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1 Introduction

In recent years, interior-point methods for solving lineamidefinite programs
(SDPs) have received a lot of attention, and as a resulte thethods are now
very well developed; see, e.g., [36, 38], the papers in [@id,the references given
there. At each iteration of an interior-point method, thenptementarity condi-
tionis relaxed, symmetrized, and linearized. Various swtnization operators are
known. The choice of the symmetrization operator and of¢teexation parameter
determine the step length at each iteration, and thus theesifiy of the overall
method. The computation of the search direction is ofteriehout by forming a
Schur complement matrix. For the HKM search direction [9622] and the NT
search direction [24,25], this matrix is positive definiad this is the essential
property that guarantees a descent property of the seagh®nh the other hand,
for the AHO search direction [2], the Schur complement masrnot symmetric.

In this paper, we are concerned with the solution of nonlirsganidefinite
programs (NLSDPs). We consider an approach that sepatsdmearization
and the symmetrization in a natural way, namely a genetaizaf the sequen-
tial quadratic programming (SQP) method for standard neli programs. Such
a generalization has already been mentioned by Robinsgni#iin the more
general framework of nonlinear programs over convex combgs framework
includes NLSDPs as a special case. While Robinson did nousisimplemen-
tational issues of such a generalized SQP approach, thatrpaggress in the
solution of linear SDPs makes this approach especiallyasting for the solution
of NLSDPs.

We first present a derivation of a generalized SQP methodglyathe se-
guential semidefinite programming (SSP) method, for sglWih.SDPs. In order
to analyze the convergence of the SSP method, we presensitivsgrresult for
certain local optimal solutions of general, possibly nanex, quadratic semidef-
inite programs. We then use this result to derive a selfaioetl proof of local
guadratic convergence of the SSP method under the assushiat the optimal
solution is locally unique, strictly complementary, andisfaes a second-order
sufficient condition. Our analysis avoids the consideratibthe symmetrization
operator, because we assume that the linear or quadratics8R*oblems are
solved to optimality by using any of the common symmetratechniques.

One of the first numerical approaches for solving a class @DIPs was given
in [27,28]. Other recent approaches for solving NLSDPs heeprogram pack-
age LOQO [39] based on a primal-dual method; see also [4G}ther promising
approach for solving large-scale SDPs is the modified-4amethod proposed
in [18]. This modified-barrier approach does not requirelthgier parameter to
converge to zero, and may thus overcome some of the problelaed to ill-
conditioning in traditional interior-point methods. Fuet approaches to solving
NLSDPs have been presented in [11,12,37]. In [11], the anggdelLagrangian
method is applied to NLSDPs, while the approach proposed2hif based on
an SQP method generalized to NLSDPs. The paper [12] alsaiosrd proof of
local quadratic convergence. However, in contrast to thpgep, the algorithm [12]
is not derived from a comparison with interior-point algoms, and the proof of
convergence does not use any differentiability propedfeke optimal solutions.
In [10], Correa and Ramirez present a proof of global caysece of a modifi-
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cation of the method proposed in [12]. The modification erpploertain merit
functions to control the step lengths of the SQP algorithm.

The remainder of this paper is organized as follows. In $ac®, we intro-
duce some notation. In Section 3, we describe a class ofmearlisemidefinite
programs that arise in passive reduced-order modelingetti@ 4, we recall
known results for linear SDPs in a form that can be easilysfieemed to NLSDPs.
In Section 5, we discuss primal-dual systems for NLSDPs,iar&Eection 6, the
SSP method is introduced as a generalized SQP method. liois&ctve present
sensitivity results, first for a certain class of quadraiS, and then for general
NLSDPs. Based on these sensitivity results, in Section &jiwea self-contained
proof of local quadratic convergence of the SSP method. tti&e9, we present
results of some numerical experiments. Finally, in Secti@rwe make some con-
cluding remarks.

2 Notation

Throughout this article, all vectors and matrices are asslim have real entries.
As usual,Y” = [y;;] denotes the transpose of the mafrix= [y;;]|. The vector

norm ||z := V2T is always the Euclidean norm afjdf || := max -1 [|Yz|| is

the corresponding matrix norm. For vectarg R™, z > 0 means that all entries

of = are nonnegative, arfdiag(x) denotes the: x n diagonal matrix the diagonal

entries of which are the entries of Then x n identity matrix is denoted by,.
The trace inner product on the space of realm matrices is given by

(2Y):=ZoY :=trace(Z"Y) =D zijyij
i=1j=1

for any pairy’ = [y;;] andZ = [z;;] of n x m matrices. The space of real sym-
metricm x m matrices is denoted h§™. The notationY” > 0 (Y = 0) is used to
indicate that” € S™ is symmetric positive semidefinite (positive definite).
Semidefiniteness constraints are expressed by means akveltred func-
tions fromR™ to ™. We use the symbaH : R” — §™ if such a function is
linear, and the symbaB : R" — S§™ if such a function isionlinear.
Note that any linear functiosl : R™” — S™ can be expressed in the form

Alz) =) 2,AD forall zeR", (1)
=1
with symmetric matriced) € S™,i=1,2,...,n. Based on the representation (1)

we introduce the norm )
4= (Y ]40]7) @
=1

of A. The adjoint operatad* : S™ — R™ with respect to the trace inner product
is defined by

(A(x),Y) = (z,A*(YV)) =27 A*(Y) forall zeR" and Y eS™.
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It turns out that

AL oY
A (Y) = : forall Y es™. (3)
A" oY

We assume that nonlinear functiofsR” — S™ are at least?-differentiable.
We denote by

0

2
B(z) and B9 (z) =3 aa B(x), 4,j=1,2,...,n,
LiO0T

B9 (z):

the first and second partial derivatives ®f respectively. For each € R", the
derivativeD, B atx induces a linear functio®, B(z) : R — S§™, which is given

by

D,B(z)[Ax]:= Y (Ax);BY(x) e S™ forall AzeR™
i=1

In particular,
B(x+ Az) = B(x) + D, B(x)[Az], Az eR",

is the linearization oB3 at the pointc. For any linear functiomd : R® — S™, we
have

D, A(z)[Az] = A(Az) forall z, Az e R™. 4)
We always use the expression on the right-hand side of (44oribe derivatives
of linear functions.

We remark that for any fixed matriX € S™, the mapz — B(z)eY is a
scalar-valued function of € R™. Its gradient at: is given by

BM(z)eY
V. (B(x)eY) = (D, (B(z)eY))" = : ER™ (5)
BM(z)eY

and its Hessian by

B(lal)(x) oY --. B(lvn) (CE) oY
V2(B)ev)= | o Jesn

B(nal)(x) oY ... B(nvn) (CE) oY

In particular, for any linear functios : R™ — S™, in view of (1), (3), and (5), we
have

V. (A(z) oY) = A*(Y). (6)
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3 An application in passive reduced-order modeling

We remark that applications of linear SDPs include relaxetiof combinatorial
optimization problems and problems related to Lyapunoctions or the pos-
itive real lemma in control theory; we refer the reader t3[8, 14,36,38] and
the references given there. In this section, we describgplication in passive
reduced-order modeling that leads to a class of NLSDPs.

Roughly speaking, a system is called passive if it does notigee energy. For
the special case of time-invariant linear dynamical systgrassivity is equivalent
to positive realness of the frequency-domain transfertfan@ssociated with the
system. More precisely, consideansfer function®f the form

Zn(s) = BY (G+sC) "By, seC, ©)

whereG, C € R"*"™ and By, By € R"*™ are given data matrices. The integer
is thestate-space dimensiaf the time-invariant linear dynamical system, and
is the number of inputs and outputs of the system. In (7), thgirpencilG + sC
is assumed to beegular, i.e., the matrixG + sC' is singular for only finitely many
values ofs € C. Note that7,, is anm x m-matrix-valued rational function of the
complex variable € C.

In reduced-order modelingne is given a large-scale time-invariant linear dy-
namical system of state-space dimensidnand the problem is to construct a
‘good’ approximation of that system of state-space dinmmnsi< N; see, e.g.,
[13] and the references given there. If the large-scaleesy$$ passive, then for
certain applications, it is crucial that the reduced-omedel of state-space di-
mensionn preserves the passivity of the original system. Unfortelyasome of
the most efficient reduced-order modeling techniques dmreserve passivity.
However, the reduced-order models are often ‘almost’ passind passivity of
the models can be enforced by perturbing the data matricék®aohodels. Next,
we describe how the problem of constructing such pertuwhatieads to a class
of NLSDPs.

An m x m-matrix-valued rational functio is calledpositive realif the fol-
lowing three conditions are satisfied
() ZisanalyticinC; :={s€C|Re(s)>0};

(i) Z(3) =Z(s)forall s eC;
(i) Z(s)+ (Z(3)" =oforallseC,.

For functionsZz,, of the form (7) positive realness (and thus passivity of the
system associated witti,) can be characterized via linear SDPs; see, e.g., [3,14]
and the references given there. More precisely, if the tiG&P

PTG+G"P -0,
P'C=0TP >0, (8)
PTB; = By,
has a solutior® € R"*", then the transfer function (7%,, is positive real. Con-

versely, under certain additional assumptions (see [p#Bitive realness of,,
implies the solvability of the linear SDP (8).
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Now assume tha¥f,, in (7) is the transfer function of a non-passive reduced-
oder model of a passive large-scale system. Our goal is torpesome of the
data matrices in (7) so that the perturbed transfer funétigrositive real. For the
special casen = 1, such an approach is discussed in [5]. In this case, there is a
simple eigenvalue-based characterization [4] of positdadness. However, this
characterization cannot be extended to the generalieasel. Another special
case, which leads to linear SDPs, is described in [9].

In the general case > 1, we employ perturbation¥ ; and X of the matri-
cesG andC in (7). The resulting perturbed transfer function is thethef form

Zn(s) =By (G+ Xa+s(C+Xc)) ' B, ©)
and the problem is to construct the perturbatidiRsand X~ such thatz,, is pos-

itive real. Applying the characterization (8) of positivainess to (9), we obtain
the following nonconvex NLSDP:

PTG+ Xg)+(G+Xe)'P =0,
PT(C+Xeo)=(C+Xe) P 0, (10)
PTB, = B,.

Here, the unknowns are the matridBsX ¢, X € R™*™. If (10) has a solution
P, X, X¢, then choosing the matricesg and X as the perturbations in (9)
guarantees passivity of the reduced-order model given éytrinsfer function
I

4 Linear semidefinite programs

In this section, we briefly review the case of linear semidifiprograms.
Given a linear functiod : R — 8™, a vector € R", and a matribxC € 8™,
a pair of primal and dual linear semidefinite programs is de\is:

maximize CeY subjectto Y eS8™, Y =0,

A (V) +b=0, (11)

and

minimize b7z subjectto xeR",

Alz)+C =0. (12)

We remark that this formulation is a slight variation of tha@rslard pair of primal-
dual programs. We chose the above version in order to fatglihe generalization
of problems of the form (12) to nonlinear semidefinite progsdn standard form.

If there exists a matri¥” > 0 that is feasible for (11), then we cafl strictly
feasible for (11) and say that (11) satisfies Slater's camdit_ikewise, if there
exists a vector: such thatA(z) + C < 0, then we call (12) strictly feasible and
say that (12) satisfies Slater’s condition.

The following optimality conditions for linear semidefiaiprograms are well
known; see, e.g., [33]. If problem (11) or (12) satisfies &fatcondition, then
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the optimal values of (11) and (12) coincide. Furthermoten iaddition both
problems are feasible, then optimal solutidrig*® and z°P* of both problems
exist andY” := Y°P* andz := x°P! satisfy the complementarity condition

YS=0, where S:=-C-A(z). (13)

Conversely, ifY and z are feasible points for (11) and (12), respectively, and
satisfy the complementarity condition (13), thEPPt := Y is an optimal solution
of (11) andz°Pt := z is an optimal solution of (12).

These optimality conditions can be summarized as folloWprdblem (12)
satisfies Slater’s condition, then for a point R™ to be an optimal solution of
(12) it is necessary and sufficient that there exist mati¢es0 and.S = 0 such
that

Ax)+C+S =0,
A*(Y)+b=0, (14)
YS=0.

Note that, in view of (6), the second equation in (14) can aksavritten in the
form

Vo ((A@2)+C) oY) +b=A*(Y)+b=0. (15)

Furthermore, the last equation in (14) is equivalent toytammetric form,Y'S +

SY = 0; see, e.g., [2]. In the case of strict complementarity, thavdtives of
YS=0andY S+ SY =0 are also equivalent. For later use, we state these facts
in the following lemma.

Lemmal LetY, S € S8™.
a)lf Y =0or S*>0,then

YS=0 <« YS+SY=0. (16)

b) If Y andS are strictly complementary, i.e, S = 0,YS =0,andY +.5 >~ 0,
then for anyY’, S € S™,

YS+YS=0 <= YS+YS+SY+S8Y=0. (17)

MoreoverY, S have representations of the form

10| 7 007
Y—U[OJU, S—UkSJU, (18)

whereU is anm x m orthogonal matrixy; >~ 0 is ak x k diagonal matrix, and
Sa = 0isan(m—k) x (m— k) diagonal matrix, and any matricas, S € S™
satisfying(17) are of the form

o Yl }/3 T Y 0 513 T ' ' -
Y_U[YBT O}U ) S—U{SBTS2 U*, where Yi55+Y35,=0.
(19)
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Proof The equivalence (16) is well known; see, e.g., [2, Page 749].

We now turn to the proof of part b). The strict complemenyeoit Y and .S
readily implies thaly” and.S have representations of the form (18); see, e.qg., [20,
Page 62]. Then, any matric&s S € S™ can be written in the form

S b R Y R 1T
Y_U[YgTYJU’ S_U{SBTSQ]U, (20)
whereU is the matrix from (18) and the block sizes in (20) are the sasia (18).

Using (18), it follows that the matrices (20) satisfy the ation on the left-
hand side of (17) if, and only if,

V181 =0, VaSy=0, Y1S3+4Y35,=0.
SinceY; andS; are in particular nonsingular, these relations are eqemntab
$1=0, Ya=0, Y1S95+Y35,=0. (21)

Similarly, using (18), it follows that the matrices (20) isét the equation on the
right-hand side of (17) if, and only if,

Y181+ 511 =0, YaSy+S,Ya=0, Y183+ Y35, =0.

SinceY; = 0 andS, > 0, these relations are also equivalent to (21). Thus, we have
established the equivalence of the two equations in (17thEtmore, in view

of (20) and (21), any solutions of (17) are indeed of the foi®)(and the proof

is complete. O

5 Nonlinear semidefinite programs

In this section, we consider nonlinear semidefinite programmich are extensions
of the dual linear semidefinite programs (12).

Given a vectob € R™ and a matrix-valued functiod : R® — S&™, we consider
problems of the following form:

minimize b’z subjectto z € R",

B(x) < 0. (22)

Here, the functior3 is nonlinear in general, and thus (22) represents a class of
nonlinear semidefinite programs. We assume that the fundties at leastC?-
differentiable.

For simplicity of presentation, we have chosen a simple fofproblem (22).
We stress that problem (22) may also include additionalineat equality and
inequality constraints. The corresponding modificatiamsdetailed at the end of
this paper. Furthermore, the choice of the linear objedtivetion v” = in (22)
was made only to simplify notation. A nonlinear objectivadtion can always
be transformed into a linear one by adding one artificialal#lé and one more
constraint. In particular, all statements about (22) is raper can be modified so
that they apply to additional nonlinear equality and indiquaonstraints and to
nonlinear objective functions.



Nonlinear semidefinite programming 9

Note that the class (22) reduces to linear semidefinite progrof the form
(12) if B is an affine function.
The LagrangiarC : R™ x S™ — R of (22) is defined as follows:

L(z,Y):=b"z+B(z)eY. (23)
Its gradient with respect te is given by
9(x,Y) =V, L(x,Y)=b+V,(B(x)eY) (24)
and its Hessian by
H(2,Y):=V2L(2,Y)=V2(B(z)eY). (25)

If the problem (22) is convex and satisfies Slater’'s condif&1], then for each
optimal solutionz of (22) there exists am x m matrixY = 0 such that the pair
(z,Y) is a saddle point of the Lagrangian (238),

More generally, for nonconvex problems (22), e R™ be a feasible point
of (22), and assume that the Robinson or Mangasarian-Friteamnstraint qual-
ification [21,30,31] is satisfied at, i.e., there exists a vectatz # 0 such that
B(z) + D,B(z)[Az] < 0. Then, ifz is a local minimizer of (22), the first-order
optimality condition is satisfied, i.e., there exist magst’, S € S™ such that

B(z)+S=0,
9(z,Y) =0,
26
YS=0, (26)
Y, S > 0.

The system (26) is a straightforward generalization of th&neality conditions
(14) and (15), with the affine functiad(z) + C in (15) replaced by the nonlinear
functionB(x).

Primal-dual interior-point methods for solving (22) rolygiproceed as fol-
lows. For some sequence of duality parametgrs- 0, 1 — 0, the solutions of
the perturbed primal-dual system,

B(xz)+S=0,
9(z,Y) =0,
27
YS:MkIma ( )
Y, S0,

are approximated by some variant of Newton’s method. Siimcgeneral, New-
ton’s method does not preserve inequalities, the paramgter 0 are used to
maintain strict feasibility, i.eY, S = 0 for all iterates.

The solutions of (27) coincide with the solutions of the sanal logarithmic-
barrier problems for (22). Moreover, the logarithmic-erapproach for solving
(22) can be interpreted as a certain choice of the ‘symnagioz operator’ for
the equationY S = uI,,, in the third row of (27); see Section 6 below. With
this choice, the barrier function yields a very naturalestidn for the step-size
control in trust-region algorithms. The authors have impmated various versions
of predictor-corrector trust-region barrier methods falvsg (22). For a number
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of examples, the running times of the resulting algorithnesencomparable to
the behavior of interior-point methods for convex prograki@wever, the authors
also encountered several instances in which the numbeedtibns for these
methods was very high compared to the typical number oftitera needed for
solving linear SDPs. For such negative examples it may be ificient to solve
a sequence of linear SDPs in order to obtain an approximatgsoof (22). This
observation motivated the SSP method described in the aetibs.

6 An SSP method for nonlinear semidefinite programs

In this section, we introduce the sequential semidefinbg@mming (SSP) meth-
od, which is a generalization of the SQP method for standantimear programs
to nonlinear semidefinite programs of the form (22). For aaraew of SQP
methods for standard nonlinear programs, we refer the reéadé] and the refer-
ences given there.

In analogy to the SQP method, at each iteration of the SSPati@te solves
a subproblem that is slightly more difficult than the lineation of (26) at the cur-
rent iterate. More precisely, Iét*, Y'*) denote the current point at the beginning
of the k-th iteration. One then determines correctigase, AY') and a matrixS
such that

B(z"®) + D.B(z")[Az] + S = 0,
b+ HYAz+V, (B(z") e (YF+AY)) =0,

(YF+AY)S =0, (8)
YF+AY, S = 0.
Here and in the sequel, we use the notation
H" .= H(z"YF). (29)

Recall from (24) and (25) that(x,Y) and H (z,Y") denote the gradient and Hes-
sian with respect ta, respectively, of the Lagrangian (23)(x,Y"), of the nonlin-
ear semidefinite program (22). Moreover, from (24) it foliotiat the linearization
of g(z,Y) at the point(z*,Y*) is given by

g(a"+ A2, YF + AY) m b+ HY Az + V, (B(z") o (YF + AY)).

Thus, the second equation in (28) is just the linearizaticth® second equation
in (26). Furthermore, the first equation of (28) is a strefgttard linearization of

the first equation in (26). This linearization is used in tams way in primal-dual

interior-point methods.

The last two rows in (28) and (26) are identical wHérin (26) is rewritten
asY = Y* + AY. In analogy to SQP methods for standard nonlinear programs,
the problem of how to guarantee the nonnegativity condsaimamely5(x) <
0, is thus shifted to the subproblem (28). If the iteratésgenerated from (28)
converge, then their limit automatically satisfieB(z) < 0.

In contrast, interior-point methods use perturbationsyrsgtrizations, and lin-
earizations for the last two rows in (26), resulting in cherdjnear subproblems
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that are typically less ‘powerful’ than the subproblems)(28hen using (28),
both the problem of choosing a suitable symmetrizationmehand the problem
of how to guarantee the nonnegativity constraints areeshift the subproblem
(28).

Note that the conditions (28) are the optimality conditiforsthe problem

minimize b7 Az + %(Ax)THkAx subjectto Az € R™, (30)

B(z"*) + D,B(z"*)[Az] < 0.

The conditions (28) and (30) have been considered in [31atmps (2.1) and
(2.2)], with the remark that they have “been found to be arr@myate approxi-
mation of” (22) “for numerical purposes”.

In order to be able to solve the subproblem (28) efficientlypiiactice, one
replaces the matri¥/* in (28), respectively (30), by a positive semidefinite ap-
proximationH* of H*. As in the case of standard SQP methods, a BFGS update
for the Hessian of the Lagrangian (23),can be used to approximatg’ by some
positive semidefinite matri¥/*. Given an estimaté/*~! of H*~! for the previ-
ous, (k — 1)-th, SSP iteration, the quasi-Newton condition to genesaBFGS
updateH* approximating the matrix/* for the current/-th, SSP iteration can
be derived as follows:

H* Az =V, (B(z") e Y*) =V, (B(z"") e Y*)
=V, L(2F,YF) =V, L(zF 1 YF) (31)
~ Viﬁ(x’ﬂYk) (ZCk — :Ckfl).

If #*—1 is positive semidefinite, the BFGS update with the above itiondcan
be suitably damped such th&t" is also positive semidefinite; see, e.g., [29]. At
each iteration of the SSP method, problem (30) is solved Withreplaced by
the matrix H* that is obtained by the BFGS update df—! from the previous
SSP iteration. Iff* is positive semidefinite, problem (30) essentially reduoes
linear SDP, since the convex quadratic term in the objedtimetion can be writ-
ten as a semidefiniteness constraint or a second-ordereomstraint. While the
formulation as a second-order-cone constraint is moreeiticand for example,
can be specified as input for the program package SeDuMi {3dider to solve
(30), it was pointed out by [26] that it may be most efficientuse a program
that is designed for SDPs with linear constraints and a coguadratic objective
function.

It seems that many results for standard SQP methods carryrogestraight-
forward fashion to the SSP method. For example, the SSP nhetuo be aug-
mented by a penalty term in case that the subproblems (3@nieinfeasible.
In this case, the right-hand side$)’; of the first three rows in (28) are replaced
by weaker, penalized right-hand sides. Moreover, the ageviee analysis of the
method proposed in [10,12] yields results that are compatatthe ones for stan-
dard SQP methods.

The standard analysis of quadratic convergence of SQP aefbononlinear
programs that satisfy strict complementarity conditiorecpeds by first showing
that the active constraints will be identified correctly hretfinal stages of the
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algorithm and then using the equivalence of the SQP itaradiml the Newton
iteration for the simplified KKT-system in which only the aet constraints are
used.

For nonlinear semidefinite programs the situation is sljghiore complicated
since it is difficult to identify active constraints. The gajl2] presents a proof
thatis based on a new approach by Bonnans et al. [7] and usesgemeral results
due to Robinson [31]. This approach does not require stoictagtementarity, and
it allows the use of approximate Hessian matrices in (31).

In the next two sections, we present a more elementary afiddaghined ap-
proach to analyze convergence of the SSP method under tecstmiplementarity
condition.

7 Sensitivity results

In this section, we establish sensitivity results, firsttfar special case of quadratic
semidefinite programs and then for general nonlinear sémitéeprograms of the
form (22). More precisely, we show that strictly complenagptsolutions of such
problems depend smoothly on the problem data.

We start with quadratic semidefinite programs of the form

minimize f(z) subjectto z eR",

A(z)+C =< 0. (32)

Here, A : R" — 8™ is a linear functionC' € ™, andf : R® — R is a quadratic
function defined byf (z) = b« + 127 Hz, whereb € R" andH € S". Note that
we make no further assumptions on the ma#fiXThus, problem (32) is a general,
possibly nonconvex, quadratic semidefinite program.

The problem (32) is described by the data

D:=[Ab,C, HI (33)

In Theorem 1 below, we present a sensitivity result for tHetims (32) when the
dataD is changed t® + AD where

AD = [AA, Ab, AC, AH| (34)

is a sufficiently small perturbation. We use the norm

DI = (IAI1* + [1p1* + I1C11* + [ H11%) ?

for data (33) and perturbations (34). Recall thal| is defined in (2).
We denote by

LD(2Y) = f(z)+ (Az)+C) oY

the Lagrangian of problem (32). Note that. f () = b+ Hx. Together with (6),
it follows that

VoL (2,Y)=b+ He+ A*(Y) and V2L (z,Y)= H.
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Recall that problem (32) is said to satisfy Slater's condiitif there exists a
vectorz € R™ with A(z) + C < 0. Moreover, the tripl€z,Y", S), wherez € R
andY, S € 8™, is called astationary pointof (32) if

A(z)+C+ S5 =0,
b+Hz+A*(Y) =0,
YS+SY =0,

Y, 0.

(35)

95
Y

Here, we have used equivalence (16) of Lemma 1 and replgceé 0 by its
symmetric version, which is stated as the third equation3s).(If in addition
to (35), one has

Y450, (36)

then(z,Y,S) is said to be a&trictly complementargtationary point of (32).

Letz € R™ be a feasible point of (32). We say tha& R™, h # 0, is afeasible
directionatz if x = Z+ ¢h is a feasible point of (32) for all sufficiently smalt> 0.
Following [31, Definition 2.1], we say that treecond-order sufficient condition
holds atz with modulusy > 0 if for all feasible directionsh € R™ at & with
hT(b+ Hz) =hTV,f(Z) =0 one has

W' Hh=h" (VZLD(2,Y))h > pl|h|. (37)
After these preliminaries, our main result of this sectian be stated as follows.

Theorem 1 Assume that probler{82) satisfies Slater’'s condition. Let the point
(z,Y,S) be a locally unique and strictly complementary stationaoynp of (32)
with data(33), D, and assume that the second-order sufficient conditiorshetlgl
with modulus: > 0. Then, for all sufficiently small perturbatioi§34), AD, there
exists a locally unique stationary poii(D + AD),Y (D + AD),S(D + AD))

of the perturbed progran§32) with dataD + AD. Moreover, the poin(:E(DJr
AD),Y (D + AD),S(D + AD)) is a differentiable function of the perturbation
(34), and for AD = 0, we have(z(D),Y (D),S5(D)) = (z,Y,5). The derivative

Dp(z(D),Y (D),S(D)) of (z(D),Y(D),S(D)) with respect toD evaluated at

(z,Y,S) is characterized by the directional derivatives
(#,Y,5) := Dp(2(D),Y (D),5(D)) [AD]
forany AD. Here(z, Y, S) is the unique solution of the system of linear equations,

A(d) + S = —AC— AA(z),
Hi+ A*(Y)=—-Ab— AHZ — AA*(Y), (38)
YS+YS+SY +8Y =0,
for the unknowns: € R*, Y, § € ™. Finally, the second-order sufficient condi-
tion holds atz(AD) whenevelAD is sufficiently small.
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Remark 1Theorem 1 is an extension of the sensitivity result for Imsemi-
definite programs presented in [15]. A related sensitiaguit for linear semidef-
inite programs for a more restricted class of perturbatibosalso under weaker
assumptions, is given in [35]. A local Lipschitz continujpyoperty of unique
and strictly complementary solutions of linear semidedimitograms is derived
in [23]. A weaker form of second-order necessary and suffica®nditions is
given in Theorem 9 in [32]. Furthermore, in Theorem 11 of [3BE directional
derivativez is expressed as the solution of a certain quadratic program.

Remark 2While we did not explicitly state a linear independence ¢@ist qual-
ification, commonly referred to as LICQ, itis implied by owrdlition of unique-
ness of the stationary point; see, e.g., [15]. Moreover, asgumptions on the
stationary pointz,Y,S) imply thatz is a strict local minimizer of (32).

Remark 3The first and third equations in (38) are symmetric m matrix equa-
tions, and so only their upper triangular parts have to besidened. Thus, the
total number of scalar equations in (38)ig + m +n. On the other hand, there
arem? +m +n unknowns, namely the entries #fc Re” and of the upper trian-
gular parts oft’, S € S™. Hence, (38) is a square system.

Remark 41n view of part b) of Lemma 1, the last equation of (38) is eqléwnt
to

Y S+Y S=0. (39)
Thus, Theorem 1 can be stated equivalently with (39) in (38)vever, the result-
ing system of equations (38) would then be overdetermined.

Proof (Theorem 1Y he proof is divided into four steps.

Step 1.In this step, we establish the following result. If the pdsed program
has a local solution that is a differentiable function of fregturbation, then the
derivative is indeed a solution of (38).

Slater’s condition is invariant under small perturbatiafishe problem data.
Hence, if there exists a local solutian+ Az, S+ AS of the perturbed problem
nearz, S, then the necessary first-order conditions of the pertupbedlem apply
atz + Az, S+ AS, and state that there exists a matfiX” such that” + AY > 0,
S+ AS =0, and

(A+AA)(Z+ Az)+C+ AC+ 85+ AS =0,
b+ Ab+ (H+ AH)(Z+ Az) + (A" + AA*) (Y + AY) =0, (40)
(Y + AY)(S + AS) + (S+ AS)(Y + AY) = 0.
Subtracting from these equations the first three equatib(85p yields
(A+ AA)(Az)+ AS = —AC — AA(z),
(H+AH)Az + (A" + AA*)(AY) = —Ab— AHZ — AA*(Y),  (41)
Y AS+AY S+ ASY +SAY = —AY AS — AS AY.
Neglecting the second-order terms in (41), and using (3®8)phtain the result

claimed in (38). It still remains to verify the existence atifferentiability of Az,
AY, AS.
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Step 2.In this step, we prove that the system of linear equationsh{&8 a unique
solution. To this end, we show that the homogeneous verdidB8), i.e., the
system

A(#)+8 =0,
Hi+ A*(Y) =0, (42)
YS+YS+SY +SY =0,
only has the trivial solutios: =0, Y = S = 0.

Leti € R, Y, S € S™ be any solution of (42). Recall that, in view of part b)
by Lemma 1 we may assume thatand.S are given in diagonal form:

_ [0l 5 [oo
Y‘[o o}’ S‘[OSJ’ (43)
whereY;, S, = 0 andY;, S, are diagonal. o
Indeed, this can be done by replacing, in (42),5, Y, S, A(z) by UTYU,
UTSU,UTYU, UTSU, UT A(x)U, respectively, wheré is the matrix in (18),
and then multiplying the first and third rows from the lefttGyand from the right

by U”. Furthermore, in view of part b) by Lemma 1, any matride§ € S™
satisfying the last equation of (42) are then of the form

. i v . [0 S Ca o
Y = [YBT O]’ S = {SBT 5‘2]’ where Y35, +Y7.55=0. (44)
Next, we establish the inequality

& Hi > pl|#]]?, (45)

wherep > 0 is the modulus of the second-order sufficient condition.(38sume
thatz # 0. Letz € R™ be a Slater point for problem (32). This guarantees that

= —(A(@)+C) =0, (46)

| My M3
M= [Ms MJ

where the block partitioning/ is conforming with (44). For > 0, set
hy=i+nE—z) and h, =—i+n(E—1I). 47)

Sincez # 0, there exists ang > 0 such thamjf # 0 forall 0 < n <mny. Next, we
prove that for all suchy, both vectorsh;r andh,, are feasible directions for (32) at
Z. Let0 < n <ng be arbitrary, but fixed. We then need to verify thﬁthrehff) +

C =0 for all sufficiently smalle > 0. Recall thatA is a linear function. Using
(47), (43), (44), (46), the first equation of (35), and thet fguation of (42), one
readily verifies that

AT +ehi)+C = (1—en)(A@)+C) +en(A(F) + C) £ eA(d)

=~ (o8] el n(ﬁféfisj) ‘o

+
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Recall thaty > 0 is fixed. Since, by (43) and (46§, = 0 and M > 0, a stan-
dard Schur-complement argument shows that the matrix orighehand side of
(48) is negative definite for all sufficiently small> 0. Thus, the vectors (47) are
feasible directions for (32) atfor anyn > 0. This in turn implies

iT(b+Hz) =TV, f(z)=0. (49)

Indeed, suppose that V. f(z) < 0. Then, for sufficiently smaly > 0, the feasi-
ble directionh;F also satisfieﬁh,j)TVIf(:‘c) <0, and thush;* is a descent direc-
tion for the objective functiory of (32) at the pointz. This contradicts the local
optimality of z. Likewise, ifi”V,, f () > 0, then, for sufficiently smalj > 0, h,;
is a descent direction for the objective functigrof (32) at the pointz, leading
to the same contradiction. The second-order sufficientiiond37) also holds
true on the closure of the feasible directions. Sinde the limit of the feasible
directions (47) form — 0 andz satisfies (49), the inequality (45) follows from (37).
Next recall from (43) that; and S, are positive definite diagonal matrices.
The last relation in (44) thus implies that correspondingies of the matrice¥;
andsSs are either zero or of opposite sign. It follows thi#g, S5) < 0, and equality
holds if, and only if, Y3 = S5 = 0. Using this inequality, together with the first two
relations in (44), the first two equations of (42), and (4%5) oceadily verifies that

0>2(Y3,83) = (Y, 5) = —(Y, A(@))
= —(A"(Y), &) = (Ha, &) = & Hi > pl| 2.
Sincep > 0, this implies
£=0 and Y;=S5;=0. (50)
By the first row of (42), it further follows that

S =—A(x) = —A(0) = 0. (51)
Thus, it only remains to show that = 0. In view of (44) and (51), we have
- Yl 0
y - [O O] . (52)

Now suppose thai; # 0. Then, by (43) and (52), we have
YV.:=Y+¢V =0 and Y. 4Y

for all sufficiently smalle|. Moreover, using (35), (42), and (51), one readily veri-
fies that the pointz, Y-, S) also satisfies (35) for all sufficiently sméd|. This con-
tradicts the assumption thét, Y, S) is a locally unique stationary point. Hence
Y =0 and, by (52)Y = 0.

This concludes the proof that the square system (42) is ngukir.
Step 3.In this step, we show that the nonlinear system (35) has & sotation
that depends smoothly on the perturbati@®. To this end, we apply the implicit
function theorem to the system

A@@)+C+S=0, Hr+b+A*(Y)=0, YS+SY=0. (53)
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As we have just seen, the linearization of (53) at the p@int’, S) is nonsingular,
and hence (53) has a differentiable and locally unique Bwi|tz(AD),Y (AD),
S(AD)). Furthermore, we havE (AD), S(AD) = 0. This semidefiniteness fol-
lows with a standard continuity argument: The optimalitydibions of the non-
linear SDP coincide with the optimality conditions of thedarized SDP. Under
our assumptions, the latter one has a unigue optimal soltiat depends con-
tinuously on small perturbations of the data; see, e.g], H&nce the linearized
problem at the data poifi® + AD has an optimal solutio(&,f’,S‘) that satisfies
the same optimality conditions &s(AD),Y (AD), S(AD)). The solution of the
linearized problem also satisfi#s~ 0, S = 0. Since(z(AD),Y (AD),S(AD))

is locally unique, it must coincide witfi, Y, S), i.e.,Y (AD), S(AD) satisfy the
semidefiniteness conditions.

Step 4.In this step, we prove that the second-order sufficient ¢aordis satisfied
at the perturbed solution. Since feasible directibase defined only up to a posi-
tive scalar factor, without loss of generality, one may iegjthat||2|| = 1. For the
unperturbed problem (32), the second-order sufficient itimndat z then states
thath” Hh > p for all h € R™ with A(z+€h) +C < 0,e=¢(h) >0, ||h|| =1, and
hT(b+ Hz) = 0. To prove that the second-order sufficient condition is riiaret
under small perturbationdD of the problem dat®, we thus need to show that
for some fixedz > 0, we have

RY(H+AH)h> i (54)
for all solutionsh € R™ of the inequalities

(A+ AA)(Z(AD) + ¢h) + C+ AC <0, e=e(h) >0,
I =1, AT (b+ Ab+ (H+AH)Z(AD)) = 0.

In view of the first two relations in (40), the above is equéralto

e(A+AA)(h) = S(AD), e=e(h) >0,

_ (55)
|hl=1, hT(A*+AA*)(Y(AD))=0.

It remains to show that the set of solutiohsof (55) varies continuously with
AD. Indeed, for any fixe@ with 0 < i < u, the second-order conditionathen
readily implies that (54) is satisfied for all solutioh®f (55), provided| AD|| is
sufficiently small.

In Step 2, we have shown that bofiiAD) andY (AD) are continuous func-
tions of AD and that the dimension of the null spaceS¢fAD) is constant, namely
equal tok, for all sufficiently small|| AD||. Moreover, the null space df(AD)
varies continuously witkAD.

Let AD,, be a sequence of perturbations wit®, — 0. Let h;, be a sequence
of associated solutions of (55). It suffices to show that asgumulation point
of the sequence,, satisfies (55) forAD = 0 and the associated valugis4 = 0,
Y(0) =Y, S(0) = S. SinceY (AD) and AA* vary continuously withAD, it
follows thath satisfies the last two relations of (55) faD = 0.
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We now assume by contradiction that(h) £ S for anye > 0. SinceS > 0,
this implies that there exists a vectoe R™ with ||z|| =1, 27 A(h)z = ¢ > 0, and
2T Sz = 0. It follows that

2T (A+AA) (hy)z >

DN ™

if k is sufficiently large. Since the null space $fAD) varies continuously with
AD, we have

(24 Azp)TS(ADy) (2 + Az,) =0

for some smalAz;, € R™ whenevet| AD, || is sufficiently small. We now choose
||ADy|| so small, i.e.k so large, that

(z+ Az) T (A+ Adg) (hi) (2 + Azy) > g

This implies that.;, does not satisfy (55), and thus yields the desired contiadic
Henceh satisfies (55) fordD = 0. O

Theorem 1 can be sharpened slightly.

Corollary 1 Under the assumptions of Theorem 1 there exists a small Inaigh
hood of zero in the data space (82) such that for all perturbationg\D € N/

of the problem datg33), D, of (32), there exists a local solutiofica,Y,SA)

of (40) near (z,Y,S), at which the assumptions of Theorem 1 are also satisfied.
Moreover, the second derivatives

V%(CL‘A,YA,SA)[A'D]
of such local solutiongr ,Y A, S4) are uniformly bounded for al\D € V.

Proof The first part of the corollary is an immediate consequencehebrem 1.

For the second part observe that the second derivative analat by differentiat-
ing the system (38). For sufficiently small perturbatiak®, the singular values of
this system are uniformly bounded away from zero, and heresdcond deriva-
tives are uniformly bounded. O

Theorem 1 can be generalized to the class of NLSDPs of the(22jnRecall
that, by (23) and (25), the Lagrangian of (22) and its Hesarargiven by

L(z,Y)=b"z+B(x)eY and H(z,Y)=V2(B(x)eY), (56)
respectively. The generalization of Theorem 1 to proble2@3 is then as follows.

Theorem 2 Let z* be a local solution 0f22), and letY* be an associated La-
grange multiplier. Assume that the Robinson constraintitjoation is satisfied at
z* and that the poin{z*,Y™) is strictly complementary and locally unique. Fi-
nally, assume that the second-order sufficient conditiddshat z* with modulus
1> 0. Then,(22) has a locally unique solution for small perturbations of ttata
(B,b), and the solution depends smoothly on the perturbations.
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Proof First, we define the linear functiod := D,B(z*) : R" — §™, and the
matricesC' := B(z*) and H := H(z*,Y™*). Then, the SSP approximation (30) of
(22) at the pointa*,Y™*) is just the quadratic semidefinite problem

minimize b7 Az + %(A:v)THA:U subjectto Az € R",
A(Az)+C <0.

Note that (57) is a problem of the form (32) with data (33) Moreover,Az := 0,

Y :=Y*, andS := —A(0) — C satisfy the conditions (35). These conditions co-
incide with the first-order conditions of (22), and thus tleéenp(Az, Y, S) is also
the unique solution of (35). Furthermore, the second-asd#icient condition for
(57) and (22) coincide. This condition guarantees thais a locally unique solu-
tion of (57). Finally, the Robinson constraint qualificatifor problem (22) at:*
implies that problem (57) satisfies Slater’s condition. antigular, all assumptions
of Theorem 1 are satisfied. Small perturbatiak® of the data of (22) result in
small changes of the corresponding SSP problem (57). Siheerém 1 allows
for arbitrary changes in all of the data of (57), the claimfe. O

(57)

8 Convergence of the SSP method

In this section, we prove that the plain SSP method with step  is locally
guadratically convergent.
For pairs(z,Y’), wherex e R”, Y € §™, we use the norm

1
(||| == (Nl + 1Y]1%) 2.
The main result of this section can then be stated as follows.

Theorem 3 Assume that the functid®in (22) is C3-differentiable and that prob-
lem(22) has a locally unique and strictly complementary solutigny’) that sat-
isfies the Robinson constraint qualification and the secandé+ sufficient condi-
tion with modulusu > 0, cf. (37). Let some iteratéz*,Y'*) be given and let the
next iterate

(L YR = (2 YF) + (Az, AY)

be defined as the local solution (#8), or, equivalently(30), that is closest to
(z*,Y*). Then there exist> 0 andy < 1/e such that

(@1 Y — (2,7)]] < 4]|(a*, YF) - (@.7)]|
whenevet|(z*,Y*) - (2,Y)| <.

Proof The proof is divided into three steps. In the first step, waldigh the exact
relation of problems (30) and (32). In a second step, we densi point:* nearz.

We show that:* is the optimal solution of an SSP subproblem the data of which
is at mostO(||z* — z||) away from the data of the SSP subproblentzal’). We
remark that:* is always the optimal solution of thg — 1)-th subproblem, but
the data of this subproblem li€¥(||z*~* — z||) away from the SSP subproblem at
(z,Y). In a third step, we then show by a perturbation analysisttigatorrection
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Az = 21 — zF is of sizeO(||z* — z|| + ||Y* — Y|) and that the residual for the
SSP subproblem in th@ + 1)-th step is of size)((||z* — z|| + || Y* - Y||)?).

Step 1.We first show how the SSP subproblem (30) can be written indhma f
(32). To this end, we define the linear functigh.= D, B(z*) : R — &™, and
the matricesC := B(z*) and H := H(z*,Y*). Note that the linear constraint
A(Azx)+C < 0is just the linearization of the nonlinear constradtt” + Az) <0
about the point*. Finally, letb be as in (22). The SSP subproblem (30) then
takes the simple form (57), and in particular, it conformgtwthe format (32) of
Theorem 2.

Step 2.Let any pointz* close toz be given. We show that\z = 0 is a local
solution of a problem of the form (57), where the data is ‘eld® the data of
(30) at(z,Y). Let AC := B(z) — B(«"). By continuity of B, || AC|| is of order
O(||z* — z)). Let

Ab:= -V, (B(z*)eY) —b=—A*(Y)—b.

From (24) and the second row of (26), it follows thjatb|| = O(||z* — z|)). More-
over, the poin{0,Y", S) satisfies the first-order conditions,

A0)+C+AC+S=0, b+Ab+H-0+A*(Y)=0, YS=0,
for the quadratic semidefinite program
minimize (b + Ab)T Az + %(Ax)THAa: subject toAx € R",
A(Az)+C+ AC < 0.

(58)

Let
A:=D,B(Z), b:=b, C:=B(z), H:= Viﬁ(a‘:,?), (59)

be the data of the SSP subproblem (30) at the pairit ). Then, the data of (58)
differs from the data (59) by a perturbation of no@f||z* — z|| + ||[Y* - Y).
Here, the termj|Y'* — Y|| reflects the fact thatl and H also differ by the choice
of Y. Note that the pointAz,Y, S) = (0,Y, S) satisfies the first-order optimality
conditions,

A(Az)+C+S=0, b+HAr+A*(Y)=0, YS=0, (60)

of the quadratic problem (57) with data (59). As shown in Teen2, the assump-
tions for the nonlinear SDP (22) &t,Y") imply that problem (57) with data (59)
satisfies all conditions of Theorem 2(@tY’, S).

Since the second-order sufficient condition depends contisly on the data
of (32), it follows that for (58), the second-order conditiat(0,Y, S) is satisfied,
provided that|z* — z|| and||Y* — Y| are sufficiently small. Thus, problem (58)
fulfills all assumptions of Theorem 2.

Step 3.By definition, (Az,Y) = (0,Y) is the optimal solution (with associated
multiplier) of (58). Let(x*,Y*) be close tqz,Y). The SSP subproblem replaces
the datadb and AC of (58) by 0 (of the respective dimension). Thus, the data of
(58) is changed by a perturbation of ordef||z* — z| + ||[Y* — Y|). We assume
that this perturbation lies in the neighborhodd about zero as guaranteed by
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Corollary 1. Denote the optimal solution of the SSP submwbby (Axz,Y +
AY).
The SSP subproblem is then used to defirfe !, Y*+1). Let

AT =D, Bz*), ¢t =B, HY =viL@EF YR

be the data of the SSP subproblem at the riéxt; 1)-th, iteration.
Corollary 1 states thdtAz, AY') are given by the tangent equations (38) plus
some uniformly bounded second-order terms. Thus;, AY') are of the order

O(||a* — Z|| + ||[Y* — Y||). Here, AY is a correction of the unknown poirit,
while the correctiomY = Y*+! —Y* produced by the SSP subproblem has the
form AY = AY +Y —Y*. Obviously, also the norfiAY || of this correction is
of the orderO(||z* —z| + |[Y* - Y)).

Next, we compute an upper bound on the size of the residualedfrst and
second equations in (60) @t* ! Y*+1 gk+1) Note that the residual term of the
third equation in (60) is zero. By definition 6fAz, Y*+1, S*+1) it follows that

A(Az)+C+ 81 =0, b+HAz+ A (Y =0, YFIGHT -0, (61)
If the data of (22) is”3-smooth, this implies that
(AT (V) +b
= A" (YR 4 b4 A4 (YR
= —HAz+ AA*(Y®) + AA*(AY)
=—V2(B(z*) e Y*) Az + (V. B(2" + Az) — V,B(z")) ¢ Y* + AA*(AY)
= O(|Az|]? + | AY |1?),
whereAA := AT — A. Likewise, it follows from (61) that

OF 4+ 81 = AC+C + S = AC — A(Ax)
= B(z"*") = B(a") — D, B(z")[Az] = O(|| Az|?),

whereAC := C* — C. Hence, we can define perturbatigrendC+ of b andC'+
of order R X B
[b=bll+[[CT = CT|| = O((]a" —z|| +[|Y* = Y)?)

such tha{ Az,Y, S) = (0,Y**1 S*+1) is an optimal solution of the problem (57)
with dataAt, b, Ct, HT. By the same derivation as above, the next SSP step
has lengthO((||z* — z|| + |[Y* — Y|)?), and thus it generates residuals of order
O((||l=* —z|| +||[Y* - Y|))*). Repeating this process, a standard argument shows
that ||z**! — z|| and ||[Y*+! — Y| are of orderO((||z* — z| + ||Y* - Y))?) as
well. O

Remark 5As mentioned before, one will typically choose to solve SEBpsob-

lems with a positive semidefinite approximatidh to the Hessian of the La-
grangian. A proof of convergence for such modifications ésghbject of current
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research; see, e.g., [10]. Since all the data enters in ancowis fashion in the pre-
ceding analysis, it follows that the SSP method with step eize is still locally
superlinearly convergent if the matricé&® in (29) are replaced by approxima-
tions H* with | H* — H*|| — 0.

Remark 6 The assumption af3-differentiability of the function3 in Theorem 3
can be weakened &’-differentiability and a Lipschitz condition for the Heasi
atz.

The result of Theorem 3 can be extended to the following #iighore general
class of NLSDPs. Given a vectbe R™, a matrix-valued functiod8 : R" — S™,
and two vector-valued functions R™ — R? andd : R™ — RY, we consider prob-
lems of the following form:

minimize b’z subjectto z e R",
B(x) <0,
c(z) <0,
d(x) =0.

(62)

The Lagrangian of problem (22) takes the fomR™ x S™ x RP x R? — R:
L(z,Y,u,v) :=b"z+B(x)eY +ulc(x)+vld(x). (63)
Its gradient with respect te is given by

g('r7 Y’ Iu" U) = VCEL('I7 Y’ Iu" U)

=b+V,(B(x)eY)+ Vyc(zr)u+ Vyd(z)v (64)

and its Hessian by

H(z,Y,u,v) :=V2L(x,Y,u,v)
p q (65)
=V2(B(x)eY)+ Y u;Vici(x)+ Y v;Vid;(x).
i=1 j=1

Note that in (64), the gradients of the vector-valued fwric(x) andd(z)
are defined a¥ ,c(x) := (D,c(x))T andV,d(z) := (D.d(x))T.
For NLSDPs (62), the SSP subproblems are of the form

minimize b7 Az + %(Ax)THkAx subjectto Az € R™,
B(:ck) + DIB(xk)[Ax] =0, (66)

The extension of Theorem 3 to problems (62) is as follows.
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Theorem 4 Assume that the functior ¢, andd in (62) are C3-differentiable,
and that problem(62) has a locally unique and strictly complementary solution
(z,Y,u,v) that satisfies the Robinson constraint qualification and ¢heond-
order sufficient condition with modulys > 0, cf. (37). Let (z*,Y*,u* v*) be
some given iterate, and let the next iterate

(2L YR b Ry = (2R YR R k) 4 (A, AY, Au, Av)

be defined as the local solution (§6) that is closest tqz*,Y* v v¥). Then
there exist > 0 and~y < 1/e such that

||('rk+lvyk+1auk+1vvk+1) - (1_77}75’&31_))“ S FYH('rkaYkaukvvk) - (f7}7,ﬂ71_})H2

whenevet|(z*,Y*, uk o%) — (2,Y,4,7)|| <e.

Proof By our assumption on strict complementarity, all entriethef vectors of

the Lagrange multipliers associated with the equality traingtsd(x) = 0 of (22)

are different from zero. Without loss of generality, we assuhato > 0. Indeed,

for any entrys; < 0 we replace the corresponding constraiptz) = 0 by the
equivalent constraint-d;(z) = 0. These sign changes do not change the iterates
generated by (30). Moreover, fér",Y* u* v*) sufficiently close to(z,Y ,a,v)

it follows from v > 0 that the iterates do not change when the constrd{ats= 0

are replaced by(x) < 0. We can thus assume that 0, i.e., there are no equality
constraints in (62).

We further assume that, without loss of generality, the mdtris augmented
to a2 x 2 block diagonal matrix, where the,2)-block is the diagonal matrix
Diag(c(x)). Thus, for the analysis of the SSP method we may assume that
g=01in(22), i.e., we only need to consider problems of the for@)(2 O

9 Numerical results

In this section, we present results of some numerical exyris with a Matlab
implementation of the SSP method. Actually, our Matlab paogis for a slightly
more general class of nonlinear programs with conic coimsgrdNLCPs). The
numerical experiments with our program illustrate the th&oal results of the
preceding sections. In particular, quadratic convergénobserved for problems
where the HessiaH of the Lagrangian at the optimal solution is positive serhide
inite. In cases wheré/ is not positive semidefinite, our implementation uses per-
turbations of the nonconvex SSP subproblems in order taroltavex conic
subproblems. In these cases, typically, the rate of copvery of the algorithm
based on such perturbed problems is only linear.

The Matlab program generates its search directions byrgpbanic quadratic
subproblems using Version 1.05R5 of SeDuMi [34]. SeDuMowal free and
positive variables as well as Lorentz-cone (‘ice-creameotonstraints, rotated
Lorentz-cone constraints, and semidefinite cone conssraihe NLCPs can also
be formulated in terms of these cones. In order to simpliéyuke of SeDuMi for
the SSP subproblems, the NLCPs are rewritten in the follgwtandard format:

minimize ¢’z subjectto z € K,

F(z)=0. (67)
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Here, K is a Cartesian product of free variables and several conésedfypes
allowed in SeDuMi.

proximationsH of H: a BFGS approach, the Hessian of the augmented Lagrang-

We tested the following techniques for generating posisgeidefinite ap-

ian, and the orthogonal projection &f onto the cone of positive semidefinite
matrices. Our experiences with these techniques are asvkll

1.1

1.1

1.2

1.3

The BFGS approach can result in considerably more S&Riias compared
to the projection of the Hessian of the Lagrangian. Moreotrex BFGS ap-
proach strongly depends on the initial mat#i®. A good choice isH? :=
Vmax(D,el)VT, whereH (2°,Y") = VDV is the eigenvalue decomposi-
tion of H(2°,Y"Y).

The use of the Hessian of the augmented Lagrangian cagedschoice for
some problems, but for most of our test problems the penailtgipeter had
to be very large to obtain a semidefinite Hessian. This, in,tsignificantly
reduced the precision of our computations.

In spite of not being affinely invariant, the use of thejpation of the Hessian
of the Lagrangian resulted in the most efficient overall ethm.

We also tested different step length strategies.

The following penalty line search with a quadratic @mtion gave good re-
sults for all test cases. The SSP subproblem provides aséiaectionAx for
problem (67). By solving a least-squares problem, a vectecomputed sat-
isfying D, F'(x)qg = —F(x + Az). For X € [0,1], a line search along the points
z()\) := .+ M\Ax + \2q is performed based on the penalty function

M F(@N)+cz(N),

whereM > (0 is a penalty parameter.

For some examples, the choice of a filter approach wasthji better. In the
filter approach used here, a Euclidean trust-region radassalways set to be
1.5 times larger than the previous step, and non-accepgtdys were not dis-
carded, but instead an Armijo-type step-length reductias used to generate
an acceptable step. The motivation for this modified filtemtegy lies in the
fact that the computation of a solution of a subproblem iy espensive, and
therefore discarding the solution of a subproblem is awhidée above filter
approach led to very fast convergence, especially for copxablems.

For the examples presented here, the trust-regioroapprwas the best choice.
The SSP subproblem was restricted by an additional Euclitiest-region
constraint. For problems of the form (68) below, it was sidfit to apply the
trust-region constraint only to the variabl&g and.X ¢, while P andS remain
free. For these examples, an additional corrector stejifisigmtly accelerated
the convergence. For this corrector stéfy; and X< are kept fixed, and®
and S are updated by solving an additional linear SDP. At eaclatiten, the
ratio between predicted and actual reduction was compbDiggknding on that
ratio, the step was accepted and the trust region was ired@aslecreased, or
the step was rejected and the trust region was decreased.

For our numerical examples, we use nonlinear nonconvex SDBg form

(10), which we rewrite in the form (68) below. Recall that 0}, G, C € R"*"



Nonlinear semidefinite programming 25

andBj, B, € R™*™ are given data matrices. The nonconvex NLSDP used for the
numerical examples is then as follows:

minimize ||S|| subjectto P eR™*", S eR"*™,
Xg €R™™ | Xa| <ra.
X eR™M™ | Xo| <re.
PTBy + S = By, (68)
PT(G+Xg)+(G+Xg)'P=ecl,
PT(CH+ Xc)+(C+Xc)TP=ecl,
PT(C+Xc)—(C+Xco)'P=0.

Furthermore, in (68), in addition to the constraints on themws of the perturba-
tions X and X ¢, we restrictX ¢ and X ¢ to have possible nonzero entries only in
certain positions, which depend on the nonzero structutkeofiven matrices;
andC, respectively. For our numerical tests, the data matdgaadC in (68) are
generated as follows. First, two matric€s,, andG,,, of norm one were con-
structed such that the associated transfer function issgteed to be positive real.
Then, certain entries af,., andC,,, were changed by adding random pertur-
bations of norm at most; = ¢ < 1072 respectively, to define the data matrices
G andC. The values ¢ andec were chosen in the intervél0—15,10~7]. In all
our examples, the transfer functions of the systems givehdyesulting matrices
C and G were not positive real. As initial points for problem (68)ewsed the
zero matrices{? = 0 and X = 0. For fixed X = 0 and X = 0, problem (68)
reduces to a linear SDP, the solution of which was taken éalinaluesP’ and

SO for P andS.

All our computations were run on a Xeon with a clock rate of @l8z and
3 GB RAM. All solutions were computed to a precision of 12 deai digits.

In Table 1, we list the problem dimensien the total numbei/ (n) of equality
constraints, the total numbé¥(n) of scalar unknowns, the number of iterations,
and the cpu time (in seconds) for the SSP algorithm usingdheexification 1.3
and the step length control 11.3 above.

Table 1 shows that the number of iterations is nearly indépenof the di-
mensionn of the problem, while—as expected—the cpu time increas#s wi
The total number of constraints is approximat&lyn) ~ 2n?, and the total num-
ber of scalar variables is approximaté\y(n) ~ 3n2. The number of iterations to
solve the linear semidefinite subproblems not only dependbedimension, but
also on other properties of the problem as, for example, geaoison of the prob-
lems of dimension 32 and 33 shows. In this case, the iteratiants differ only
by one, yet the cpu time quadruples, since SeDuMi needs reredions to solve
the subproblems. Some of the linear semidefinite subprabmnearly infeasi-
ble, a situation for which SeDuMi (and other solvers) neetilgher number of
interior-point iterations. In practical applicationsetialues s andéq are small,
but the required accuracy of the optimal solution of (68)ighhIn our examples,
the optimal perturbationX s and X generated by the algorithm had a norm of
about10~3. Thus, the starting point appears to be very close to thengpsolu-
tion; nevertheless, a plain primal predictor-correctgpliementation with adaptive
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Table 1 Numerical results for nonconvex NLSDPs of the form (68).

n  M(n) N(n) iter cputime| n  M(n) N(n) iter cputime

8 118 285 5 3.7 22 783 1713 4 416.31
9 146 348 5 4.43 23 853 1862 5 151.33
10 177 417 7 8.0 24 926 2013 6 683.54
11 211 492 5 7.18 25 1002 2176 3 145.60
12 248 573 8 16.05 26 1081 2337 5 612.22
13 288 660 4 10.88 27 1163 2508 7 518.92
14 331 753 6 20.77 28 1248 2685 5 789.41
15 377 852 7 30.12 29 1336 2868 4 475.52
16 426 957 6 34.38 30 1427 3057 7 4213.50
17 478 1068 5 37.4Q 31 1521 3252 4 784.34
18 533 1185 10 91.17 32 1618 3455 6  4659.64
19 591 1308 4 47.61 33 1718 3660 5 1130.44
20 652 1437 5 83.664 34 1821 3877 2 630.53
21 716 1572 4 289.48 35 1927 4092 6 1799.36

step length control failed to solve this type of problem. T@dratic rate of con-
vergence of the SSP method anticipated by the theoretisaltsecould not be
observed in the numerical experiments. One reason is teadlationsX -, X¢,
P, S of (68) were computed to high accuracy where rounding esigisificantly
perturbed the solutions of the subproblems. Moreover, duke convexification
used, quadratic convergence is no longer guaranteed bédbectical results of
this paper.

10 Concluding remarks

We have discussed the SSP method, which is a generalizdtiba 8QP method
for standard nonlinear programs to nonlinear semidefimggramming problems.
Such a generalization has already been studied in [12]; tia differences be-
tween our approach and the one in [12] are the motivation bedbalysis. For
the derivation of the SSP method, we have chosen a motiviitadrcontrasts the
SSP method with primal-dual interior-point methods. Ireiiar-point methods
that are applied directly to nonlinear semidefinite proggathe symmetrization
procedure, the linearization, and the convexification gugliad in one step. In
our proposed method, these operations are separated,eanddice of the sym-
metrization scheme is shifted to the subproblems. The ¢gawnee analysis thus
avoids the consideration of the symmetrization operatent€ing steps are not
needed in this algorithm. Our convergence analysis differs the convergence
analyses of standard SQP methods in that it is based on aiggneesult for cer-
tain optimal solutions of quadratic semidefinite prograiiitse derivation of this
sensitivity result is also of independent interest.
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