereU is the matrix in (18),
and then multiplying the first and third rows from the left byU and from the right
by UT . Furthermore, in view of part b) by Lemma 1, any matricesẎ Ṡ ∈ Sm

satisfying the last equation of (42) are then of the form

Ẏ =

[

Ẏ1 Ẏ3

Ẏ T
3 0

]

, Ṡ =

[

0 Ṡ3

ṠT
3 Ṡ2

]

, where Ẏ3S̄2 + Ȳ1Ṡ3 = 0. (44)

Next, we establish the inequality

ẋT Hẋ ≥ µ‖ẋ‖2, (45)

whereµ > 0 is the modulus of the second-order sufficient condition (37). Assume
thatẋ 6= 0. Let x̆ ∈ Rn be a Slater point for problem (32). This guarantees that

M =

[

M1 M3

MT
3 M2

]

:= −
(

A(x̆)+C
)

≻ 0, (46)

where the block partitioningM is conforming with (44). Forη > 0, set

h+
η := ẋ+ η(x̆− x̄) and h−

η := −ẋ+ η(x̆− x̄). (47)

Sinceẋ 6= 0, there exists anη0 > 0 such thath±
η 6= 0 for all 0 < η ≤ η0. Next, we

prove that for all suchη, both vectorsh+
η andh−

η are feasible directions for (32) at
x̄. Let0 < η ≤ η0 be arbitrary, but fixed. We then need to verify thatA(x̄+ ǫh±

η )+
C � 0 for all sufficiently smallǫ > 0. Recall thatA is a linear function. Using
(47), (43), (44), (46), the first equation of (35), and the first equation of (42), one
readily verifies that

A(x̄+ ǫh±
η )+C = (1− ǫη)

(

A(x̄)+C
)

+ ǫη
(

A(x̆)+C
)

± ǫA(ẋ)

= −
([

0 0
0 S̄2

]

+ ǫ

[

ηM1 ηM3± Ṡ3

(ηM3± Ṡ3)
T η(M2− S̄2)± Ṡ2

])

.
(48)
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Recall thatη > 0 is fixed. Since, by (43) and (46),̄S2 ≻ 0 andM1 ≻ 0, a stan-
dard Schur-complement argument shows that the matrix on theright-hand side of
(48) is negative definite for all sufficiently smallǫ > 0. Thus, the vectors (47) are
feasible directions for (32) at̄x for anyη > 0. This in turn implies

ẋT (b+Hx̄) = ẋT∇xf(x̄) = 0. (49)

Indeed, suppose thatẋT∇xf(x̄) < 0. Then, for sufficiently smallη > 0, the feasi-

ble directionh+
η also satisfies

(

h+
η

)T∇xf(x̄) < 0, and thush+
η is a descent direc-

tion for the objective functionf of (32) at the point̄x. This contradicts the local
optimality of x̄. Likewise, if ẋT∇xf(x̄) > 0, then, for sufficiently smallη > 0, h−

η

is a descent direction for the objective functionf of (32) at the point̄x, leading
to the same contradiction. The second-order sufficient condition (37) also holds
true on the closure of the feasible directions. Sinceẋ is the limit of the feasible
directions (47) forη → 0 andẋ satisfies (49), the inequality (45) follows from (37).

Next recall from (43) that̄Y1 and S̄2 are positive definite diagonal matrices.
The last relation in (44) thus implies that corresponding entries of the matriceṡY3

andṠ3 are either zero or of opposite sign. It follows that〈Ẏ3, Ṡ3〉 ≤ 0, and equality
holds if, and only if,Ẏ3 = Ṡ3 = 0. Using this inequality, together with the first two
relations in (44), the first two equations of (42), and (45), one readily verifies that

0 ≥ 2〈Ẏ3, Ṡ3〉 = 〈Ẏ , Ṡ〉 = −〈Ẏ ,A(ẋ)〉
= −〈A∗(Ẏ ), ẋ〉 = 〈Hẋ, ẋ〉 = ẋT Hẋ ≥ µ‖ẋ‖2.

Sinceµ > 0, this implies

ẋ = 0 and Ẏ3 = Ṡ3 = 0. (50)

By the first row of (42), it further follows that

Ṡ = −A(ẋ) = −A(0) = 0. (51)

Thus, it only remains to show thatẎ = 0. In view of (44) and (51), we have

Ẏ =

[

Ẏ1 0
0 0

]

. (52)

Now suppose thaṫY1 6= 0. Then, by (43) and (52), we have

Ȳǫ := Ȳ + ǫẎ � 0 and Ȳǫ 6= Ȳ

for all sufficiently small|ǫ|. Moreover, using (35), (42), and (51), one readily veri-
fies that the point(x̄, Ȳǫ, S̄) also satisfies (35) for all sufficiently small|ǫ|. This con-
tradicts the assumption that(x̄, Ȳ , S̄) is a locally unique stationary point. Hence
Ẏ1 = 0 and, by (52),Ẏ = 0.

This concludes the proof that the square system (42) is nonsingular.
Step 3.In this step, we show that the nonlinear system (35) has a local solution
that depends smoothly on the perturbation∆D. To this end, we apply the implicit
function theorem to the system

A(x)+C +S = 0, Hx+ b+A∗(Y ) = 0, Y S +SY = 0. (53)
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As we have just seen, the linearization of (53) at the point(x̄, Ȳ , S̄) is nonsingular,
and hence (53) has a differentiable and locally unique solution

(

x̄(∆D), Ȳ (∆D),

S̄(∆D)
)

. Furthermore, we havēY (∆D), S̄(∆D) � 0. This semidefiniteness fol-
lows with a standard continuity argument: The optimality conditions of the non-
linear SDP coincide with the optimality conditions of the linearized SDP. Under
our assumptions, the latter one has a unique optimal solution that depends con-
tinuously on small perturbations of the data; see, e.g., [15]. Hence the linearized
problem at the data pointD+∆D has an optimal solution

(

x̃, Ỹ , S̃
)

that satisfies
the same optimality conditions as

(

x̄(∆D), Ȳ (∆D), S̄(∆D)
)

. The solution of the
linearized problem also satisfies̃Y � 0, S̃ � 0. Since

(

x̄(∆D), Ȳ (∆D), S̄(∆D)
)

is locally unique, it must coincide with
(

x̃, Ỹ , S̃
)

, i.e.,Ȳ (∆D), S̄(∆D) satisfy the
semidefiniteness conditions.
Step 4.In this step, we prove that the second-order sufficient condition is satisfied
at the perturbed solution. Since feasible directionsh are defined only up to a posi-
tive scalar factor, without loss of generality, one may require that‖h‖= 1. For the
unperturbed problem (32), the second-order sufficient condition at x̄ then states
thathT Hh≥ µ for all h∈ Rn with A(x+ ǫh)+C � 0, ǫ = ǫ(h) > 0, ‖h‖= 1, and
hT (b̄+Hx̄) = 0. To prove that the second-order sufficient condition is invariant
under small perturbations∆D of the problem dataD, we thus need to show that
for some fixed̃µ > 0, we have

hT (H +∆H)h≥ µ̃ (54)

for all solutionsh ∈ Rn of the inequalities

(A+∆A)
(

x̄(∆D)+ ǫh
)

+C +∆C � 0, ǫ = ǫ(h) > 0,

‖h‖ = 1, hT
(

b+∆b+(H +∆H)x̄(∆D)
)

= 0.

In view of the first two relations in (40), the above is equivalent to

ǫ(A+∆A)(h) � S̄(∆D), ǫ = ǫ(h) > 0,

‖h‖ = 1, hT (A∗ +∆A∗)(Ȳ (∆D)) = 0.
(55)

It remains to show that the set of solutionsh of (55) varies continuously with
∆D. Indeed, for any fixed̃µ with 0 < µ̃ < µ, the second-order condition atx̄ then
readily implies that (54) is satisfied for all solutionsh of (55), provided‖∆D‖ is
sufficiently small.

In Step 2, we have shown that both̄S(∆D) andȲ (∆D) are continuous func-
tions of∆D and that the dimension of the null space ofS̄(∆D) is constant, namely
equal tok, for all sufficiently small‖∆D‖. Moreover, the null space of̄S(∆D)
varies continuously with∆D.

Let ∆Dk be a sequence of perturbations with∆Dk → 0. Lethk be a sequence
of associated solutions of (55). It suffices to show that any accumulation point̄h
of the sequencehk satisfies (55) for∆D = 0 and the associated values∆A = 0,
Ȳ (0) = Ȳ , S̄(0) = S̄. Since Ȳ (∆D) and ∆A∗ vary continuously with∆D, it
follows thath̄ satisfies the last two relations of (55) for∆D = 0.



18 R. W. Freund et al.

We now assume by contradiction thatǫA(h̄) 6� S̄ for anyǫ > 0. SinceS̄ � 0,
this implies that there exists a vectorz ∈ Rm with ‖z‖= 1, zTA(h̄)z = ǫ̃ > 0, and
zT S̄z = 0. It follows that

zT (A+∆Ak)(hk)z ≥ ǫ̃

2

if k is sufficiently large. Since the null space ofS̄(∆D) varies continuously with
∆D, we have

(z +∆zk)T S̄(∆Dk)(z +∆zk) = 0

for some small∆zk ∈ Rm whenever‖∆Dk‖ is sufficiently small. We now choose
‖∆Dk‖ so small, i.e.,k so large, that

(z +∆zk)T (A+∆Ak)(hk)(z +∆zk) ≥ ǫ̃

4
.

This implies thathk does not satisfy (55), and thus yields the desired contradiction.
Hencēh satisfies (55) for∆D = 0. ⊓⊔

Theorem 1 can be sharpened slightly.

Corollary 1 Under the assumptions of Theorem 1 there exists a small neighbor-
hoodN of zero in the data space of(32) such that for all perturbations∆D ∈N
of the problem data(33), D, of (32), there exists a local solution(x∆,Y∆,S∆)
of (40) near (x̄, Ȳ , S̄), at which the assumptions of Theorem 1 are also satisfied.
Moreover, the second derivatives

∇2
D

(

x∆,Y∆,S∆

)

[∆D]

of such local solutions(x∆,Y∆,S∆) are uniformly bounded for all∆D ∈N .

Proof The first part of the corollary is an immediate consequence ofTheorem 1.
For the second part observe that the second derivative is obtained by differentiat-
ing the system (38). For sufficiently small perturbations∆D, the singular values of
this system are uniformly bounded away from zero, and hence the second deriva-
tives are uniformly bounded. ⊓⊔

Theorem 1 can be generalized to the class of NLSDPs of the form(22). Recall
that, by (23) and (25), the Lagrangian of (22) and its Hessianare given by

L(x,Y ) = bT x+B(x)•Y and H(x,Y ) = ∇2
x (B(x)•Y ) , (56)

respectively. The generalization of Theorem 1 to problems (22) is then as follows.

Theorem 2 Let x∗ be a local solution of(22), and letY ∗ be an associated La-
grange multiplier. Assume that the Robinson constraint qualification is satisfied at
x∗ and that the point(x∗,Y ∗) is strictly complementary and locally unique. Fi-
nally, assume that the second-order sufficient condition holds atx∗ with modulus
µ > 0. Then,(22)has a locally unique solution for small perturbations of thedata
(B, b), and the solution depends smoothly on the perturbations.
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Proof First, we define the linear functionA := DxB(x∗) : Rn → Sm, and the
matricesC := B(x∗) andH := H(x∗,Y ∗). Then, the SSP approximation (30) of
(22) at the point(x∗,Y ∗) is just the quadratic semidefinite problem

minimize bT ∆x+
1

2
(∆x)T H∆x subject to ∆x ∈ R

n,

A(∆x)+C � 0.
(57)

Note that (57) is a problem of the form (32) with data (33),D. Moreover,∆x̄ := 0,
Ȳ := Y ∗, andS̄ := −A(0)−C satisfy the conditions (35). These conditions co-
incide with the first-order conditions of (22), and thus the point (∆x̄, Ȳ , S̄) is also
the unique solution of (35). Furthermore, the second-ordersufficient condition for
(57) and (22) coincide. This condition guarantees that∆x̄ is a locally unique solu-
tion of (57). Finally, the Robinson constraint qualification for problem (22) atx∗

implies that problem (57) satisfies Slater’s condition. In particular, all assumptions
of Theorem 1 are satisfied. Small perturbations∆D of the data of (22) result in
small changes of the corresponding SSP problem (57). Since Theorem 1 allows
for arbitrary changes in all of the data of (57), the claims follow. ⊓⊔

8 Convergence of the SSP method

In this section, we prove that the plain SSP method with step size 1 is locally
quadratically convergent.

For pairs(x,Y ), wherex ∈ Rn, Y ∈ Sm, we use the norm

∥

∥(x,Y )
∥

∥ :=
(

‖x‖2 +‖Y ‖2
)

1

2 .

The main result of this section can then be stated as follows.

Theorem 3 Assume that the functionB in (22) is C3-differentiable and that prob-
lem(22)has a locally unique and strictly complementary solution(x̄, Ȳ ) that sat-
isfies the Robinson constraint qualification and the second-order sufficient condi-
tion with modulusµ > 0, cf. (37). Let some iterate(xk,Y k) be given and let the
next iterate

(xk+1,Y k+1) := (xk,Y k)+ (∆x,∆Y )

be defined as the local solution of(28), or, equivalently,(30), that is closest to
(xk,Y k). Then there existǫ > 0 andγ < 1/ǫ such that

∥

∥(xk+1,Y k+1)− (x̄, Ȳ )
∥

∥ ≤ γ
∥

∥(xk,Y k)− (x̄, Ȳ )
∥

∥

2

whenever
∥

∥(xk,Y k)− (x̄, Ȳ )
∥

∥ < ǫ.

Proof The proof is divided into three steps. In the first step, we establish the exact
relation of problems (30) and (32). In a second step, we consider a pointxk nearx̄.
We show thatxk is the optimal solution of an SSP subproblem the data of which
is at mostO(‖xk − x̄‖) away from the data of the SSP subproblem at(x̄, Ȳ ). We
remark thatxk is always the optimal solution of the(k− 1)-th subproblem, but
the data of this subproblem liesO(‖xk−1− x̄‖) away from the SSP subproblem at
(x̄, Ȳ ). In a third step, we then show by a perturbation analysis thatthe correction
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∆x = xk+1 −xk is of sizeO(‖xk − x̄‖+‖Y k − Ȳ ‖) and that the residual for the
SSP subproblem in the(k +1)-th step is of sizeO((‖xk − x̄‖+‖Y k − Ȳ ‖)2).
Step 1.We first show how the SSP subproblem (30) can be written in the form
(32). To this end, we define the linear functionA := DxB(xk) : R

n → Sm, and
the matricesC := B(xk) and H := H(xk,Y k). Note that the linear constraint
A(∆x)+C � 0 is just the linearization of the nonlinear constraintB(xk +∆x)� 0
about the pointxk. Finally, let b be as in (22). The SSP subproblem (30) then
takes the simple form (57), and in particular, it conforms with the format (32) of
Theorem 2.
Step 2.Let any pointxk close tox̄ be given. We show that∆x = 0 is a local
solution of a problem of the form (57), where the data is ‘close’ to the data of
(30) at

(

x̄, Ȳ
)

. Let ∆C := B(x̄)−B(xk). By continuity ofB, ‖∆C‖ is of order
O(‖xk − x̄‖). Let

∆b := −∇x

(

B(xk)• Ȳ
)

− b = −A∗(Ȳ )− b.

From (24) and the second row of (26), it follows that‖∆b‖=O(‖xk − x̄‖). More-
over, the point(0, Ȳ , S̄) satisfies the first-order conditions,

A(0)+C +∆C + S̄ = 0, b+∆b+H ·0+A∗(Ȳ ) = 0, Ȳ S̄ = 0,

for the quadratic semidefinite program

minimize(b+∆b)T ∆x+
1

2
(∆x)T H∆x subject to∆x ∈ R

n,

A(∆x)+C +∆C � 0.
(58)

Let
Ā := DxB(x̄), b̄ := b, C̄ := B(x̄), H̄ := ∇2

xL(x̄, Ȳ ), (59)

be the data of the SSP subproblem (30) at the point(x̄, Ȳ ). Then, the data of (58)
differs from the data (59) by a perturbation of normO(‖xk − x̄‖+ ‖Y k − Ȳ ‖).
Here, the term‖Y k − Ȳ ‖ reflects the fact thatH andH̄ also differ by the choice
of Y . Note that the point(∆x,Y,S) = (0, Ȳ , S̄) satisfies the first-order optimality
conditions,

Ā(∆x)+ C̄ +S = 0, b+ H̄∆x+ Ā∗(Y ) = 0, Y S = 0, (60)

of the quadratic problem (57) with data (59). As shown in Theorem 2, the assump-
tions for the nonlinear SDP (22) at(x̄, Ȳ ) imply that problem (57) with data (59)
satisfies all conditions of Theorem 2 at(0, Ȳ , S̄).

Since the second-order sufficient condition depends continuously on the data
of (32), it follows that for (58), the second-order condition at(0, Ȳ , S̄) is satisfied,
provided that‖xk − x̄‖ and‖Y k − Ȳ ‖ are sufficiently small. Thus, problem (58)
fulfills all assumptions of Theorem 2.
Step 3.By definition, (∆x,Y ) = (0, Ȳ ) is the optimal solution (with associated
multiplier) of (58). Let(xk,Y k) be close to(x̄, Ȳ ). The SSP subproblem replaces
the data∆b and∆C of (58) by 0 (of the respective dimension). Thus, the data of
(58) is changed by a perturbation of orderO(‖xk − x̄‖+‖Y k − Ȳ ‖). We assume
that this perturbation lies in the neighborhoodN about zero as guaranteed by
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Corollary 1. Denote the optimal solution of the SSP subproblem by (∆x,Ȳ +

∆Ŷ ).
The SSP subproblem is then used to define(xk+1,Y k+1). Let

A+ := DxB(xk+1), C+ := B(xk+1), H+ := ∇2
xL(xk+1,Y k+1)

be the data of the SSP subproblem at the next,(k+1)-th, iteration.
Corollary 1 states that(∆x,∆Ŷ ) are given by the tangent equations (38) plus

some uniformly bounded second-order terms. Thus,(∆x,∆Ŷ ) are of the order
O(‖xk − x̄‖+ ‖Y k − Ȳ ‖). Here,∆Ŷ is a correction of the unknown point̄Y ,
while the correction∆Y = Y k+1 −Y k produced by the SSP subproblem has the
form ∆Y = ∆Ŷ + Ȳ −Y k. Obviously, also the norm‖∆Y ‖ of this correction is
of the orderO(‖xk − x̄‖+‖Y k − Ȳ ‖).

Next, we compute an upper bound on the size of the residuals ofthe first and
second equations in (60) at(xk+1,Y k+1,Sk+1). Note that the residual term of the
third equation in (60) is zero. By definition of(∆x,Y k+1,Sk+1), it follows that

A(∆x)+C +Sk+1 = 0, b+H∆x+A∗(Y k+1) = 0, Y k+1 Sk+1 = 0. (61)

If the data of (22) isC3-smooth, this implies that

(A+)∗(Y k+1)+ b

= A∗(Y k+1)+ b+∆A∗(Y k+1)

= −H∆x+∆A∗(Y k)+∆A∗(∆Y )

= −∇2
x

(

B(xk)•Y k
)

∆x+
(

∇xB(xk +∆x)−∇xB(xk)
)

•Y k +∆A∗(∆Y )

= O(‖∆x‖2 +‖∆Y ‖2),

where∆A := A+ −A. Likewise, it follows from (61) that

C+ +Sk+1 = ∆C +C +Sk+1 = ∆C −A(∆x)

= B(xk+1)−B(xk)−DxB(xk)[∆x] = O(‖∆x‖2),

where∆C := C+−C. Hence, we can define perturbationsb̂ andĈ+ of b andC+

of order
‖b̂− b‖+‖Ĉ+−C+‖ = O((‖xk − x̄‖+‖Y k − Ȳ ‖)2)

such that(∆x,Y,S) = (0,Y k+1,Sk+1) is an optimal solution of the problem (57)
with dataA+, b̂, Ĉ+, H+. By the same derivation as above, the next SSP step
has lengthO((‖xk − x̄‖+ ‖Y k − Ȳ ‖)2), and thus it generates residuals of order
O((‖xk − x̄‖+‖Y k − Ȳ ‖)4). Repeating this process, a standard argument shows
that ‖xk+1 − x̄‖ and ‖Y k+1 − Ȳ ‖ are of orderO((‖xk − x̄‖+ ‖Y k − Ȳ ‖)2) as
well. ⊓⊔

Remark 5As mentioned before, one will typically choose to solve SSP subprob-
lems with a positive semidefinite approximation̂H to the Hessian of the La-
grangian. A proof of convergence for such modifications is the subject of current
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research; see, e.g., [10]. Since all the data enters in a continuous fashion in the pre-
ceding analysis, it follows that the SSP method with step size one is still locally
superlinearly convergent if the matricesHk in (29) are replaced by approxima-
tionsĤk with ‖Hk − Ĥk‖→ 0.

Remark 6The assumption ofC3-differentiability of the functionB in Theorem 3
can be weakened toC2-differentiability and a Lipschitz condition for the Hessian
at x̄.

The result of Theorem 3 can be extended to the following slightly more general
class of NLSDPs. Given a vectorb ∈ Rn, a matrix-valued functionB : Rn →Sm,
and two vector-valued functionsc : Rn → Rp andd : Rn → Rq, we consider prob-
lems of the following form:

minimize bT x subject to x ∈ R
n,

B(x) � 0,

c(x) ≤ 0,

d(x) = 0.

(62)

The Lagrangian of problem (22) takes the formL : Rn ×Sm×Rp×Rq → R:

L(x,Y,u,v) := bT x+B(x)•Y +uT c(x)+ vT d(x). (63)

Its gradient with respect tox is given by

g(x,Y,u,v) := ∇xL(x,Y,u,v)

= b+∇x (B(x)•Y )+∇xc(x)u+∇xd(x)v
(64)

and its Hessian by

H(x,Y,u,v) := ∇2
xL(x,Y,u,v)

= ∇2
x (B(x)•Y )+

p
∑

i=1

ui∇2
xci(x)+

q
∑

j=1

vj∇2
xdj(x).

(65)

Note that in (64), the gradients of the vector-valued functionsc(x) andd(x)
are defined as∇xc(x) := (Dxc(x))T and∇xd(x) := (Dxd(x))T .

For NLSDPs (62), the SSP subproblems are of the form

minimize bT ∆x+
1

2
(∆x)T Hk∆x subject to ∆x ∈ R

n,

B(xk)+DxB(xk)[∆x] � 0,

c(xk)+Dxc(xk)∆x ≤ 0,

d(xk)+Dxd(xk)∆x = 0.

(66)

The extension of Theorem 3 to problems (62) is as follows.
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Theorem 4 Assume that the functionsB, c, andd in (62) are C3-differentiable,
and that problem(62) has a locally unique and strictly complementary solution
(x̄, Ȳ , ū, v̄) that satisfies the Robinson constraint qualification and thesecond-
order sufficient condition with modulusµ > 0, cf. (37). Let (xk,Y k,uk,vk) be
some given iterate, and let the next iterate

(xk+1,Y k+1,uk+1,vk+1) := (xk,Y k,uk,vk)+ (∆x,∆Y,∆u,∆v)

be defined as the local solution of(66) that is closest to(xk,Y k,uk,vk). Then
there existǫ > 0 andγ < 1/ǫ such that
∥

∥(xk+1,Y k+1,uk+1,vk+1)− (x̄, Ȳ , ū, v̄)
∥

∥ ≤ γ
∥

∥(xk,Y k,uk,vk)− (x̄, Ȳ , ū, v̄)
∥

∥

2

whenever
∥

∥(xk,Y k,uk,vk)− (x̄, Ȳ , ū, v̄)
∥

∥ < ǫ.

Proof By our assumption on strict complementarity, all entries ofthe vector̄v of
the Lagrange multipliers associated with the equality constraintsd(x) = 0 of (22)
are different from zero. Without loss of generality, we assume that̄v > 0. Indeed,
for any entryv̄j < 0 we replace the corresponding constraintdj(x) = 0 by the
equivalent constraint−dj(x) = 0. These sign changes do not change the iterates
generated by (30). Moreover, for

(

xk,Y k,uk,vk
)

sufficiently close to
(

x̄, Ȳ , ū, v̄
)

it follows from v̄ > 0 that the iterates do not change when the constraintsd(x) = 0
are replaced byd(x)≤ 0. We can thus assume thatq = 0, i.e., there are no equality
constraints in (62).

We further assume that, without loss of generality, the matrix B is augmented
to a 2× 2 block diagonal matrix, where the(2,2)-block is the diagonal matrix
Diag(c(x)). Thus, for the analysis of the SSP method we may assume thatp =
q = 0 in (22), i.e., we only need to consider problems of the form (22). ⊓⊔

9 Numerical results

In this section, we present results of some numerical experiments with a Matlab
implementation of the SSP method. Actually, our Matlab program is for a slightly
more general class of nonlinear programs with conic constraints (NLCPs). The
numerical experiments with our program illustrate the theoretical results of the
preceding sections. In particular, quadratic convergenceis observed for problems
where the HessianH of the Lagrangian at the optimal solution is positive semidef-
inite. In cases whereH is not positive semidefinite, our implementation uses per-
turbations of the nonconvex SSP subproblems in order to obtain convex conic
subproblems. In these cases, typically, the rate of convergence of the algorithm
based on such perturbed problems is only linear.

The Matlab program generates its search directions by solving conic quadratic
subproblems using Version 1.05R5 of SeDuMi [34]. SeDuMi allows free and
positive variables as well as Lorentz-cone (‘ice-cream cone’) constraints, rotated
Lorentz-cone constraints, and semidefinite cone constraints. The NLCPs can also
be formulated in terms of these cones. In order to simplify the use of SeDuMi for
the SSP subproblems, the NLCPs are rewritten in the following standard format:

minimize cT x subject to x ∈ K,

F (x) = 0.
(67)
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Here,K is a Cartesian product of free variables and several cones ofthe types
allowed in SeDuMi.

We tested the following techniques for generating positivesemidefinite ap-
proximationsĤ of H: a BFGS approach, the Hessian of the augmented Lagrang-
ian, and the orthogonal projection ofH onto the cone of positive semidefinite
matrices. Our experiences with these techniques are as follows.

I.1 The BFGS approach can result in considerably more SSP iterations compared
to the projection of the Hessian of the Lagrangian. Moreover, the BFGS ap-
proach strongly depends on the initial matrix̂H0. A good choice isĤ0 :=
V max(D,ǫI)V T , whereH(x0,Y 0) = V DV T is the eigenvalue decomposi-
tion of H(x0,Y 0).

I.2 The use of the Hessian of the augmented Lagrangian can be agood choice for
some problems, but for most of our test problems the penalty parameter had
to be very large to obtain a semidefinite Hessian. This, in turn, significantly
reduced the precision of our computations.

I.3 In spite of not being affinely invariant, the use of the projection of the Hessian
of the Lagrangian resulted in the most efficient overall algorithm.

We also tested different step length strategies.

II.1 The following penalty line search with a quadratic correction gave good re-
sults for all test cases. The SSP subproblem provides a search direction∆x for
problem (67). By solving a least-squares problem, a vectorq is computed sat-
isfying DxF (x)q = −F (x+∆x). Forλ ∈ [0,1], a line search along the points
x(λ) := x+λ∆x+λ2q is performed based on the penalty function

M‖F (x(λ))‖+ cT x(λ),

whereM > 0 is a penalty parameter.
II.2 For some examples, the choice of a filter approach was slightly better. In the

filter approach used here, a Euclidean trust-region radius was always set to be
1.5 times larger than the previous step, and non-acceptablesteps were not dis-
carded, but instead an Armijo-type step-length reduction was used to generate
an acceptable step. The motivation for this modified filter strategy lies in the
fact that the computation of a solution of a subproblem is very expensive, and
therefore discarding the solution of a subproblem is avoided. The above filter
approach led to very fast convergence, especially for convex problems.

II.3 For the examples presented here, the trust-region approach was the best choice.
The SSP subproblem was restricted by an additional Euclidean trust-region
constraint. For problems of the form (68) below, it was sufficient to apply the
trust-region constraint only to the variablesXG andXC , whileP andS remain
free. For these examples, an additional corrector step significantly accelerated
the convergence. For this corrector step,XG andXC are kept fixed, andP
andS are updated by solving an additional linear SDP. At each iteration, the
ratio between predicted and actual reduction was computed.Depending on that
ratio, the step was accepted and the trust region was increased or decreased, or
the step was rejected and the trust region was decreased.

For our numerical examples, we use nonlinear nonconvex SDPsof the form
(10), which we rewrite in the form (68) below. Recall that in (10),G, C ∈ Rn×n
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andB1, B2 ∈ Rn×m are given data matrices. The nonconvex NLSDP used for the
numerical examples is then as follows:

minimize ‖S‖ subject to P ∈ R
n×n, S ∈ R

n×m,

XG ∈ R
n×n, ‖XG‖ ≤ rG,

XC ∈ R
n×n, ‖XC‖ ≤ rC ,

PT B1 +S = B2,

PT (G+XG)+ (G+XG)T P � εGI,

PT (C +XC)+ (C +XC)T P � εCI,

PT (C +XC)− (C +XC)T P = 0.

(68)

Furthermore, in (68), in addition to the constraints on the norms of the perturba-
tionsXG andXC , we restrictXG andXC to have possible nonzero entries only in
certain positions, which depend on the nonzero structure ofthe given matricesG
andC, respectively. For our numerical tests, the data matricesG andC in (68) are
generated as follows. First, two matricesCorg andGorg of norm one were con-
structed such that the associated transfer function is guaranteed to be positive real.
Then, certain entries ofGorg andCorg were changed by adding random pertur-
bations of norm at most̃εG = ε̃C ≤ 10−2 respectively, to define the data matrices
G andC. The valuesεG andεC were chosen in the interval[10−15,10−7]. In all
our examples, the transfer functions of the systems given bythe resulting matrices
C andG were not positive real. As initial points for problem (68), we used the
zero matricesX0

G = 0 andX0
C = 0. For fixedXG = 0 andXC = 0, problem (68)

reduces to a linear SDP, the solution of which was taken as initial valuesP 0 and
S0 for P andS.

All our computations were run on a Xeon with a clock rate of 2.8GHz and
3 GB RAM. All solutions were computed to a precision of 12 decimal digits.
In Table 1, we list the problem dimensionn, the total numberM(n) of equality
constraints, the total numberN(n) of scalar unknowns, the number of iterations,
and the cpu time (in seconds) for the SSP algorithm using the convexification I.3
and the step length control II.3 above.

Table 1 shows that the number of iterations is nearly independent of the di-
mensionn of the problem, while—as expected—the cpu time increases with n.
The total number of constraints is approximatelyM(n)≈ 3

2n2, and the total num-
ber of scalar variables is approximatelyN(n) ≈ 3n2. The number of iterations to
solve the linear semidefinite subproblems not only depends on the dimension, but
also on other properties of the problem as, for example, a comparison of the prob-
lems of dimension 32 and 33 shows. In this case, the iterationcounts differ only
by one, yet the cpu time quadruples, since SeDuMi needs more iterations to solve
the subproblems. Some of the linear semidefinite subproblems are nearly infeasi-
ble, a situation for which SeDuMi (and other solvers) needs ahigher number of
interior-point iterations. In practical applications, the values̃εG andε̃C are small,
but the required accuracy of the optimal solution of (68) is high. In our examples,
the optimal perturbationsXG andXG generated by the algorithm had a norm of
about10−3. Thus, the starting point appears to be very close to the optimal solu-
tion; nevertheless, a plain primal predictor-corrector implementation with adaptive
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Table 1 Numerical results for nonconvex NLSDPs of the form (68).

n M(n) N(n) iter cpu time n M(n) N(n) iter cpu time

8 118 285 5 3.71 22 783 1713 4 416.31
9 146 348 5 4.43 23 853 1862 5 151.33

10 177 417 7 8.06 24 926 2013 6 683.54
11 211 492 5 7.18 25 1002 2176 3 145.60
12 248 573 8 16.05 26 1081 2337 5 612.22
13 288 660 4 10.88 27 1163 2508 7 518.92
14 331 753 6 20.77 28 1248 2685 5 789.41
15 377 852 7 30.12 29 1336 2868 4 475.52
16 426 957 6 34.38 30 1427 3057 7 4213.50
17 478 1068 5 37.40 31 1521 3252 4 784.34
18 533 1185 10 91.17 32 1618 3455 6 4659.64
19 591 1308 4 47.61 33 1718 3660 5 1130.44
20 652 1437 5 83.66 34 1821 3877 2 630.53
21 716 1572 4 289.48 35 1927 4092 6 1799.36

step length control failed to solve this type of problem. Thequadratic rate of con-
vergence of the SSP method anticipated by the theoretical results could not be
observed in the numerical experiments. One reason is that the solutionsXC , XG,
P , S of (68) were computed to high accuracy where rounding errorssignificantly
perturbed the solutions of the subproblems. Moreover, due to the convexification
used, quadratic convergence is no longer guaranteed by the theoretical results of
this paper.

10 Concluding remarks

We have discussed the SSP method, which is a generalization of the SQP method
for standard nonlinear programs to nonlinear semidefinite programming problems.
Such a generalization has already been studied in [12]; the main differences be-
tween our approach and the one in [12] are the motivation and the analysis. For
the derivation of the SSP method, we have chosen a motivationthat contrasts the
SSP method with primal-dual interior-point methods. In interior-point methods
that are applied directly to nonlinear semidefinite programs, the symmetrization
procedure, the linearization, and the convexification are applied in one step. In
our proposed method, these operations are separated, and the choice of the sym-
metrization scheme is shifted to the subproblems. The convergence analysis thus
avoids the consideration of the symmetrization operator. Centering steps are not
needed in this algorithm. Our convergence analysis differsfrom the convergence
analyses of standard SQP methods in that it is based on a sensitivity result for cer-
tain optimal solutions of quadratic semidefinite programs.The derivation of this
sensitivity result is also of independent interest.

Acknowledgements We would like to thank two anonymous referees whose constructive com-
ments helped us to improve the presentation of the paper.
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