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Abstract We give a hierarchy of semidefinite upper bounds for the maximum
size A(n, d) of a binary code of word length n and minimum distance at least d.
At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary
precision) in time polynomial in n; this is based on a result of de Klerk et al.
(Math Program, 2006) about the regular ∗-representation for matrix ∗-algebras.
The Delsarte bound for A(n, d) is the first bound in the hierarchy, and the new
bound of Schrijver (IEEE Trans. Inform. Theory 51:2859–2866, 2005) is located
between the first and second bounds in the hierarchy. While computing the sec-
ond bound involves a semidefinite program with O(n7) variables and thus seems
out of reach for interesting values of n, Schrijver’s bound can be computed via
a semidefinite program of size O(n3), a result which uses the explicit block-
diagonalization of the Terwilliger algebra. We propose two strengthenings of
Schrijver’s bound with the same computational complexity.

Keywords Stability number · Binary code · Semidefinite programming ·
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1 Introduction

We consider the problem of computing the parameter A(n, d), defined as the
maximum size of a binary code of word length n and minimum distance at
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least d. With P denoting the collection of all subsets of {1, . . . , n}, we can identify
code words in {0, 1}n with their supports; so a code C is a subset of P and the
Hamming distance of I, J ∈ P is equal to |I�J|. The minimum distance of a
code C is the minimum Hamming distance of distinct elements of C. If we
define the graph G(n, d) with node set P , two nodes I, J ∈ P being adjacent if
|I�J| ∈ {1, . . . , d − 1}, then a code with minimum distance d corresponds to a
stable set in the graph G(n, d). Therefore, the parameter A(n, d) is equal to the
stability number of the graph G(n, d), i.e., the maximum cardinality of a stable
set in G(n, d).

Schrijver [13] introduced recently an upper bound for A(n, d) which
refines the classical bound of Delsarte [3]. While Delsarte bound is based
on diagonalizing the (commutative) Bose–Mesner algebra of the Hamming
scheme and can be computed via linear programming, Schrijver’s bound is
based on block-diagonalizing the (non-commutative) Terwilliger algebra of the
Hamming scheme and can be computed via semidefinite programming. In both
cases the bounds can be formulated as the optimum of a (linear or semidefinite)
program of size polynomial in n (size O(n) for Delsarte bound and size O(n3)

for Schrijver’s bound).
Finding tight upper bounds for the stability numberα(G)of a graph G = (V , E)

has been the subject of extensive research. Lovász [9] introduced the theta
number ϑ(G), which can be computed, e.g., via the semidefinite program:

ϑ(G) := max
∑

i∈V Xii s.t. X = (Xij)i,j∈V∪{0} � 0, X00 = 1,

X0i = Xii (i ∈ V), Xij = 0 (ij ∈ E).
(1)

The theta number can be computed (with arbitrary precision) in time polyno-
mial in the number of nodes of the graph. Moreover, ϑ(G) = α(G) when G is
a perfect graph (see [5]). Schrijver [12] introduced the strenghtening ϑ ′(G) of
ϑ(G) obtained by adding the nonnegativity constraint X ≥ 0 to the program (1)
and proved that ϑ ′(G(n, d)) coincides with Delsarte bound.

Various methods have been proposed in the literature for constructing tighter
semidefinite upper bounds for the stability number of a graph, in particular, by
Lovász and Schrijver [10] and more recently by Lasserre [6,7]. In both cases
a hierarchy of upper bounds for α(G) is obtained with the property that the
bound reached at the α(G)-th iteration coincides in fact with α(G). It turns out
that Lasserre’s hierarchy refines the hierarchy of Lovász and Schrijver (see [8]).

For k ≥ 1, denote by �(k)(G) the bound in Lasserre’s hierarchy at the kth iter-
ation; see Sect. 3.1 for the precise definition. It is known (and easy to see) that,
for fixed k, one can compute (with arbitrary precision) the parameter �(k)(G) in
time polynomial in the number of nodes of the graph G. However, for the coding
problem, the graph G(n, d) has 2n nodes and such complexity is prohibitive for
large n. A first contribution of this paper (see Sect. 3.2) is to show that, for fixed k,
the bound �(k)(G(n, d)) can be computed (with arbitrary precision) in time poly-
nomial in n. This result is based on a result of de Klerk et al. [2], recalled in
Sect. 2.1, about reducing the size of invariant semidefinite programs using the
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regular ∗-representation for the algebra of invariant matrices under action of a
group.

The first bound �(1)(G) in the hierarchy is equal to the theta number ϑ(G);
its strengthening obtained by adding nonnegativity is equal to ϑ ′(G) which, for
the graph G = G(n, d), coincides with the bound of Delsarte for the parameter
A(n, d). It turns out that the bound of Schrijver [13] for A(n, d) lies between
�
(1)
+ (G) and �(2)+ (G), the strengthenings of �(1)(G) and �(2)(G) obtained by adding

certain bounds on the variables. While Schrijver’s bound can be computed via
a semidefinite program of size O(n3) and thus computed in practice for reason-
able values of n, a practical computation of �(2)+ (G(n, d)) seems out of reach for
interesting values of n since one would have to solve a semidefinite program
with O(n7) variables.

In Sect. 3.3, we introduce two bounds �+(G(n, d)) and �++(G(n, d)) satisfying

�
(2)
+ (G(n, d)) ≤ �++(G(n, d)) ≤ �+(G(n, d)) ≤ �

(1)
+ (G(n, d));

they are at least as good as Schrijver’s bound, and their computation still relies
on solving a semidefinite program of size O(n3). This complexity result follows
from the fact that the new bounds, analogously to Schrijver’s bound, require
the positive semidefiniteness of certain matrices lying in the Terwilliger alge-
bra (or a variation of it) whose dimension is O(n3) and for which the explicit
block-diagonalization has been given by Schrijver [13].
Some notation We group here some notation that will be used throughout the
paper. We set V := {1, . . . , n} and P := P(V) denotes the collection of all
subsets of the set V. For a finite set V and an integer k ≥ 1, we set

Pk(V) := {I ⊆ V | |I| ≤ k} and P=k(V) := {I ⊆ V | |I| = k}.

We let Sym(V) denote the set of all permutations of the set V and we set
Sym(n) := Sym(V) when |V| = n. The letter G will be used to denote a graph,
with node set V and edge set E , while the letter G will be used to denote a group
(e.g., of automorphisms of G).

2 Algebraic preliminaries

2.1 Preliminaries on invariant matrices

Let G be a finite group acting on a finite set X ; that is, we have a homomorphism
h : G → Sym(X ), where Sym(X ) is the group of permutations of X . For σ ∈ G,
h(σ ) is a permutation of X and Mσ is the associated X ×X permutation matrix
with

(Mσ )x,y =
{

1 if h(σ )(x) = y,
0 otherwise.
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The set:

A :=
{

∑

σ∈G

λσMσ | λσ ∈ R (σ ∈ G)

}

is a matrix ∗-algebra; that is, A is closed under addition, scalar and matrix
multiplication, and conjugation.

Any σ ∈ G acts on matrices indexed by the set X . Namely, for a X × X
matrix N and σ ∈ G, set

σ(N) := (Nσ(x),σ(y))x,y∈X .

The matrix N is said to be invariant under the action of G if σ(N) = N for all
σ ∈ G. Then the commutant algebra AG of the algebra A, defined by

AG := {N ∈ C
X×X | NM = MN ∀M ∈ A},

consists precisely of the X × X matrices N that are invariant under the action
of G; AG is again a matrix ∗-algebra.

The orbit of (x, y)∈X×X under the action of G is the set {(σ (x), σ(y)) | σ ∈G}.
Let O1, . . . , ON denote the orbits of the set X ×X under the action of the group
G and, for i = 1, . . . , N, let D̃i be the X × X matrix:

(D̃i)x,y =
{

1 if (x, y) ∈ Oi
0 otherwise.

(2)

Then, D̃1, . . . , D̃N form a basis of the commutant AG (as vector space) and
D̃1 + · · · + D̃N = J (the all-ones matrix). We normalize the D̃i to

Di := D̃i
√

〈D̃i, D̃i〉
(3)

for i = 1, . . . , N. (For two N × N matrices A, B, 〈A, B〉 := Tr(ATB) =
∑N

i,j=1 AijBij.) Then, 〈Di, Dj〉 = 1 if i = j and 0 otherwise. The multiplication

parameters γ k
i,j are defined by

DiDj =
N∑

k=1

γ k
i,jDk (4)

for all i, j = 1, . . . , N. Define the N × N matrices L1, . . . , LN by

(Lk)i,j := γ i
k,j for k, i, j = 1, . . . , N. (5)

De Klerk et al. [2] show:
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Theorem 1 The mapping Dk → Lk is a ∗-isomorphism, known as the regular
∗-representation of AG. In particular, given real scalars x1, . . . , xN,

N∑

i=1

xiDi � 0 ⇐⇒
N∑

i=1

xiLi � 0. (6)

This result has important algorithmic applications, as it permits to give more
compact formulations for invariant semidefinite programs. Consider a semi-
definite program:

min 〈C, Y〉 s.t. 〈A�, Y〉 ≤ b� (� = 1, . . . , m), Y � 0 (7)

in the X ×X matrix variable Y. Assume that the program (7) is invariant under
action of the group G; that is, C is invariant under action of G and, for every
matrix Y feasible for (7) and σ ∈ G, the matrix σ(Y) is again feasible for Y. (This
holds, e.g., if the class of constraints is invariant under action of G, i.e., if for each
� ∈ {1, . . . , m} and σ ∈ G, there exists �′ ∈ {1, . . . , m} such that σ(A�) = A�′ and
b� = b�′ .) Then, if Y is feasible for (7) then the matrix Y0 := 1

|G|
∑
σ∈G σ(Y) too

is feasible for (7), with the same objective value as Y. Therefore, in (7), one can
assume without loss of generality that Y is invariant under action of G; that is,
Y is of the form Y = ∑N

i=1 xiDi with x1, . . . , xN ∈ R. Then the objective function
reads 〈C, Y〉 = ∑N

i=1 cixi, after setting C = ∑N
i=1 ciDi, and the constraints in (7)

become linear constraints in x. As a direct application of Theorem 1, we find:

Corollary 1 Consider the program (7) in the X × X matrix variable Y. If
(7) is invariant under the action of the group G, then it can be equivalently
reformulated as

min
N∑

i=1

cixi s.t. aT
� x ≤ b� (� = 1, . . . , m),

N∑

i=1

xiLi � 0. (8)

The program (8) involves N × N matrices and N variables. Here, N is the dimen-
sion of the algebra AG (the set of X × X invariant matrices under the action of
the group G), typically much smaller than |X |.

To use computationally this result, one needs to know explicitly the matrices
L1, . . . , LN , which involves computing the cardinality of the orbits of X ×X and
the multiplication parameters γ k

i,j in (4). De Klerk et al. [2] apply this technique
for computing tighter bounds for the crossing number of a complete bipartite
graph. We apply it in Sect. 3.2 for reducing the size of the semidefinite programs
permitting to compute the hierarchy of semidefinite bounds for the parameter
A(n, d).

Example 1 Let X := P , the collection of all subsets of the set V = {1, . . . , n}, and
G := Sym(V), the group of permutations of V. Each π ∈ G induces a permu-
tation of X , again denoted by π , by letting π(I) := {π(i) | i ∈ I} for I ∈ P . Two
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pairs (I, J), (I′, J′) (I, J, I′, J′ ∈ P) lie in the same orbit [i.e., I′ = π(I), J′ = π(J)
for some π ∈ G] if and only if |I| = |I′|, |J| = |J′| and |I∩J| = |I′∩J′|. Therefore,
the commutant algebra AG is generated by the matrices Mt

i,j (i, j, t ∈ Z+), where

(Mt
i,j)I,J :=

{
1 if |I| = i, |J| = j, |I ∩ J| = t,

0 otherwise
(9)

for I, J ∈ P ; AG =: An is known as the Terwilliger algebra of the Hamming
scheme [15].

Example 2 Consider again the set X := P , but now the group is G := Aut(P),
the automorphism group of P . The group G consists of the permutations σ ∈
Sym(P)preserving the symmetric difference, i.e., for which |σ(I)�σ(J)| = |I�J|
for all I, J ∈ P . Thus,

G = {πsA | A ⊆ V,π ∈ Sym(V)} (10)

where, for a set A ⊆ V, sA is the permutation of P mapping any I ∈ P to
sA(I) := A�I; we have |G| = 2nn!. Two pairs (I, J), (I′, J′) (I, J, I′, J′ ∈ P) lie
in the same orbit [i.e., I′ = σ(I), J′ = σ(J) for some σ ∈ G] if and only if
|I�J| = |I′�J′|. Therefore, the algebra AG is generated by the matrices Mk
(k = 0, 1, . . . , n) where

(Mk)I,J :=
{

1 if |I�J| = k,

0 otherwise
(11)

for I, J ∈ P ; AG =: Bn is known as the Bose–Mesner algebra of the Hamming
scheme. The Bose–Mesner algebra is a subalgebra of the Terwilliger algebra, as
Mk = ∑n

i,j=0 M(i+j−k)/2
i,j for k = 0, 1, . . . , n.

In fact, it is known from invariant theory and C∗-algebra theory that the
algebra AG can be block-diagonalized. Therefore, there exists a semidefinite
program equivalent to the invariant program (7), where the matrix Y is replaced
by a block-diagonal matrix with possibly repeated blocks; see, e.g., Gaterman
and Parrilo [4]. Such program is typically more compact than the program (8).
However, finding explicitly the block-diagonalization is a nontrivial task in gen-
eral. An advantage of the above mentioned reduction method, based on the
regular ∗-representation, is that it involves the matrices Li which are explic-
itly defined in terms of the matrices Di generating the algebra. Nevertheless,
Schrijver [13] was able to determine explicitly the block-diagonalization for the
Terwilliger algebra; we recall this result in the next section as we will need it for
the computation of our stronger bounds for the coding problem.
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2.2 Block-diagonalization of the Terwilliger algebra

While the Bose–Mesner algebra Bn is a commutative algebra and thus can be
diagonalized (see [3]), the Terwilliger algebra An is a non-commutative alge-
bra. Its dimension is dim An = (n+3

3

)
, which is the number of triples (i, j, t) for

which Mt
i,j �= 0. As An is a matrix ∗-algebra containing the identity, it can be

block-diagonalized, which means the following: There exists a unitary P × P
complex matrix U (i.e., U∗U = I) and positive integers m and p0, q0, . . . , pm, qm
such that the set U∗AnU := {U∗MU | M ∈ An} is equal to the collection of
block-diagonal matrices

⎛

⎜
⎜
⎜
⎝

C0 0 . . . 0
0 C1 . . . 0
...

...
. . . 0

0 0 . . . Cm

⎞

⎟
⎟
⎟
⎠

,

where each Ck (k = 0, 1, . . . , m) is a block-diagonal matrix with qk identical
blocks Bk of order pk:

Ck =

⎛

⎜
⎜
⎜
⎝

Bk 0 . . . 0
0 Bk . . . 0
...

...
. . . 0

0 0 . . . Bk

⎞

⎟
⎟
⎟
⎠

;

thus 2n = ∑m
k=0 pkqk and

∑m
k=0 p2

k = dim An = (n+3
3

)
. By deleting copies of

identical blocks, it follows that An is isomorphic to the algebra

m⊕

k=0

C
pk×pk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

B0 0 . . . 0
0 B1 . . . 0
...

...
. . . 0

0 0 . . . Bm

⎞

⎟
⎟
⎟
⎠

| Bk ∈ C
pk×pk for k = 0, 1, . . . , m

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (12)

An important fact for our purpose is that this isomorphism preserves positive
semidefiniteness. The existence of a unitary matrix U with the above properties
is standard C∗-algebra theory (see, e.g., [14]). Schrijver [13] has constructed
explicitly this matrix U and the image of a matrix M ∈ An in the algebra (12).
We recall some facts from [13] needed for our treatment; we refer to [13] for
details and proofs.

It turns out that U is real valued, m = �n
2 � and, for k = 0, 1, . . . , �n

2 �, the block
Bk has order pk = n − 2k + 1 and multiplicity qk = (n

k

) − ( n
k−1

)
. In particular,

the block B0 has order n + 1 and multilplicity 1. We now describe explicitly the
matrix U. For this, for k = 1, . . . , �n

2 �, define

Lk := {b ∈ R
P | Mk−1

k−1,kb = 0 and bI = 0 if |I| �= k}.
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Let Bk be a basis of Lk. Then |Bk| = (n
k

)−( n
k−1

)
and

∑
I∈P bI = 0 for b ∈ Lk. Set

B0 := {b0} where b0 := (1, 0, . . . , 0)T ∈ R
P (the nonzero entry being indexed by

∅ ∈ P) and define

Q :=
{
(k, b, i) | k ∈ {0, . . . , �n

2
�
}

, b ∈ Bk, i ∈ {k, k + 1, . . . , n − k}}.

Then |Q| = 2n = |P|. For (k, i, b) ∈ Q, define the vector

uk,i,b :=
(

n − 2k
i − k

)− 1
2

Mk
i,kb ∈ R

P .

Finally define U as the P × Q matrix whose columns are the vectors uk,i,b for
(k, i, b) ∈ Q. The following is shown in [13].

Proposition 1 [13] The matrix U is orthogonal, i.e., UTU = I. Moreover, for
a matrix M = ∑n

i,j,t=0 xt
i,jM

t
i,j ∈ An (with xt

i,j ∈ R), the matrix UTMU is a
block-diagonal matrix determined by the partition of Q into the classes Qk,b :=
{(k, i, b) | k ≤ i ≤ n − k} (for k = 0, . . . , �n

2 �, b ∈ Bk). For a given integer
k = 0, . . . , �n

2 �, the blocks corresponding to the classes Qk,b (for b ∈ Bk) are all
identical to the following matrix:

Bk(x) :=
(

∑

t

(
n − 2k
i − k

)− 1
2
(

n − 2k
j − k

)− 1
2

β t
i,j,kxt

i,j

)n−k

i,j=k

, (13)

after setting

β t
i,j,k :=

n∑

u=0

(−1)t−u
(

u
t

)(
n − 2k

n − k − u

)(
n − k − u

i − u

)(
n − k − u

j − u

)

(14)

for i, j, k, t ∈ {0, . . . , n}. As An is isomorphic to the algebra (12), we have:

n∑

i,j,t=0

xt
i,jM

t
i,j � 0 ⇐⇒ Bk(x) � 0 for k = 0, 1, . . . , �n

2
�. (15)

The above property (15) is the key tool used in [13] and in the present
paper, which allows reducing semidefinite programs involving matrices in the
Terwilliger algebra to semidefinite programs of size O(n3).

We will deal in this paper with matrices of the form

M̃ =
(

d cT

c M

)

, where M=
n∑

i,j,t=0

xt
i,jM

t
i,j, d∈R, c=

n∑

i=0

ciχ
P=i(V). (16)
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Recall that P=i(V) = {I ⊆ V | |I| = i} and χP=i(V) ∈ {0, 1}P whose Ith entry is
1 if and only if I ∈ P=i(V).

Lemma 1 The matrix M̃ from (16) is positive semidefinite if and only if Bk(x) � 0
for k = 1, . . . , �n

2 �, and

B̃0(x) :=
(

d c̃T

c̃ B0(x)

)

� 0, where c̃ :=
(

ci

(
n
i

) 1
2
)n

i=0

.

Proof Setting

Ũ :=
(

1 0
0 UT

)

,

we have:

ŨTM̃Ũ =
(

d cTU
UTc UTMU

)

.

It suffices now to verify that (cTU)k,i,b = cTuk,i,b = 0 for (k, i, b) ∈ Q with

k ≥ 1, and that (cTU)0,i,b0 = ci
(n

i

) 1
2 for i = 0, . . . , n. This is direct verification

using the above definitions; details are omitted. Hence, ŨTM̃Ũ is block-diago-
nal, with blocks B̃0(x) (with multiplicity 1) and Bk(x) (with multiplicity qk) for
k = 1, . . . , �n

2 �. The lemma now follows. ��

3 Semidefinite programming bounds for the stability number of a graph

3.1 Lasserre’s construction

Let G = (V , E) be a graph. A stable set in G is a set S ⊆ V containing no edge
and the stability number α(G) of G is the maximum cardinality of a stable set
in G. Recall Pk(V) = {I ⊆ V | |I| ≤ k} for an integer k. Given a stable set S in
G, define x = (xI)I∈Pk(V) ∈ {0, 1}Pk(V) and y = (yI)I∈P2k(V) ∈ {0, 1}P2k(V) with
xI = 1 (resp., yI = 1) if and only if I ⊆ S, for I ∈ Pk(V) (resp., for I ∈ P2k(V)).
Then y and the matrix Y := xxT satisfy:

Y � 0 (17)

YI,J = yI∪J (for I, J ∈ Pk(V)) (18)

YI,J = yI∪J = 0 if I ∪ J contains an edge (for I, J ∈ Pk(V)) (19)

Y∅,∅ = y∅ = 1 (20)

0 ≤ yI ≤ yJ if J ⊆ I (for I, J ∈ P2k(V)). (21)
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We refer to (19) as the edge condition and to (18) as the moment condition.
A matrix Y satisfying (18) is known as a moment matrix and is denoted as
Y = Mk(y) (see [6–8]). Under the assumption (17), the edge condition (19)
is, in fact, equivalent to yij = 0 (for ij ∈ E). (Here and below, we set yij :=
y{i},{j}, yi := y{i}, etc.) Under (17), relation (21) holds for I ∈ Pk(V); indeed,
the principal submatrix of Mk(y) indexed by {I, J} has the form

(
yI yI
yI yJ

)

, whose
positive semidefiniteness implies 0 ≤ yJ ≤ yI . On the other hand, M1(y) � 0
implies |yij| ≤ max(yi, yj); indeed the principal submatrix of M1(y) indexed
by {{i}, {j}} has the form

(
yi yij
yij yj

)

, whose positive semidefiniteness implies y2
ij ≤

yiyj ≤ max(y2
i , y2

j ). Similarly, M2(y) � 0 implies that |yijk| is at most the largest
two values among yij, yik, yjk; indeed the principal submatrix of M2(y) indexed

by the set {{i, j}, {i, k}, {j, k}} has the form
⎛

⎝

yij yijk yijk
yijk yik yijk
yijk yijk yjk

⎞

⎠, whose positive semidefi-

niteness implies y2
ijk ≤ min(yijyik, yijyjk, yikyjk) ≤ y2

ik, y2
jk assuming, say, that

yij ≤ yik ≤ yjk.
Consider the semidefinite program:

�(k)(G) := max
∑

i∈V
yi s.t. Mk(y) � 0, y∅ = 1, yij = 0 (ij ∈ E). (22)

Then, α(G) ≤ �(k)(G), with equality if k ≥ α(G) ([7,8]). Define �(k)+ (G) as the
parameter obtained by adding to (22) the constraints (21); thus,

α(G) ≤ �
(k)
+ (G) ≤ �(k)(G).

For k = 1, �(1)(G) = ϑ(G), the Lovász’ theta number, and the stronger bound
obtained by adding nonnegativity to (22) is ϑ ′(G), the strengthening of ϑ(G)
introduced by McEliece et al. [11] and Schrijver [12]. The bound �(2)(G) is at
least as good as the parameter obtained by optimizing over N+(TH(G)), the
convex relaxation of the stable set polytope of G obtained by applying the
Lovász-Schrijver N+-operator to the theta body TH(G) ([8]; or see (26)). For
k = 2, the program (22) has size O(|V|4). We now formulate a bound �(G),
which is weaker than �(2)(G), but still at least as good as the bound obtained
from N+(TH(G)), although its computation is more economical since it can be
expressed via a semidefinite program of size O(|V|3).

Namely, for each r ∈ V , consider the principal submatrix Yr(y) of M2(y)
indexed by the set

P2(V ; r) := P1(V) ∪ {{r, i} | i ∈ V};

thus the matrices Yr(y) involve only variables yI for I ∈ P3(V). Define

�(G) := max
∑

i∈V
yi s.t. y∅ = 1, yij = 0 (ij ∈ E), Yr(y) � 0 (r ∈ V) (23)
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and �+(G) as the parameter obtained by adding to (23) the constraints: 0 ≤
yijk ≤ yij for distinct i, j, k ∈ V (coming from (21)). Obviously,

�(2)(G) ≤ �(G) ≤ �(1)(G);

analogously for the �+ parameters. We will see in Sect. 3.3 that, for the graph
G = G(n, d), the matrices involved in (23) lie in (a variation of) the Terwilliger
algebra, which allows reformulating the parameters �(G(n, d)), �+(G(n, d)) via
semidefinite programs of size O(n3).

From the moment condition (18), the matrix Yr(y) has the block structure:

Yr(y) =
⎛

⎝
1 aT bT

r
a A Br
br Br Br

⎞

⎠ , (24)

where A := (yij)i,j∈V , Br := (y{i,j,r})i,j∈V are symmetric V × V matrices, and
a := (yi)i∈V , br := (yir)i∈V . As br coincides with the r-th column of A and of Br,
by applying some column/row manipulation to Yr(y), one deduces that

Yr(y) � 0 ⇐⇒ Br � 0 and C̃r :=
(

1 − yr aT − bT
r

a − br A − Br

)

� 0, (25)

which permits to reduce the size of the matrices involved in program (23).
Setting

TH(G) = {x ∈ R
P1(V) | ∃y ∈ R

P2(V) s.t. M1(y) � 0, yij = 0 (ij ∈ E),
xI = yI (I ∈ P1(V))},

N+(TH(G)) = {x ∈ R
V | ∃y ∈ R

P2(V) s.t. M1(y) � 0, y∅ = 1, xi = yi (i ∈ V),
(yI∪{r})I∈P1(V), (yI − yI∪{r})I∈P1(V) ∈ TH(G)}

one can verify that
�(G) ≤ max

x∈N+(TH(G))
∑

i∈V
xi. (26)

To see it, let y be feasible for (23); then x := (yi)i∈V ∈ N+(TH(G)). Indeed, the
vector (yI∪{r})I∈P1(V) is equal to the first column of the principal submatrix of
Yr(y) indexed by {r} ∪ {{r, i} | i ∈ V}, and (yI − yI∪{r})I∈P1(V) is the first column
of the matrix C̃r in (25).

3.2 The semidefinite programming bounds �(k)(G) for the coding problem

Let G be a group of automorphisms of the graph G = (V , E); that is, G ⊆ Sym(V)
and each σ ∈ G preserves edges, i.e., ij ∈ E �⇒ σ(i)σ (j) ∈ E . Then G acts on the
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set Pk(V) indexing matrices in the program (22), by letting σ(I) = {σ(i) | i ∈ I}
for σ ∈ G, I ∈ Pk(V).
Lemma 2 Let G be a group of automorphisms of G. Then the program (22) is
invariant under the action of G.

Proof Set Y = Mk(y). The objective function is of the form
∑

i∈V yi = ∑
i∈V

Yi,i = 〈C, Y〉, where C is invariant under action of G, since the set {({i}, {i}) |
i ∈ V} is a union of orbits of Pk(V) × Pk(V) (in fact, a single orbit if G is ver-
tex-transitive). The constraint y∅ = Y∅,∅ = 1 is of the form 〈A, Y〉 = 1 where A
is invariant, since the set {(∅, ∅)} is an orbit. The class of edge constraints (19) is
invariant under action of G: If I∪J contains an edge ij andσ ∈ G, thenσ(I)∪σ(J)
contains the edge σ(i)σ (j) and thus the equation: yσ(I)σ (J) = Yσ(I),σ(J) = 0 is
again an edge constraint. Similarly, the class of moment constraints (18) is also
invariant under action of G. ��

By Corollary 1, the parameter �(k)(G) can therefore be formulated as the
optimum of a semidefinite program in N variables involving N × N matrices,
where N is the number of orbits of the set Pk(V)×Pk(V) under the action of the
group G. We now apply this technique to the graph G = G(n, d) and to the group
G = Aut(P), the group of automorphisms of P (introduced in (10)). Recall that
G(n, d) has node set P , the collection of subsets of {1, . . . , n}, with an edge (I, J)
if |I�J| ∈ {1, . . . , d − 1} for I, J ∈ P . Thus G also acts on the set Pk(P) = {A ⊆
P | |A| ≤ k}, indexing the matrix variable in program (22). We show:

Theorem 2 For any fixed k, one can compute (to an arbitrary precision) the
parameter �(k)(G(n, d)) from (22) in time polynomial in n. The same holds for
the parameter �(k)+ (G) obtained by adding the constraints (21) to (22).

Proof Let k be fixed and let Nk denote the number of orbits of the set Pk(P)×
Pk(P) under the action of the group G. As mentioned above, the parameter
�(k)(G(n, d)) can be expressed via a semidefinite program of the form (8), involv-
ing Nk × Nk matrices and Nk variables. Hence, to show Theorem 2, it suffices
to verify that Nk is bounded by a polynomial in n and that the new program
equivalent to (22) can be constructed in time polynomial in n.

To begin with, it is useful to have a way to identify the orbits of the set
Pk(P)× Pk(P).

Consider (A, B) ∈ Pk(P)×Pk(P)with r := |A| and s := |B|. If r = s = 0 then
A = B = ∅, the empty subset of P , and the orbit of (∅, ∅) just consists of the pair
(∅, ∅). We can now assume that r + s ≥ 1. Let �A = (A1, . . . , Ar) be an ordering
of the elements of A; similarly, �B = (B1, . . . , Bs) is an ordering of the elements
of B. Then one can define the (r+ s)×n incidence tableau of ( �A, �B), whose rows
are the incidence vectors χA1 , . . . ,χAr ,χB1 , . . . ,χBs (in that order) of the sets
A1, . . . , Ar, B1, . . . , Bs. Define the function ϕ �A, �B: {0, 1}r ×{0, 1}s −→ Z+ where,
for (u, v) ∈ {0, 1}r × {0, 1}s, ϕ �A, �B(u, v) is the multiplicity of (u, v) as a column of

the incidence tableau of ( �A, �B). Thus ϕ �A, �B belongs to the set �r,s consisting
of the functions φ : {0, 1}r × {0, 1}s −→ {0, 1, . . . , n} satisfying:

∑
u∈{0,1}r,v∈{0,1}s
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φ(u, v) = n and, for all i �= j ∈ {1, . . . , r} (resp., i �= j ∈ {1, . . . , s}), there exists
(u, v) ∈ {0, 1}r × {0, 1}s for which φ(u, v) ≥ 1 and ui �= uj (resp., vi �= vj).

Let �A′ (resp., �B′) be another ordered sequence of r (resp., of s) distinct ele-
ments of P and let φ = φ �A, �B, φ′ = ϕ �A′, �B′ . Then, �A′ = (σ (A1), . . . , σ(Ar)) and
�B′ = (σ (B1), . . . , σ(Bs)) for some σ ∈ G if and only if φ(u, v)+φ(1−u, 1−v) =
φ′(u, v)+φ′(1−u, 1−v) for all (u, v) ∈ {0, 1}r ×{0, 1}s. (Here, 1 := (1, . . . , 1) de-
notes the all-ones vector of the suitable size.) Moreover, �A′ = (Aα(1), . . . , Aα(r))

and �B′ = (Bβ(1), . . . , Bβ(s)) for some permutations α ∈ Sym(r), β ∈ Sym(s)
if and only if φ′(u, v) = φ(α(u),β(v)) for all (u, v) ∈ {0, 1}r × {0, 1}s, setting
α(u) := (uα(1), . . . , uα(r)),β(v) := (vβ(1), . . . , vβ(s)). For two elementsφ,φ′ ∈ �r,s,
write φ ∼ φ′ if there exist α ∈ Sym(r), β ∈ Sym(s) for which

φ′(u, v)+ φ′(1 − u, 1 − v) = φ(α(u),β(v))+ φ(1 − α(u), 1 − β(v)))
for all (u, v) ∈ {0, 1}r × {0, 1}s.

This defines an equivalence relation on �r,s.
We can now characterize orbits in the following way: Two pairs (A, B) and

(A′, B′) belong to the same orbit of Pk(P) × Pk(P) under action of G if and
only if |A| = |A′| =: r, |B| = |B′| =: s and ϕ �A, �B ∼ ϕ �A′, �B′ for some respective

orderings �A, �B, �A′, �B′ of A, B, A′, B′. Thus each orbit of Pk(P)× Pk(P) corre-
sponds to an equivalence class of ∪0≤r,s≤k�r,s. Hence the number Nk of orbits

of Pk(P)× Pk(P) is at most 1 + ∑
0≤r,s≤k
r+s≥1

(n + 1)2
r+s−1−1, giving:

Nk ≤ O(n22k−1−1). (27)

We now verify that the matrices Li (i = 1, . . . , Nk) (as defined in (5)) can be
constructed in time polynomial in n.

For this one first needs to be able to compute in time polynomial in n the car-
dinality of the orbits of Pk(P)×Pk(P). Given φ0 ∈ �r,s (0 ≤ r, s ≤ k, r + s ≥ 1),
one has to count the number Lφ0 of pairs (A, B) ∈ P=r(P) × P=s(P) for
which ϕ �A, �B ∼ φ0 for some orderings �A, �B of A, B. Given φ ∼ φ0, there

are �φ := n!/∏
u∈{0,1}r
v∈{0,1}s

φ(u, v)! pairs ( �A, �B) for which ϕ �A, �B = φ0. Therefore,

Lφ0 = 1
r!s!

∑
φ∼φ0

�φ , which can be computed in time polynomial in n since one
can enumerate the equivalence class of φ0 in time polynomial in n.

Next we verify that one can compute in time polynomial in n the multiplica-
tion parameters γ k

i,j from (4), used for defining the matrices Li in (5). For this,

given (A, B) ∈ P=r(P)×P=s(P)with respective orderings �A, �B, given an integer
0 ≤ t ≤ k, and given φ0 ∈ �r,t, ψ0 ∈ �s,t, one has to count the number Lφ0,ψ0

of elements C ∈ P=t(P) for which ϕ �A, �C ∼ φ0 and ϕ �B, �C ∼ ψ0 for some ordering �C
of C. Set ξ := ϕ �A, �B. Given φ ∼ φ0 andψ ∼ ψ0, we first count the number �φ,ψ of

ordered sequences �C of t elements of P for which ϕ �A, �C = φ and ϕ �B, �C = ψ . For
this let x(u, v, w) denote the multiplicity of (u, v, w) ∈ {0, 1}r × {0, 1}s × {0, 1}t as
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column of the incidence tableau of ( �A, �B, �C). The first r+s rows of the tableau are
given and one needs to determine its last t rows. Then, x(u, v, w) ∈ {0, 1, . . . , n}
satisfy the system

∑

v∈{0,1}s
x(u, v, w) = φ(u, w) ∀u ∈ {0, 1}r, w ∈ {0, 1}t

∑

u∈{0,1}r
x(u, v, w) = ψ(v, w) ∀v ∈ {0, 1}s, w ∈ {0, 1}t

∑

w∈{0,1}t
x(u, v, w) = ξ(u, v) ∀u ∈ {0, 1}r, v ∈ {0, 1}s.

(28)

As the system (28) has polynomially many variables and equations, its set S
of solutions can be found by complete enumeration and |S| ≤ (n + 1)2

r+s+t
.

Therefore, �φ,ψ = ∑
x∈S

∑
u∈{0,1}r,v∈{0,1}s

ξ(u,v)!∏
w∈{0,1}t x(u,v,w)! , the number of possible

ways to assign the vectors w ∈ {0, 1}t as columns of the lower t × n part of the
tableau. Now, Lφ0,ψ0 = 1

t!
∑

φ∼φ0
ψ∼ψ0

�φ,ψ can be computed in time polynomial in n

since one can enumerate the equivalence classes of φ0 and ψ0.
Remains only to construct the linear constraints corresponding to the mo-

ment constraints (18) and the edge constraints (19). Label the orbits of the set
Pk(P)× Pk(P) as O1, . . . , ONk and determine a pair (Ai, Bi) belonging to each
orbit Oi. Then the moment constraints read: xi = xj if Ai ∪ Bi = σ(Aj ∪ Bj)

for some σ ∈ G (which can be tested in time polynomial in n), and the edge
constraints read: xi = 0 if Ai ∪Bi contains a pair (I, J)with |I�J| ∈ {1, . . . , d−1}.

The bounds (21) become: xi ≥ 0 (i = 1, . . . , Nk) and xi ≤ xj if Ai ∪ Bi ⊇
σ(Aj ∪ Bj) for some σ ∈ G (which can be tested in time polynomial in n).

Therefore, the parameter �(k)(G(n, d)) (or �(k)+ (G(n, d))) can be computed as
the optimum value of a semidefinite program of the form (8) involving Nk ×Nk

matrices, with Nk variables and O(N2
k) linear constraints. As Nk = O(n22k−1−1),

it can be computed in time polynomial in n (to any precision), which concludes
the proof of Theorem 2. ��

The result from Theorem 2 is mainly of theoretical value for k ≥ 2. Indeed,
for k = 2, Nk = O(n7) and thus the semidefinite program defining �(2)(G(n, d))
is already too large to be solved in practice for interesting values of n by the
currently available software for semidefinite programming.

3.3 Refining Schrijver’s bound

We begin with observing that, when a graph G has a vertex-transitive group G
of automorphisms then, in the program (23), it suffices to require the condition
Yr(y) � 0 for one choice of r ∈ V .

Lemma 3 Let G be a group of automorphisms of the graph G = (V , E). The
program (23) is invariant under action of G. If G is vertex-transitive then, in (23),
it suffices to require the constraint Yr(y) � 0 for one choice of r ∈ V (instead of
for all r ∈ V).
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Proof The first part of the proof is analogous to the proof of Lemma 2. Here,
we use the fact that, for r ∈ V , σ ∈ G, Yr(σ (y)) = σ(Yσ(r)(y)). Hence, if y
is invariant under action of G, then Yr(y) � 0 for some r ∈ V implies that
Yr(y) � 0 for all r ∈ V . ��

3.3.1 A compact semidefinite formulation for the bound �(G(n, d))

In this section we consider the graph G = G(n, d) and the group G = Aut(P),
whose action on the graph G(n, d) is indeed vertex-transitive. We set:

X := P2(P ; ∅) = {∅} ∪ {{I} | I ∈ P} ∪ {{∅, I} | I ∈ P}. (29)

Applying Lemma 3, one can reformulate the parameter �(G(n, d)) as

�(G(n, d)) = max
∑

I∈P y{I}
s.t. Y(y) � 0, y∅ = 1,

y{I,J} = 0 if |I�J| ∈ {1, . . . , d − 1}
yA = yσ(A) for σ ∈ G, A ∈ X ,

(30)

where the matrix variable Y(y) is indexed by the set X and satisfies: Y(y)A,B =
yA∪B for A, B ∈ X . By (24), Y(y) has the form

Y(y) =
⎛

⎝
1 aT bT

a A B
b B B

⎞

⎠ (31)

with A = (y{I,J})I,J∈P , B = (y{∅,I,J})I,J∈P , a = (y{I})I∈P , and b = (y{∅,I})I∈P . As y
is invariant under action of G, it follows that AI,J = AI′,J′ if I′ = σ(I), J′ = σ(J)
for some σ ∈ G, i.e., if |I�J| = |I′�J′|. That is, the matrix A belongs to the
Bose–Mesner algebra Bn; say,

A =
n∑

k=0

xkMk for some real scalars x0, . . . , xn, (32)

where the matrices Mk are as in (11). Moreover, BI,J = BI′,J′ if I′ = σ(I),
J′ = σ(J), ∅ = σ(∅) for someσ ∈ G, i.e., if |I′| = |I|, |J′| = |J| and |I∩J| = |I′∩J′|.
That is, the matrix B belongs to the Terwilliger algebra An; say,

B =
∑

i,j,t≥0

xt
i,jM

t
i,j for some real scalars xt

i,j, (33)

where the matrices Mt
i,j are as in (9) and xt

i,j = xt
j,i for all i, j, t. The variables xk

and xt
i,j are related by

xk = x0
0,k for k = 0, 1, . . . , n (34)
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(since xk = A∅,I = B∅,I = xk
0,k for |I| = k). Moreover,

xt
i,j = xt′

i′,j′ if (i′, j′, i′ + j′ − 2t′) is a permutation of (i, j, i + j − 2t). (35)

Equivalently, xt
i,j = xi−t

i+j−2t,i = xj−t
i+j−2t,j. (Indeed, let I, J ∈ P with i = |I|, j = |J|,

t = |I ∩ J|. As σ := sJ maps A := {∅, I, J} to {∅, J, I�J} and yσ(A) = yA, then

xt
i,j = y{∅,I,J} = y{∅,J,I�J} = xj−t

j,i+j−2t.) The edge inequalities become:

xt
i,j = 0 if {i, j, i + j − 2t} ∩ {1, . . . , d − 1} �= ∅, (36)

and the bounds (21) read:

0 ≤ xt
i,j ≤ x0

i,0 for i, j, t = 0, . . . , n. (37)

From (25), we know that Y(y) � 0 if and only if

B =
n∑

i,j,t=0

xt
i,jM

t
i,j � 0 and C̃ :=

(
1 − x0

0,0 cT

c C

)

� 0,

where

C :=A − B =
n∑

i,j,t=0

(x0
0,i+j−2t − xt

i,j)M
t
i,j and c :=a−b=

n∑

i=0

(x0
0,0 − x0

0,i)χ
P=i(V).

(Recall P=i(V) = {I ⊆ V | |I| = i}.) Thus C̃ is of the form (16). For k =
0, 1, . . . , �n

2 �, define the matrices:

Ak(x) :=
(

∑

t

(
n − 2k
i − k

)− 1
2
(

n − 2k
j − k

)− 1
2

β t
i,j,kx0

0,i+j−2t

)n−k

i,j=k

(38)

and Bk(x) as in (13), where β t
i,j,k are as in (14). It follows from Lemma 1 that

the positive semidefiniteness of Y(y) is equivalent to

(i) Bk(x) � 0 for k = 0, 1, . . . , �n
2 �

(ii) Ak(x)− Bk(x) � 0 for k = 0, 1, . . . , �n
2 �

(iii)
(

1 − x0
0,0 c̃T

c̃ A0(x)− B0(x)

)

� 0, setting c̃ := (
(n

i

) 1
2 (x0

0,0 − x0
0,i))

n
i=0.

(39)

(Of course, (39)(iii) implies (ii) for k = 0.) Summarizing, we have shown:

�(G(n, d)) = max 2nx0
0,0 s.t. xt

i,j (i, j, t = 0, . . . , n) satisfy
(35), (36), (39)(i)− (iii).

(40)
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Similarly,

�+(G(n, d)) = max 2nx0
0,0 s.t. xt

i,j (i, j, t = 0, . . . , n) satisfy
(35), (36), (37), (39)(i)–(iii).

(41)

Hence both parameters can be computed via a semidefinite program of size
O(n3).

3.3.2 Comparison with Schrijver’s bound

Schrijver [13] introduced the following upper bound for the stability number
A(n, d) of the graph G(n, d):

�sch(G(n, d)) := max
n∑

i=0

(
n
i

)

x0
0,i

s.t. xt
i,j (i, j, t = 0, . . . , n) satisfy (35), (36), (37),
(39)(i)− (ii), and x0

0,0 = 1.

(42)

As noted in [13], Schrijver’s bound is at least as good as the Delsarte bound,
which coincides with ϑ ′(G(n, d)) = �

(1)
+ (G(n, d)). We now show:

Lemma 4 The bound �+(G(n, d)) from (41) is at least as good as Schrijver’s
bound �sch(G(n, d)) from (42); that is, �+(G(n, d)) ≤ �sch(G(n, d)).

Proof Let (xt
i,j)

n
i,j,t=0 be feasible for the program (41). Define yt

i,j := xt
i,j/x

0
0,0

for all i, j, t = 0, . . . , n. Then the variables yt
i,j satisfy (35), (36), (37), (39) (i),

(ii), and y0
0,0 = 1. Remains to verify that 2nx0

0,0 ≤ ∑n
i=0

(n
i

)
y0

0,i, i.e., 2n(x0
0,0)

2 ≤
∑n

i=0
(n

i

)
x0

0,i. For this, recall that the conditions (39) (i)–(iii) are equivalent to
the positive semidefiniteness of the matrix in (31). In particular, they imply

(
1 aT

a A

)

� 0, i.e., A − aaT � 0,

where A is as in (32), aT = (x0
0,0, . . . , x0

0,0), xk = x0
0,k for k = 0, . . . , n. Thus,

aaT = (x0
0,0)

2J, where J is the all-ones matrix. As A−(x0
0,0)

2J � 0, we deduce that
〈J, A〉 ≥ (x0

0,0)
2〈J, J〉 = (x0

0,02n)2. But 〈J, A〉 = ∑n
k=0 xk〈J, Mk〉 = ∑n

k=0 xk2n
(n

k

)
,

which gives
∑n

k=0 x0
0,k

(n
k

) ≥ 2n(x0
0,0)

2. ��

3.3.3 Refining the bound �+(G(n, d))

It is possible to define a new bound �++(G(n, d)), at least as good as the bound
�+(G(n, d)), whose computation still involves a semidefinite program of size
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O(n3). Namely, let us now consider as matrix variable the principal submatrix
Y(y) of M2(y) indexed by the set

X+ := {∅} ∪ {{I} | I ∈ P} ∪ {{∅, I} | I ∈ P} ∪ {{I, V} | I ∈ P}. (43)

Then, Y(y) has the block structure:

Y(y) =

⎛

⎜
⎜
⎝

1 aT bT cT

a A B C
b B B D
c C D C

⎞

⎟
⎟
⎠ , (44)

where A = (y{I,J})I,J∈P , B = (y{∅,I,J})I,J∈P , C = (y{I,J,V})I,J∈P , D = (y{∅,I,J,V})
I,J∈P , a = (y{I})I∈P , b = (y{∅,I})I∈P , and c = (y{I,V})I∈P . The matrices A, B are
given by (32), (33). The matrix C is a permutation of B; namely,

C =
n∑

i,j,t=0

xn+t−i−j
n−i,n−j Mt

i,j.

The matrix D too belongs to the Terwilliger algebra:

D =
n∑

i,j,t=0

zt
i,jM

t
i,j for some real scalars zt

i,j

satisfying zt
i,j = zt

j,i; indeed, DI,J = DI′,J′ if there exists σ ∈ G such that σ(∅) = ∅,
σ(I) = I′, σ(J) = J′ (then σ(V) = V), i.e., if |I| = |I′|, |J| = |J′|, |I ∩J| = |I′ ∩J′|.
We have the following relations for the variables xt

i,j, zt
i,j:

zt
i,j = zn+t−i−j

n−i,n−j for all i, j, t = 0, . . . , n (45)

since DI,J = y{∅,V,I,J} = y{∅,V,V�I,V�J} = DV�I,V�J , and

zi
i,i = z0

0,i = zi
n,i = xi

i,n for i = 0, . . . , n (46)

since y{∅,V,I} = DI,I = D∅,I = DV,I = BV,I . The edge condition for the z-
variables reads:

zt
i,j = 0 if {i, j, n−i, n−j, i+j−2t}∩{1, . . . , d−1} �=0 for i, j, t=0, . . . , n. (47)

The bounds (21) imply:

0 ≤ zt
i,j ≤ xt

i,j, zt
i,j ≤ zi

i,i for i, j, t = 0, . . . , n. (48)
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As each non-border block of the matrix Y(y) in (44) belongs to the Terwilliger
algebra, one can block-diagonalize Y(y). Indeed, each non-border block in the
matrix

⎛

⎜
⎜
⎝

1 0 0 0
0 UT 0 0
0 0 UT 0
0 0 0 UT

⎞

⎟
⎟
⎠ Y(y)

⎛

⎜
⎜
⎝

1 0 0 0
0 U 0 0
0 0 U 0
0 0 0 U

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

1 aTU bTU cTU
Ua UTAU UTBU UTCU
Ub UTBU UTBU UTDU
Uc UTCU UTDU UTCU

⎞

⎟
⎟
⎠

is block-diagonal with respect to the same partition, with �n
2 �+1 distinct blocks

labeled by k = 0, 1, . . . , �n
2 �. It follows from Lemma 1 that aTU = (ãT, 0, . . . , 0),

bTU = (b̃T, 0, . . . , 0), cTU = (c̃T, 0, . . . , 0), where ã = x0
0,0

∑n
i=0

(n
i

) 1
2χP=i(V),

b̃ = ∑n
i=0 x0

0,i

(n
i

) 1
2χP=i(V) and c̃ = ∑n

i=0 x0
0,n−i

(n
i

) 1
2χP=i(V) are indexed by the

positions corresponding to the 0th block. Therefore, Y(y) � 0 if and only if

⎛

⎜
⎜
⎝

1 ãT b̃T c̃T

ã A0 B0 C0

b̃ B0 B0 D0
c̃ C0 D0 C0

⎞

⎟
⎟
⎠ � 0,

⎛

⎝
Ak Bk Ck
Bk Bk Dk
Ck Dk Ck

⎞

⎠ � 0 for k = 1, . . . , �n
2
�, (49)

where Ak = Ak(x) is as in (38), Bk = Bk(x) is as in (13) and

Ck =
(

∑

t

(
n − 2k
i − k

)− 1
2
(

n − 2k
j − k

)− 1
2

β t
i,j,kxn+t−i−j

n−i,n−j

)n−k

i,j=k

,

Dk =
(

∑

t

(
n − 2k
i − k

)− 1
2
(

n − 2k
j − k

)− 1
2

β t
i,j,kzt

i,j

)n−k

i,j=k

.

One can now define the bound

�++(G(n, d)) := max 2nx0
0,0 s.t. xt

i,j, zt
i,j (i, j, t = 0, . . . , n) satisfy

(35), (36), (37), (45), (46), (47), (48) and (49).
(50)

Obviously,

A(n, d) ≤ �++(G(n, d)) ≤ �+(G(n, d)) ≤ �sch(G(n, d)),

and the bound �++(G(n, d)) is again expressed via a semidefinite program of
size O(n3).

Summarizing, the parameters �sch, �+, �++ can all be seen as variations of
the Lasserre bound �(2). Namely, instead of considering the full matrix variable
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M2(y) indexed by the set P2(P), one considers a principal submatrix of M2(y)
indexed by a subset of P2(P); namely, by the set X \ {∅} for �sch, by the set X
for �+, and by the set X+ = X ∪ {{I, V} | I ∈ P} for �++. (Recall the set X in
(29).)

3.3.4 Reducing the number of variables

The following observation from [13] can be used for reducing the number of
variables in the programs (40), (41), (42), (50), and for further refining the
corresponding bounds. A well known fact in coding theory is that, if d is odd
then A(n, d) = A(n + 1, d + 1), and if d is even then A(n, d) is attained by a
code with all code words having an even Hamming weight. Therefore, it suffices
to compute A(n, d) for d even. Moreover, for d even, A(n, d) = α(Gev(n, d)),
the stability number of the graph Gev(n, d), defined as the subgraph of G(n, d)
induced by the set

Pev := {I ⊆ V | |I| is even}.

Therefore, for d even, one may add the constraints:

yA = 0 if A �⊆ Pev (51)

for any A ∈ P2k(P) to the program (22) defining �(k)(G(n, d)), or for any
A ∈ P3(P) to the program (23) defining �(G(n, d)). Equivalently, one may add
the constraints:

xt
i,j = 0 if one of i or j is odd, (52)

to the programs (40), (41), (42), (50), as well as as the constraints:

zt
i,j = 0 if one of i, j, or n is odd (53)

to (50), and the new programs still define upper bounds for A(n, d). Namely,
define:

�0(G(n, d)) := max 2nx0
0,0 s.t. xt

i,j (i, j, t = 0, . . . , n) satisfy
(35), (36), (39)(i)–(iii), (52)

(54)

and let �0+, (resp., �0
sch, �0++) be defined analogously by adding (52) (resp., (52),

(52)–(53)) to (41) (resp., (42), (50)).
As A(n, d) = α(Gev(n, d)), A(n, d) is bounded by the parameter �(Gev(n, d))

(and analogously by �+(Gev(n, d)), �++(Gev(n, d))). The subgroup

Gev := {πsA | A ∈ Pev}

of the group G (introduced in (10)) acts vertex-transitively on Pev. Hence,
applying Lemma 3, �(Gev(n, d)) can be formulated via the analogue of (30),
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where Y(y) in (31) is now indexed only by even sets; that is, a, b, A and B in
(31) are indexed by Pev. Again, A belongs to the Bose–Mesner algebra and B
belongs to the Terwilliger algebra; that is, for some scalars xk, xt

i,j, A (resp., B)
is equal to the principal submatrix of

∑
k even xkMk (resp., of

∑
i,j,t even xt

i,jM
t
i,j)

indexed by Pev. Therefore, �(Gev(n, d)) can be computed via the program:

�(Gev(n, d)) = max 2n−1x0
0,0 s.t. xt

i,j (i, j, t = 0, . . . , n) satisfy
(35), (36), (39)(i)–(iii), (52)

(55)

where, in (39), we consider only the ‘even half’ of the matrices Ak(x), Bk(x), i.e.,
their principal submatrices indexed by even indices i, j.

Lemma 5 A(n, d) ≤ �(Gev(n, d)) ≤ �0(G(n, d)) ≤ �(G(n, d)) and analogously for
the parameters �+, �sch, �++.

Proof The right and left most inequalities are obvious. To compare the para-
meters �(Gev(n, d)) and �0(G(n, d)), it is easiest to use their formulation via (23);
for the formulation of �0(G(n, d)), one should add to (23) the constraint (51)
for any A ∈ P3(P). Consider a feasible solution y for the program (23) defining
�(Gev(n, d)). Thus y is indexed by P3(Pev), y{I,J} = 0 if |I�J| = 1, . . . , d − 1 (for
I, J ∈ Pev) and, for any I ∈ Pev, the matrix YI(y) (indexed by P2(Pev; I)) is
positive semidefinite. We define a feasible solution z for the program defining
�0(G(n, d)) in the following way: For A ∈ P3(P), set zA := yA if A ⊆ Pev, and
zA := 0 otherwise. It is easy to verify that, for each I ∈ P , the matrix YI(z)
(indexed by P2(P ; I)) is positive semidefinite. Thus, �0(G(n, d)) ≥ ∑

I∈P zI =∑
I∈Pev

yI , implying �0(G(n, d)) ≥ �(Gev(n, d)). The reasoning is analogous for
the other parameters. ��

The bound �(Gev(n, d)) is more economical to compute than �0(G(n, d)), since
it involves smaller matrices; as a matter of fact, the bound computed by Schrij-
ver [13] is the bound �sch(Gev(n, d)). For n odd, in view of (53), all variables
zt

i,j can be set to 0 for the computation of �++(G(n, d)); from this follows that
�+(Gev(n, d)) = �++(Gev(n, d)) when n is odd.

3.3.5 Some computational results

We have tested the various bounds on several instances (n, d), in particular,
on those where Schrijver’s bound gave an improvement on the previously best
known upper bound for A(n, d). There are two instances: (20, 8) and (25, 6), for
which we could find an upper bound for A(n, d) (slightly) better than Schrij-
ver’s bound; namely, ��+(Gev(25, 6))� and ��++(Gev(20, 8))� improve the upper
bound given by Schrijver by one. See Table 1 below (the values given there are
the bounds rounded down to the nearest integer). For other instances (n, d),
the bounds �+ and �++ give an improvement over Schrijver’s bound limited to
some decimals, thus yielding no improved upper bound on A(n, d). Our com-
putations were made using the NEOS Server for Optimization, which can be
accessed at
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Table 1 Comparing the bounds for A(n, d)

(n, d) Delsarte Schrijver bound �+(Gev(n, d)) �++(Gev(n, d)) �0+(G(n, d)) �0++(G(n, d))
bound �sch(Gev(n, d))

(20,8) 290 274 274 273 274 273
(25,6) 48,148 47,998 47,997 47,997 47,998 47,998

http://www-neos.mcs.anl.gov/,

and we used specifically the software DSDP for semidefinite programming.
We indicate in Table 2 the sizes of the semidefinite programs involved in our

computations. (In the ‘block sizes’ column in Table 2, −N indicates that the last
block is a diagonal matrix of order N.)

De Klerk and Pasechnik [1] have recently applied the bound of Schrijver
[13] and our bound �+ for finding tighter upper bounds for the stability number
of the orthogonality graph �(n); �(n) is the graph with node set P , with an
edge (I, J) if |I�J| = n/2 (for I, J ∈ P). Namely, to obtain an upper bound for
the stability number of �(n), they propose to use the program (42) defining
Schrijver’s bound, or the program (41) defining the parameter �+, replacing the
constraint (36) by the constraint:

xt
i,j = 0 if {i, j, i + j − 2t} ∩ {n/2} �= ∅.

The only interesting case is when n is a multiple of 4, since �(n) is the empty
graph for n odd and �(n) is a bipartite graph for n = 2 mod 4. The compu-
tations made by de Klerk and Pasechnik [1], quoted in Table 3 below, indicate
that the bound �+(�(n))may give a much better upper bound for α(�(n)) than
Schrijver’s method. This contrasts with the situation encountered in the present

Table 2 Size of the semidefinite programs

Bound # # Block sizes
var. blocks

�+(Gev(25, 6)) 131 27 13 14 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 -436
�+(Gev(20, 8)) 43 23 11 12 9 9 9 9 7 7 7 7 5 5 5 5 3 3 3 3 1 1 1 1 -128
�++(Gev(20, 8)) 68 12 34 27 27 21 21 15 15 9 9 3 3 -221

# var. means ‘number of variables’,
# blocks means ‘number of blocks’

Table 3 Comparing the
bounds for the orthogonality
graph �(n) [1]

n �+(�(n)) Schrijver’s bound

16 2304 2304
20 20,166.62 20,166.98
24 183,373 184,194
28 1,848,580 1,883,009
32 21,103,609 21,723,404



Strengthened semidefinite programming bounds for codes 261

paper, where the bound �+ gave only a moderate improvement upon Schrijver’s
bound for the instances of the coding problem we have tested.
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