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Abstract

We study four measures of problem instance behavior that might account for
the observed differences in interior-point method (IPM) iterations when these
methods are used to solve semidefinite programming (SDP) problem instances:
(i) an aggregate geometry measure related to the primal and dual feasible regions
(aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition
measure C(d) of the data instance, (iii) a measure of the near-absence of strict
complementarity of the optimal solution, and (iv) the level of degeneracy of the
optimal solution. We compute these measures for the SDPLIB suite problem in-
stances and measure the correlation between these measures and IPM iteration
counts (solved using the software SDPT3) when the measures have finite values.
Our conclusions are roughly as follows: the aggregate geometry measure is highly
correlated with IPM iterations (CORR = 0.896), and is a very good predictor of
IPM iterations, particularly for problem instances with solutions of small norm
and aspect ratio. The condition measure C(d) is also correlated with IPM iter-
ations, but less so than the aggregate geometry measure (CORR = 0.630). The
near-absence of strict complementarity is weakly correlated with IPM iterations
(CORR = 0.423). The level of degeneracy of the optimal solution is essentially
uncorrelated with IPM iterations.
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1 Introduction

When applied to the solution of semidefinite programming (SDP) problems, modern
interior-point methods (IPMs) enjoy both excellent theoretical complexity (see [23])
as well as practical performance. Indeed, computational experience has shown that
state-of-the-art IPM software significantly outperforms the best theoretical worst-case
complexity in terms of the number of Newton-type iterations for such algorithms, see
[16]. In particular for SDP, we can solve 85 problems in the SDPLIB using between 10
and 60 IPM iterations. Furthermore, the number of IPM iterations is fairly independent
of traditional problem size measures such as the number of equality constraints, m,
and the dimension of the space of variables, n, of a primal SDP in standard form.
(For the same 85 SDPLIB instances we have: CORR(m, IPM Iterations) = 0.060 and
CORR(n, IPM Iterations) = −0.008.)

Herein we study the extent to which certain measures of problem instance behavior
might be correlated with the computational performance of IPMs on SDP problems.
We examine four measures of problem instance behavior that might account for the
observed differences in interior-point method (IPM) iterations. Two of these measures
were previously studied in connection to the theoretical complexity of interior-point
methods, namely an aggregate geometry measure related to the primal and dual feasible
regions (aspect ratios) and norms of the optimal solutions developed in [6], and the
(Renegar-) condition measure C(d) of the data instance studied in [18]. In addition, we
also develop and study a measure of the near-absence of strict complementarity of the
optimal solution, as well as a measure of the level of degeneracy of the optimal solution.
(These two measures have been shown to be related to the superlinear convergence of
some variants of the interior point method, see [2].) We compute these measures for the
SDPLIB suite problem instances and measure the correlation between these measures
and IPM iteration counts when these instances are solved using the software SDPT3.

Our conclusions are roughly as follows: the aggregate geometry measure is highly
correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM
iterations, particularly for problem instances with solutions of small norm and aspect
ratio. The condition measure C(d) is also correlated with IPM iterations, but less so
than the aggregate geometry measure (CORR = 0.630). The near-absence of strict
complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level
of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations.

The rest of the paper is organized as follows. We present the SDP problem format
and notation used in this paper in the remainder of this introductory section. In Section
2 we present our aggregate geometry measure and computational results. We discuss
the computation of the condition measure and present associated computational results
in Section 3. We present a measure of non-strict complementarity and associated com-
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putational results in Section 4. We present our measure of degeneracy and associated
computational results in Section 5. Summary conclusions and some further issues are
discussed in Section 6.

1.1 SDP Problem Format and Notation

We consider the standard form primal convex conic optimization problem:

(CP )
minx 〈c, x〉
s.t. A(x) = b

x ∈ K ,
(1)

where x, c ∈ <n, b ∈ <m, A(·) is a linear operator from <n to <m, 〈 , 〉 is a dot product
on <n, and K is a closed convex cone in <n. The (Lagrange) conic dual problem of
(CP ) is:

(CD)
maxy,z bT y

s.t. A∗(y) + z = c
z ∈ K∗ ,

(2)

where K∗ is the (positive) dual cone, i.e., K∗ := {z ∈ <n : 〈z, x〉 ≥ 0 for all x ∈ K},
and A∗(·) is the adjoint operator of A(·), namely A∗(·) satisfies yT A(x) = 〈A∗(y), x〉 for
all x, y, and for the space <m we consider the coordinate-wise dot-product 〈y, b〉 = yT b.

Let Sk denote the space of k×k symmetric matrices, and let Sk
+, Sk

++ ⊂ Sk denote the
cones of positive semi-definite and positive definite symmetric matrices, respectively. Let
“�” and “�”denote the partial orderings induced by Sk

+ and Sk
++, respectively. Similarly,

let <k
+,<k

++ ⊂ <k denote the cones of nonnegative k-vectors (the nonnegative orthant)
and positive k-vectors, respectively. The problem instances in the SDPLIB suite are
conic optimization problems of the form (1) where K is the cartesian product of one or
more semidefinite cones and the nonnegative orthant. A problem instance in the SDPLIB
can therefore be characterized as follows: let Ss denote the space of symmetric block-
diagonal matrices with ns blocks of dimensions s1, . . . , sns , and let Ss

+, Ss
++ ⊂ Ss denote

the cones of positive semidefinite and positive definite matrices in Ss, respectively. We
also consider that matrices in Ss are of size |s| × |s|, with |s| = ∑ns

j=1 sj. Each problem
instance in the SDPLIB suite can be written as:

(SDP )
min cs • xs + (cl)T xl

s.t. As
i • xs + (Al

i)
T xl = bi, i = 1, . . . ,m

xs ∈ Ss
+, xl ∈ <nl

+

(3)

where the dot product in the product space is given by 〈(cs, cl), (xs, xl)〉 = 〈cs, xs〉 +
〈cl, xl〉 = cs•xs+(cl)T xl and “•” denotes the trace inner product 〈cs, xs〉 := trace((cs)T xs).
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Here, (Al
i)

T denotes the ith row of the matrix Al ∈ <m×nl and we let As denote the linear
operator that maps Ss to <m by Asxs = (As

1 • xs, . . . , As
m • xs)T . Note that with

K := Ss
+ ×<nl

+ (4)

we see that (SDP ) is an instance of (CP ). Note also that the linear operator As is
indexed by a triplet: As

ijf = (As
i )jf , so that As

ijf is the entry in row j and column f of
the matrix As

i , and that As
i ∈ Ss, i = 1, . . . ,m. We let As

•jf represent the m-dimensional
vector of the j, f entries of the matrices As

1, . . . , A
s
m. The dual problem of (SDP ) is

given by

(SDD)

max bT y
s.t.

∑m
i=1 As

iyi + zs = cs

(Al)T y + zl = cl

zs ∈ Ss
+, zl ∈ <nl

+ .

(5)

We let e = (1, . . . , 1) ∈ <nl , let ei denote the i-th canonical vector of appropriate
dimension, and let I denote the identity matrix in appropriate spaces. If x, z ∈ <k

are vectors, let x ◦ z := (x1z1, . . . , xkzk)
T , and for P , Q arbitrary matrices, let P ⊗ Q

denote the Kronecker matrix product of P and Q. If x ∈ <k is a vector, let ‖x‖p :=(∑k
j=1 |xj|p

)1/p
denote the usual Lp-norm. If x ∈ Sk is a matrix, let λ(x) denote the

k-vector of eigenvalues of x, and let ‖x‖Ep :=
(∑k

j=1 |λj(x)|p
)1/p

denote the Lp-norm of

the eigenvalues of x. Given a norm ‖ · ‖ on a vector space, let ‖ · ‖∗ denote the (dual)
norm on the dual vector space. Let B(x̄, r) denote the ball of radius r centered at the
point x̄, namely B(x̄, r) := {x | ‖x − x̄‖ ≤ r}, and let dist(x, T ) denote the distance
from a point x to the set T . Given a linear operator A mapping <k to <l with norms on
these spaces given by ‖ · ‖X and ‖ · ‖Y , respectively, the operator norm of A is defined
to be ‖A‖ := sup{‖Ax‖Y : ‖x‖X ≤ 1}.

2 Aggregate Geometry Measure

2.1 Motivation

In [6] two primal geometry measures were used to provide a theoretical complexity bound
for a particular primal-based IPM for convex optimization problems in a format more
general than the conic form (CP ). The two primal geometry measures will be denoted
here by Dε

p and gp and will be reviewed shortly; essentially Dε
p measures the norm of

the largest ε-optimal primal solution and gp is an “aspect ratio” measure that is smaller
to the extent that there is a primal feasible solution of relatively small norm whose
distance from the boundary of the feasible region is relatively large. It is shown in [6]
that a theoretical bound on IPM iterations of the primal-based algorithm involves the
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term O(
√

ϑ(log(Dε
p) + log(gp))) (ϑ is the complexity parameter of the barrier function

used therein). Herein we test the practical relevance of these geometry measures as
applied to SDP problems solved using a standard primal-dual IPM. However, because
SDP problems are solved by primal-dual algorithms (where the roles of the primal and
dual are interchangeable), we also consider dual versions Dε

d and gd of these geometry
measures (defined on the dual feasible region) and test the correlation of IPM iterations
with the logarithm of the simple aggregate measure:

gm :=
(
Dε

p × gp ×Dε
d × gd

) 1
4 ;

note that the geometric mean is appropriate since we are interested in studying the
correlation between IPM iterations and log(gm).

2.2 Primal Geometry Measures

For the primal conic problem (CP ), the first primal geometry measure, originally intro-
duced in [6], is the maximum norm over all ε-optimal primal solutions, which we denote
by Dε

p. Given a norm ‖ · ‖ specified for the space of variables x, Dε
p is defined as:

(PM) :

Dε
p := maximumx ‖x‖

s.t. A(x) = b
x ∈ K
〈c, x〉 ≤ VAL + ε ,

(6)

where VAL is the optimal objective function value of (CP ). At first glance it may
seem odd to maximize rather than minimize in defining Dε

p. However, consider the ill-
posed case when VAL is finite but the set of optimal solutions is unbounded and hence
Dε

p = +∞. Then the dual feasible region has no interior, and we would expect it to be
more difficult for an interior-point method to compute an approximate solution of (CP ).
Also, in [5] it is shown that Dε

p is inversely proportional to the size of the largest ball
contained in the level sets of the dual problem, and so Dε

p contains specific information
about the interior of the dual feasible region in a neighborhood of the dual optimal
solution(s).

Note that (PM) is in general a non-convex optimization problem, which is discon-
certing. However, (PM) is a convex optimization problem if the norm ‖ · ‖ has the
property that it is a linear function on K. Specifying (CP ) to (SDP ) where K is given
by (4), we define the following norm on the vector space of variables:

‖x‖ = ‖(xs, xl)‖ := ‖xs‖E1 + ‖xl‖1 . (7)
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Proposition 1 Suppose that K is given by (4), and that ‖x‖ = ‖(xs, xl)‖ is defined
using (7). Then ‖x‖ = I • xs + eT xl for all x ∈ K, and

PM :

Dε
p = maximumx I • xs + eT xl

s.t. Asxs + Alxl = b
xs ∈ Ss

+, xl ∈ <nl
+

cs • xs + (cl)T xl ≤ VAL + ε .

(8)

Proof: From (4) and (7) we have that ‖x‖ =
∑s

j=1 |λj(x
s)|+∑nl

i=1 |xl
i| = eT λ(xs)+eT xl,

which implies the equivalent objective function since eT λ(xs) = trace(xs) = I • xs. We
complete the proof by replacing the definitions in (6).

The second primal geometry measure we consider (also originally introduced in [6]) is
defined for problem (CP ) to be the optimal objective function value of the optimization
problem:

Pgp :
gp := minimumx max

{
‖x‖, ‖x‖

dist(x, ∂K)
,

1

dist(x, ∂K)

}
s.t. A(x) = b

x ∈ K .

(9)

Note that gp will be smaller to the extent that the feasible region of (CP ) contains a
point x whose norm is not too large and whose distance from ∂K is not too small. (For
a further discussion of gp see [6].) We can compute the value of gp by instead working
with the following convex problem:

Pt∗p :

t∗p := maximumw,θ,t t
s.t. A(w)− bθ = 0

B(w, t) ⊂ K
‖w‖ ≤ 1
t ≤ θ ≤ 1 .

(10)

(Recall that B(w, t) denotes the ball centered at w with radius t.) It is easy to show
that gp = 1

t∗p
under the transformations:

x← w

θ
and (w, θ, t)←

(
x

max{‖x‖, 1}
,

1

max{‖x‖, 1}
,
min{dist(x, ∂K), 1}

max{‖x‖, 1}

)
.

While Pt∗p is a convex program, it is not clear if the constraint “B(w, t) ⊂ K” can be
conveyed efficiently. Specifying (CP ) to (SDP ) where K is given by (4), we see that
this can be done for our particular choice of norm:
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Proposition 2 Suppose that K is given by (4), and that ‖x‖ = ‖(xs, xl)‖ is defined
using (7), and let r ≥ 0 be given. Then

B(x, r) = B((xs, xl), r) ⊂ K if and only if xs − rI ∈ Ss
+, xl − re ≥ 0 ,

whereby

Pt∗p :

t∗p := maximumw,θ,t t
s.t. Asws + Alwl − bθ = 0

ws − tI ∈ Ss
+

wl − te ≥ 0
I • ws + eT wl ≤ 1
t ≤ θ ≤ 1 .

(11)

Proof: By Proposition 1, we have ‖w‖ = I • ws + eT wl. We only need to prove
the characterization of the inclusion constraint, since Problem (11) follows immediately
from (10) with that characterization. Assume first that B(x, r) ⊂ K. Let v be a
unit eigenvector corresponding to the smallest eigenvalue λmin(x

s) of xs. Then y :=
(xs − rvvT , xl) ∈ B(x, r), which implies that λmin(x

s) − r ≥ λmin(x
s − rvvT ) ≥ 0, and

therefore xs − rI ∈ Ss
+. Likewise, for any j ∈ {1, . . . , nl}, yj = (xs, xl − rej) ∈ B(x, r),

which means that xl
j − r ≥ 0 and therefore xl − re ≥ 0. For the converse, assume that

xl − re ≥ 0 and xs − rI ∈ Ss
+, which is equivalent to λi(x

s) ≥ r. Let y ∈ B(x, r), this
implies that |yl

j − xl
j| ≤ r for all j ∈ {1, . . . , nl}, which gives yl

j ≥ xl
j − r ≥ 0. Since

y ∈ B(x, r) we also have that |λi(y
s−xs)| ≤ r for all i ∈ {1, . . . , |s|}. Letting w1, . . . , ws

and z1, . . . , zs be the orthonormal bases of eigenvectors for xs and ys−xs, we have for any

vector v, vT ysv = vT xsv+vT (ys−xs)v =
∑s

i=1 λi(x
s)
(
vT wi

)2
+
∑s

i=1 λi(y
s−xs)

(
vT zi

)2
≥

r‖v‖22 − r‖v‖22 = 0. Thus we have that y ∈ K.

Taken together, Propositions 1 and 2 demonstrate that if we use the specified norm
(7), then Dε

p and gp can each be computed by solving an associated convex optimiza-
tion problem whose size and structure is compatible with the original problem instance
(SDP ).

2.3 Dual Geometry Measures and Aggregate Measure gm

Given a norm ‖ · ‖ on the space of dual cone variables z, we define Dε
d and gd as the

following obvious analogs of Dε
p and gp for the dual problem (CD):

(DM) :

Dε
d := maximumy,z ‖z‖

s.t. A∗(y) + z = c
z ∈ K∗

bT y ≥ VAL− ε

(12)
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and

Pgd
:

gd := minimumy,z max

{
‖z‖, ‖z‖

dist(z, ∂K∗)
,

1

dist(z, ∂K∗)

}
s.t. A∗(y) + z = c

z ∈ K∗ .

(13)

And similar to the results in Propositions 1 and 2, if we use the specified norm (7) for
the dual cone variables z = (zs, zl), we can compute Dε

d and gd by solving the problems:

(DM) :

Dε
d := maximumy,z I • zs + eT zl

s.t.
∑m

i=1 As
iyi + zs = cs

(Al)T y + zl = cl

zs ∈ Ss
+, zl ∈ <nl

+

bT y ≥ VAL− ε

(14)

and

Pt∗
d

:

t∗d := maximumv,u,θ,t t
s.t.

∑m
i=1 As

ivi + us − csθ = 0
(Al)T v + ul − clθ = 0
us − tI ∈ Ss

+

ul − te ≥ 0
I • us + eT ul ≤ 1
t ≤ θ ≤ 1 ,

(15)

and setting gd = 1
t∗
d
.

We aggregate the four geometry measures Dε
p, gp, Dε

d, and gd into the following single
aggregate measure using their geometric mean:

gm :=
(
Dε

p × gp ×Dε
d × gd

) 1
4 .

Roughly speaking, gm is smaller to the extent that the primal and dual problems
have near-optimal solutions with small norm, and whose feasible regions have points of
small norm that are far from the boundary of the respective cones.

2.4 Computation of Geometry Measures for the SDPLIB Suite

We computed the aggregate geometry measure gm (by computing Dp, gp, Dd, and gd)
for the SDPLIB suite of 92 semidefinite optimization problems, which are available on
the worldwide web at http://www.nmt.edu/∼sdplib/. Of the 92 problems that make
up the SDPLIB suite, we removed four instances that are infeasible (infd1, infd2,

infp1, infp2) and three large problems for which even computing a solution was ex-
cessively difficult (maxG55 (5000×5000), maxG60 (7000×7000), thetaG51 (6910×1001)),
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yielding a working set of 85 problem instances that formed the basis of our computational
experiments. All computation was performed using the software SDPT3, see [22, 21].

We used the following methodology to specify the value of ε for the formulation and
computation of Dε

p and Dε
d. Let xk and (yk, zk) be the approximate optimal solutions

returned by a solver to the original conic problem (SDP ). These are approximate
optimal solutions: they satisfy feasibility and complementary slackness within a given
tolerance. Because setting very small values of ε can result in formulating an infeasible
problem to determine either Dε

p or Dε
d, we used the following rule for assigning the value

of ε for each problem instance:

ε =
1

2
max

{
zT

k xk, (c
T xk − bT yk), 10−3

}
,

which was designed to set ε to be one half of the computed duality gap. To ensure
that (PM) and (DM) are feasible we replace the objective function constraints by
〈c, x〉 ≤ 〈c, xk〉 + ε for (PM) and by bT y ≥ bT yk − ε for (DM). We denote the values
obtained from these modified versions of (PM) and (DM) as Dp and Dd, respectively.

Table 5 in the Appendix contains the resulting values of gm as well as Dp, gp, Dd,
and gd for the 85 SDPLIB problems under consideration. Notice from Table 5 that
gp =∞ ⇐⇒ Dd =∞ and gd =∞ ⇐⇒ Dp =∞. This follows since for a primal and
dual feasible conic problem, the objective function level sets of the primal problem are
unbounded (Dp = ∞) if and only if the dual problem contains no slack vector in the
interior of the dual cone (gd =∞), and similarly for the dual. Table 1 presents summary
statistics for the four geometry measures: 32 of the 85 SDPLIB problem instances have
no primal interior solution; however, all 85 instances have dual interior solutions.

Table 1: Summary Statistics of Geometry Measures for 85 Problems in the SDPLIB
Suite

Status Dp Dd gp gd

Finite 85 53 53 85
Infinite - 32 32 -

Total 85 85 85 85

In order to assess any relationship between the aggregate geometry measure gm and
IPM iterations for the SDPLIB suite, we first solved and recorded the IPM iterations
taken by SDPT3 version 3.1 with default settings for the 85 SDPLIB suite problems
considered herein. Algorithm SDPT3-3.1 exits with an approximate solution if either
(i) it achieves a small relative error “err”, (ii) it identifies the problem as primal or
dual infeasible, or (iii) it perceives slow progress or encounters numerical difficulties.
Regardless of the exiting condition, we recorded the iteration count as a measure of
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the difficulty faced by the solver to reach termination on each problem under the same
default settings. Table 5 in the Appendix presents the IPM iterations obtained by
SDPT3-3.1 with default settings as well as the relative error, defined as:

err := max

{
〈x, z〉

max{1, (|〈c, x〉|+ |bT y|)/2}
,
‖A(x)− b‖
max{1, ‖b‖}

,
‖A∗(y) + z − c‖

max{1, ‖c‖}

}
(16)

for instances in which the final iterate has err > 10−6. Figure 1 shows a histogram of
IPM iterations for SDPT3-3.1 for the 85 problems in the SDPLIB suite.
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Figure 1: Histogram of IPM Iterations taken by SDPT3-3.1 for 85 Problems in the
SDPLIB Suite

Figure 2 shows a scatter plot of the number of IPM iterations taken by SDPT3
and log(gm) (all logarithms herein are base 10). In this and other relevant figures,
non-finite values of the measure are shown on the far right. Figure 2 indicates that
finite values of gm are highly linearly related to IPM iterations. We also computed the
sample correlation of log(gm) versus IPM iterations for the 53 finitely-valued instances,
obtaining CORR (log(gm), IPM Iterations) = 0.896. These results indicate a significant
linear relationship between IPM iterations and log(gm). In particular, note from Figure 2
and Table 5 that log(gm) is a particularly strong predictor of IPM iterations for problem
instances where gm is relatively small (say, ≤ 5000).

We also analyzed some different aggregate geometry measures based on the four in-
dividual measures Dp, gp, Dd, gd, obtaining similar results. For example, the aggregate

measure GM := max{Dp, gp, Dd, gd} yields CORR
(
log(GM), IPM Iterations

)
= 0.883,

which is not appreciably different from the corresponding value for gm.



11

1 2 3 4 5 6
0

10

20

30

40

50

60

log (gm)

IP
M

 It
er

at
io

ns

Figure 2: Scatter Plot of IPM iterations and log(gm) for 85 problems in the SDPLIB
Suite.

3 Condition Number

Considering the cone K in the problem (CP ) to be fixed, a problem instance is charac-
terized by its data d = (A(·), b, c). Given a norm ‖ · ‖X for the x variables and a norm
‖ · ‖Y for the space <m of the image of A(·), we define the norm on the space of data
d by ‖d‖ := max{‖A(·)‖, ‖b‖Y , ‖c‖X∗ } where ‖A(·)‖ is the operator norm. Renegar’s
theory of condition numbers for (CP ) focuses on three quantities – ρP (d), ρD(d), and
C(d), to bound various behavioral and computational quantities pertaining to (CP ).
The quantity ρP (d) is called the “distance to primal infeasibility” and is defined as:

ρP (d) := inf{‖∆d‖ | Xd+∆d = ∅} ,

where Xd denotes the feasible region of (CP ):

Xd := {x ∈ <n | A(x) = b, x ∈ K} .

The quantity ρD(d) is called the “distance to dual infeasibility” for the dual problem
(CD) and is defined similarly to ρP (d) but using the dual problem instead. The quantity
C(d) is called the “condition number” of the problem instance d and is a (positively)
scale-invariant reciprocal of the smallest data perturbation ∆d that will render the per-
turbed data instance either primal or dual infeasible:

C(d) :=
‖d‖

min{ρP (d), ρD(d)}
. (17)
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A problem is called “ill-posed” if min{ρP (d), ρD(d)} = 0, equivalently C(d) =∞. These
three condition measure quantities have been shown in theory to be connected to a wide
variety of bounds on behavioral characteristics of (CP ) as well as the complexity of
interior-point algorithms for (CP ), see the literature review in [13].

In particular, it is shown in [18] that a theoretical bound on the number of iterations
of a suitable IPM involves the term O(

√
ϑ log(C(d))) (ϑ is the complexity parameter

of the barrier function used therein). Furthermore, log(C(d)) is shown to have some
explanatory value for IPM iteration counts for the NETLIB suite of linear programming
problems, see [13] as well. Herein, just as we did with the aggregate geometry measure
gm, we test the correlation between log(C(d)) and IPM iteration counts for SDP problems
in the SDPLIB suite.

3.1 Distances to infeasibility and norm of data

In order to estimate C(d) efficiently we need to compute and/or estimate the three
quantities ρP (d), ρD(d), and ‖d‖. The computation of these quantities is hard or easy
depending on the choice of norms, see [8]. Specifying to the case of (SDP ) where K is
defined by (4), we use the following choice of norms:

‖x‖X = ‖(xs, xl)‖X := ‖xs‖E1 + ‖xl‖1 and ‖v‖Y := ‖v‖1 . (18)

We discuss the computation of ρP (d), ρD(d), and ‖d‖ below.

3.1.1 Computation of ρP (d)

With the choice of norms (18), it follows directly from Remark 6 of [7] that

ρP (d) = min
k=1,...,2m

ρk
P (d)

where
ρk

P (d) = miny,z,u max{‖A∗(y) + z‖X∗ , | − bT y + u|}
s.t. yd k

2
e = (−1)k

z ∈ K∗, y ∈ <m, u ≥ 0 ,

(19)

for k = 1, . . . , 2m. However, noting from (18) that

‖z‖X∗ = ‖(zs, zl)‖X∗ = max{‖zs‖E∞, ‖zl‖∞} ,
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problem (19) is equivalently:

ρk
P (d) = miny,z,u,γ γ

s.t.
∑n

i=1 As
iyi + zs = γI

(Al)T y + zl = γe

−bT y + u ≤ γ

yd k
2
e = (−1)k

zs ∈ Ss
+, zl ∈ <nl , y ∈ <m, γ ∈ <, u ≥ 0 ,

(20)

for k = 1, . . . , 2m, which is a conic convex problem of size and structure compatible
with the original dual problem instance (SDD). Therefore ρP (d) can be computed by
solving 2m SDP instances of compatible size and structure as the original dual problem
instance.

3.1.2 Computation of ρD(d)

Using Theorem 2 of [7] and exchanging the roles of the primal and dual, it follows that

ρD(d) = minx,g max
{
‖A(x)‖Y , |〈c, x〉+ g|

}
‖x‖X = 1
x ∈ K
g ≥ 0 ,

(21)

which is generally a non-convex problem due to the norm constraint “‖x‖X = 1.” How-
ever, under the choice of norms (18) ‖x‖X is a linear function on K from Proposition 1,
whereby (21) is equivalently:

ρD(d) = min γ
s.t. ‖Asxs + Alxl‖1 ≤ γ

|cs • xs + (cl)T xl + g| ≤ γ
I • xs + eT xl = 1
xs ∈ Ss

+, xl ∈ <nl
+ , g ≥ 0 ,

(22)

which can easily be converted to a conic convex optimization problem whose size and
structure is compatible with the original problem instance (SDP ).

3.1.3 Estimation of ‖d‖

Recalling that ‖d‖ := max{‖A(·)‖, ‖b‖Y , ‖c‖X∗ }, with the choice of norms given by (18)
we have ‖b‖Y = ‖b‖1 and ‖c‖X∗ = max{‖cs‖E∞, ‖cl‖∞}, whose computation are straight-
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forward. However, under this choice of norms we have

‖A(·)‖ = max {‖Asxs + Alxl‖1 : ‖xs‖E1 + ‖xl‖1 ≤ 1}
= max

{
max‖xs‖E1≤1 ‖Asxs‖1, max‖xl‖1≤1 ‖Alxl‖1

}
= max

{
‖As‖E1,1, ‖Al‖1,1

}
= max

{
‖As‖E1,1, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1
}

,

where Al
•j denotes the jth column of Al, and so the only difficulty in estimating ‖d‖ lies

in estimating ‖As‖E1,1. We use standard norm inequalities to bound this quantity as
follows:

Proposition 3 Let λmax
i denote the eigenvalue of As

i of largest absolute value, let vi be
the corresponding eigenvector normalized to ‖vi‖2 = 1, and define x̂i := vi(vi)T . Then

L ≤ ‖As‖E1,1 ≤ U ,

where

U = min


s∑

j=1

s∑
f=1

‖As
•jf‖1,

√
m‖As‖E2,2, ‖(λmax

1 , . . . , λmax
m )‖1

 ,

and

L = max

‖As‖E2,2√
|s|

, ‖Asx̂1‖1, . . . , ‖Asx̂m‖1

 .

Proof: From their definition we have that ‖x̂i‖E1 = 1, therefore ‖Asx̂i‖1 ≤ ‖As‖E1,1

for all i = 1, . . . ,m. Using the well known relationship between norms ‖y‖2 ≤ ‖y‖1 ≤√
k‖y‖2 for y ∈ <k, we can show that 1√

|s|
‖As‖E2,2 ≤ ‖As‖E1,1 ≤

√
m‖As‖E2,2. Now we

have that ‖Asxs‖1 =
∑m

i=1 |As
i • xs| ≤ ∑m

i=1

∑s
j,f=1 |As

ijf ||xs
jf | ≤

∑s
j,f=1 ‖As

•,jf‖1, where
we used the fact that |xs

jf | ≤ ‖xs‖E1 ≤ 1. Finally, we use the eigenvalue-eigenvector de-
composition of As

i =
∑n

j=1(λi)jv
i
j(v

i
j)

T to show that |As
i • xs| ≤ |λmax

i |∑s
j=1 |(vi

j)
T xsvi

j| ≤
|λmax

i |. The last inequality is because
∑s

j=1 |(vi
j)

T xsvi
j| ≤ 1 for any ‖xs‖E1 ≤ 1. Therefore

‖As‖E1,1 ≤ ‖(λmax
1 , . . . , λmax

m )‖1.

Note that it can be readily shown that ‖As‖E2,2 = ‖[svec(As
1), . . . , svec(As

m)]‖2,2,
where svec(·) denotes the standard linear isometry between Ss and the vector space
<q, where q =

∑ns
j=1 sj(sj + 1)/2. Thus the quantity ‖As‖E2,2 in Proposition 3 can be

computed easily by using variants of the Lanczos method to compute the spectral-norm
of the matrix [svec(As

1), . . . , svec(As
m)].

Therefore using Proposition 3 we can bound ‖d‖ as follows:

max
{
L, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1, ‖b‖1, ‖cs‖E∞, ‖cl‖∞

}
≤ ‖d‖
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and
‖d‖ ≤ max

{
U, ‖Al

•1‖1, . . . , ‖Al
•nl
‖1, ‖b‖1, ‖cs‖E∞, ‖cl‖∞

}
.

3.2 Computation of Condition Number Estimates for the SD-
PLIB Suite

The previous subsection shows that ρP (d) can be computed by solving 2m SDP problems,
ρD(d) can be computed by solving a single SDP problem, and that lower and upper
bounds on ‖d‖ can be computed using straightforward matrix norms and maximum
eigenvalue computations. This enables us to then compute lower and upper bounds on
C(d) using (17).

Table 6 in the Appendix contains the resulting computation of upper and lower
bounds on C(d) for the 85 problems in the SDPLIB suite. Blank entries in the table
indicate that we were unable to compute the corresponding measure. We were able to
estimate ‖d‖ and to compute ρD(d) for all 85 SDPLIB problems under consideration.
However, we were not able to compute ρP (d) for five problems, namely control11,

equalG51, maxG32, theta6, and thetaG11. These five problems have large values of
m (1596, 1001, 2000, 4375, and 2401, respectively), rendering the computation of the
2m problems needed for determining ρP (d) excessive. Some summary statistics from
Table 6 are presented in Table 2. These statistics show that 48 out of 80 problems are
well-posed, and the 32 problems that are ill-posed have primal distance to infeasibility
equal to zero and positive dual distance to infeasibility.

Table 2: Summary Statistics of Distances to ill-posedness for SDPLIB Suite
ρD(d)

Status 0 Positive Total

0 0 32 32
ρP (d) Positive 0 48 48

Total 0 80 80

Figure 3 shows a scatter plot of the number of IPM iterations taken by SDPT3
and log(C(d)), using the average of logarithm of the lower and upper bounds on C(d)
from Table 6. Similar to the aggregate geometric measures, non-finite values of C(d)
are shown on the far right. The figure indicates that finite values are related to IPM
iterations. We computed the sample correlation of log(C(d)) versus IPM iterations
for the 48 problems with finite C(d). The sample correlation for these problems is
CORR(log(C(d)), IPM Iterations) = 0.630. These results indicate a somewhat linear
relationship between IPM iterations and log(C(d)) that is not much different from that
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found on the NETLIB suite of linear programming problems [13], but that is less signif-
icant than for the aggregate geometry measure gm.
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Figure 3: IPM iterations versus log (C(d)).

Comparing Tables 5 and 6, one observes connections between values of the geome-
try measures and values of C(d), for example, C(d) = ∞ precisely for those problem
instances when gp = ∞, etc. This is of course not a coincidence. The literature on
condition numbers and related problems contains implicit connections between these
measures, which we summarize as follows:

Proposition 4 If A(·) has full row rank (which is the case by design for all problems
in the SDPLIB suite), then:

1. gp =∞ ⇐⇒ ρP (d) = 0

2. gd =∞ ⇐⇒ ρD(d) = 0

3. gp ≤ 3(|s|+ nl)C(d)

4. gd ≤ 3(|s|+ nl)C(d)

5. Dε
p ≤ C(d)2 + C(d) ε

‖c‖∗

6. Dε
d ≤ C(d)2 + C(d) ε

‖b‖
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Proof: Item (1.) follows from Theorem 17 of [7] and Robinson [19], (2.) follows from
Theorem 19 of [7] and Robinson [19], (3.) and (4.) follow from Theorems 17 and 19 of
[7], and (5.) and (6.) follow from Theorem 1.1 and Lemma 3.2 of [17].

4 Non-Strict Complementarity

Consider the following definition of strict complementarity, which is adapted from [1]
and which considers an SDP instance with A(·) having full row rank (as is the case for
SDPLIB instances).

Definition 1 Let x = (xs, xl) be primal feasible, and y and z = (zs, zl) be a dual
feasible pair such that 〈x, z〉 = 0. Then strict complementarity is said to hold for x and
z if xs + zs � 0 and xl + zl > 0.

Strict complementarity is a desirable property of an SDP instance; in fact the strict
complementarity of an optimal solution is a necessary condition for superlinear con-
vergence of interior-point methods that take Newton-like steps, see [16], and much
recent research has explored what conditions in addition to strict complementarity
are needed to guarantee superlinear convergence for different interior-point algorithms
[9, 10, 11, 12, 15]. However, even for linear programming (which must have a strictly
complementary solution), there are instances for which the optimal solutions are nearly
non-strictly complementary, and can be made arbitrarily badly so. Furthermore, in
interior-point methods for either linear or semidefinite programming, we terminate the
algorithm with a primal-dual solution that is almost optimal but not actually optimal.
Hence there are genuine conceptual difficulties in trying to quantify and compute the
extent of near-non-strict-complementarity for an SDP instance (and for LP instances as
well).

Consider a point (x, y, z) = (x(µ), y(µ), z(µ)) on the primal-dual central path of
(CP ), then there exists an orthonormal matrix Q and diagonal matrices Λx, Λz cor-
responding to the vectors of eigenvalues λx, λz of xs, zs satisfying xs = QΛxQ

T , zs =
QΛzQ

T , and
ΛxΛz = µI and xl(µ) ◦ zl(µ) = µe . (23)

The duality gap of this solution is ε := nµ where n := |s|+nl. Considering the jth matrix
equation of (23), we know that the two scalar quantities π := (λx)j and γ := (λz)j must
satisfy π, γ ≥ 0 and π · γ = µ. However, noticing that π + γ ≥ minπ,γ≥0{π + γ : π · γ =
µ} = 2

√
µ, this implies more generally that:

Λx + Λz � 2
√

µI and xl + zl ≥ 2
√

µe . (24)
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When a problem instance is non-strictly-complementary (NSC), then at least one index
j must satisfy (λx)j → 0 and (λz)j → 0 (or xl

j → 0 and zl
j → 0), and (24) indicates that

(λx)j + (λz)j or xl
j + zl

j must grow at least as fast as the function
√

µ near µ = 0, and
its slope becomes unboundedly large near µ = 0.

The above analysis, which is based on points being on the central path, suggests the
following more general approach to measure the extent to which a computed approximate
solution (x, y, z) is non-strictly complementary. Let w = (x + z)/(2

√
µ), where µ =

〈x, z〉/n. We partition w into w = (ws, wl) and let λw denote the vector of eigenvalues
of ws. We consider (x, y, z) to be nearly non-strictly complementary if λw and/or wl

have small positive components. This is quantified by choosing a tolerance value T and
defining the following index sets:

T s := {j : (λw)j ≤ T} and T l := {j : wl
j ≤ T} ,

and then using the following measure:

κ :=

−

∑
j∈T s

ln((λw)j) +
∑
j∈T l

ln(wj)


|T s|+ |T l|

.

Note that a larger value of κ indicates that the problem is closer to having a non-strict
complementary optimal solution.

4.1 Computation of the non-strict complementarity measure κ

for the SDPLIB Suite

As the notion of non-strict complementarity (and also the notion of degeneracy that we
study in the next section) concerns an optimal primal-dual solution, the approximate
optimal solution (xk, yk, zk) we use must have high accuracy in order for its associated κ
value to be of relevance. The approximate solutions delivered by SDPT3-3.1, however,
are usually not accurate enough for the purpose of measuring non-strict complementarity
and degeneracy of a primal-dual optimal solution. We therefore use a slightly different
version of SDPT3-3.1 to compute more accurate approximate optimal solutions in this
section as well as in Section 5. For ease of reference, we refer to that version as SDPT3-
aug. The interior-point algorithms implemented in both versions are the same, except
in the ways the search directions at each iteration are computed. For SDPT3-3.1, the
search direction is computed from the Schur complement equation, which is a symmetric
positive definite m×m linear system, whereas the search direction in SDPT3-aug is com-
puted from a reduced augmented equation described in [20]. The reduced augmented
equation is a symmetric indefinite linear system that has a larger dimension than the
Schur complement equation. Because of the higher computational cost required to solve
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the reduced augment equation compared to the Schur complement equation, this alter-
native method of computing the search direction is not implemented in SDPT3-3.1. The
reduced augmented equation, however, has empirically proven to have better stability
properties than the Schur complement equation, thereby allowing SDPT3-aug to com-
pute more accurate optimal approximate solutions than SDPT3-3.1 before numerical
difficulties are encountered in the course of the IPM iterations.

Table 7 in the Appendix contains the IPM iterations obtained by SDPT3-aug for
the 85 problems in the SDPLIB suite. The relative error (described in (16)) of the
approximate optimal solution obtained for each problem is shown in the third column
of the table. Note that in this case, we let the algorithm run until it cannot improve
the accuracy of the approximate optimal solution or when numerical difficulties are
encountered.

Using the tolerance value T = max{100, λmin(w
s)} for finding T s and the value

T = max{100, minj(w
l
j)} for finding T l, we computed κ for all 85 problems in the

SDPLIB suite; these values are reported in the fourth column of Table 7. Note that
by the choice of value for T , both T s and T l have at least one element. Figure 4
shows a scatter plot of the number of IPM iterations taken by SDPT3 and κ in the
SDPLIB suite. We computed the sample correlation of κ versus IPM iterations for the
85 problems, obtaining CORR(κ, IPM Iterations) = 0.423. Thus the near absence of
strict complementarity (as measured by κ) is correlated with the IPM iteration counts,
but less so than either log(C(d)) or log(gm).
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Figure 4: IPM iterations versus non-strict complementarity measure κ.
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We also constructed and tested a variety of other continuous and discrete measures
of near-non-strict complementarity, but none of our other measures showed a stronger
correlation with IPM iteration counts than κ.

We note that non-strict complementarity is not theoretically related to either C(d)
or to any of the four geometry measures, as it is straightforward to construct small
examples with and without strict complementarity and with and without interiors of
primal and/or dual feasible regions, for example.

5 Degeneracy

It is shown in [2] that if in addition to a strictly complementary solution, the optimal
solution is primal and dual non-degenerate, then some IPM variants exhibit local Q-
quadratic convergence. This suggests that IPM iteration counts might be related to the
extent of primal and/or dual degeneracy at the optimal solution. We use the standard
definitions of degeneracy for SDP adapted from [1].

Definition 2 Let x = (xs, xl) be a primal optimal solution of (SDP ) with rank(xs) = r
and J := {j : xl

j > 0}. Let Q1 ∈ <|s|×r and Q2 ∈ <|s|×(|s|−r) be matrices whose
columns form orthonormal bases of eigenvectors for the range space and null space of
xs, respectively. The point x is said to be primal non-degenerate if and only if the matrix

B(x) :=
[
mat(As)(Q1 ⊗Q1), mat(As)(Q1 ⊗Q2), Al

J

]
has full row rank.

In this definition mat(As) denotes the matrix representation of the linear map As, Al
J

denotes the sub-matrix obtained from Al whose columns correspond to the index set J ,
and Qi ⊗Qj denotes the Kronecker matrix product of Qi, Qj.

Definition 3 Let y and z = (zs, zl) be a dual optimal solution with rank(zs) = r̃ and
J̃ := {j : zl

j = 0}. Let Q̃1 ∈ <|s|×(|s|−r̃) and Q̃2 ∈ <|s|×r̃ be matrices whose columns form
orthonormal bases of eigenvectors for the null space and range space of zs, respectively.
The pair (y, z) is said to be dual non-degenerate if and only if the matrix

B̃(y, z) :=
[
mat(As)(Q̃1 ⊗ Q̃1), Al

J̃

]
has full column rank.
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As we already noted in the previous section, in interior-point methods for either LP
or SDP we terminate the algorithm with a primal-dual solution (xk, yk, zk) that is almost
optimal but not actually optimal. Thus strictly speaking, the rank of xs

k is |s|. But since
we know that xk is converging to an optimal primal solution xs

∗ that has rank r, we
can estimate r from the eigenvalues of xs

k by counting the number of eigenvalues that
are significantly larger than µk := 〈xk, zk〉/n. The rank r̃ can similarly be estimated.
In order to determine r, r̃, J , and J̃ unambiguously, we need (xk, yk, zk) to be a highly
accurate approximate optimal solution. One of the main difficulties we encounter in
trying to determine the degeneracy of a primal-dual approximate optimal solution is in
the numerical determination of r, r̃, J , and J̃ . Unless there is a clear separation of the
eigenvalues of xs

k to indicate clearly those that correspond to the range space of xs
∗, it is

hard to determine r without ambiguity; these remarks also pertain to r̃, J and J̃ .

Besides having to determine r, r̃, J and J̃ numerically from an approximate optimal
solution, the ranks of the matrices in Definitions 2 and 3 must also be determined
numerically from B(xk) and B̃(yk, zk). One of the most commonly used method to
determine the rank of a matrix is to compute its singular value decomposition and to
count those singular values that are significantly larger than machine precision. We
adopt this method here by considering as zero singular values that are computed to be
smaller than 10−13 times the largest computed singular value.

5.1 Computation of measure of degeneracy for the SDPLIB
Suite

Out of the 85 problems in the SDPLIB suite, we are able to compute approximate
optimal solutions that are accurate enough to determine r, r̃, J and J̃ unambiguously for
68 problems. A summary of the degeneracy status of these 68 problems is shown in Table
3. Note that 25 of the 68 problems are degenerate, the rest are nondegenerate. Table
7 in the Appendix contains more specific degeneracy information for the 85 SDPLIB
problems. The column labeled “pd” contains the fraction whose numerator is the rank
of B(xk) and whose denominator is m. The column labeled “dd” contains the fraction
whose numerator and denominator are the column rank and the number of columns of
B̃(yk, zk), respectively. Blank entries in these two columns indicate that that we were
not able to determine the degeneracies without ambiguity. We measure the degeneracy
of the primal/dual solution triplet (xk, yk, zk) by the following quantity:

γ := max

{
1− row rank(B(xk))

m
, 1− col rank(B̃(yk, zk))

N

}
,

where N denotes the number of columns of B̃(yk, zk). Note that γ will be larger to the
extent that the matrices B(xk) and B̃(yk, zk) are far from full rank. The values of γ for
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the 68 problems whose degeneracies are unambiguous are shown in the fifth column of
Table 7.

Table 3: Degeneracy Status for 68 Problems in the SDPLIB Suite.

Dual Problem
Status Degenerate Nondegenerate Total

Degenerate 8 2 10
Primal Problem Nondegenerate 15 43 58

Total 23 45 68

Figure 5 shows a scatter plot of the number of IPM iterations taken by SDPT3-aug
and γ for 68 problems in the SDPLIB suite. The figure seems to reveal little in the
way of a pattern/relationship between the extent of degeneracy and IPM iterations. For
completeness, we computed the sample correlation of γ versus IPM iterations for the 68
problems in the SDPLIB, obtaining CORR(γ, IPM Iterations) = 0.100. This finding is
consistent with the theoretical result in [12] showing that local superlinear convergence
of interior-point methods can be achieved even for degenerate problems.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

γ

IP
M

 It
er

at
io

ns

Figure 5: IPM iterations versus degeneracy measure γ.

Because only 25 problems exhibited degeneracy, it is natural to try to construct a
measure of “closeness to degeneracy” for nondegenerate problems, such as the ratios of
the largest to the smallest singular values of matrices B(xk) and B̃(yk, zk). However, we
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found no evidence (using the SDPLIB suite) that such measures showed any noticeable
relation to IPM iteration counts.

6 Summary Conclusions and Further Issues

6.1 Summary Conclusions

We observe that 53 of 85 SDPLIB problem instances have finite geometry measure gm,
and for these 53 instances we have CORR(log (gm) , IPM Iterations) = 0.896, indicating
a significant linear relationship between IPM iterations and log(gm) among these problem
instances.

Regarding the condition measure C(d), we observe that 32 of 80 SDPLIB problem in-
stances are almost primal infeasible, i.e., C(d) = +∞. Among the 48 SDPLIB instances
with finite condition measure, we have CORR(log (C(d)) , IPM Iterations) = 0.630,
which indicates a somewhat linear relationship between IPM iterations and log(C(d)),
that is less significant than for log(gm).

The near absence of strict-complementarity, measured with the quantity κ developed
in Section 4 and applied to the 85 SDPLIB problems under consideration, is weakly
correlated with IPM iterations: CORR(κ, IPM Iterations) = 0.423 .

Incidentally, traditional dimensional measures such as m, n := |s| + nl, or
√

n are
not well correlated with IPM iterations on the SDPLIB suite. For example, we observed
CORR(m, IPM Iterations) = 0.060, CORR(n, IPM Iterations) = −0.008, and
CORR(

√
n, IPM Iterations) = 0.043.

We were able to determine the degeneracy status for 68 problems out of the 85 in
the SDPLIB suite. Among these 68 problems, 25 are degenerate, and the degeneracy
parameter γ developed in Section 5 is essentially uncorrelated with IPM iterations.

Table 4 shows more extensive correlation values among the finite values of the four
behavioral measures we have studied. Comparisons between the correlation values in
the table must be done with caution, since problem instances used to compute each cor-
relation varied, and were limited to those problems with finite values for both measures
in the pair.

Notice the high correlation between κ and log(gm) (and less significantly to log(C(d))).
This is not indicated by any theory, since one can easily construct examples with high
values of κ and low values of log(gm) or log(C(d)) and vice versa. Therefore the high
correlation is specific to the 53 data instances in the SDPLIB suite, and suggests that
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Table 4: Summary Correlation Values for all Measures (with Number of Problem In-
stances in Boldface)

Iterations κ log(gm) log(C(d)) γ

Iterations 1.000
κ 0.423 (85) 1.000

log(gm) 0.896 (53) 0.708 (53) 1.000
log(C(d)) 0.630 (48) 0.631 (48) 0.831 (48) 1.000

γ 0.100 (68) -0.256 (68) -0.000 (42) 0.030 (38) 1.000

the SDPLIB suite has some systematic behavioral patterns. Of course, this is not too
surprising, since the SDPLIB suite contains large numbers of instances of a relatively
few application domains of SDP.

In addition to being the most correlated with IPM iteration counts, the aggregate
geometry measure gm also poses the least computational challenge. In computing C(d),
in particular for determining ρP (d), we must solve 2m SDP problems of size and structure
comparable to the original SDP, as contrasted to solving just four such problems in order
to determine gm. In the case of the problem instance control11 this translates to a few
minutes to compute gm versus over five days to compute C(d). (Had we instead used
Peña’s method [14] for estimating C(d), we still would face significant challenges in order
to compute smallest eigenvalues of large dense positive definite matrices, see [4], which
is why we did not adopt that approach.) As discussed in Section 4.1 the computation
of κ (or γ) is made challenging by the need to compute an approximate solution with
sufficiently high accuracy to identify which variables and eigenvalues are positive versus
zero. Such high accuracy is not a prerequisite for reliable computation of gm (or C(d)).

6.2 Further Issues

We chose to test the correlation of the behavioral measures on IPM iterations of a
particular interior-point method, namely a “standard” primal-dual infeasible interior-
point method that uses the HKM direction. Our intuition suggests that our conclusions
would not change appreciably if we instead used the NT direction or the AHO direction,
but might change if we used a homogeneous self-dual embedding model, see [3] for
example.

We have not explored the extent to which the four behavioral measures (or others)
might jointly better account for differences in IPM iteration counts. Our agenda in this
study was not to try to better predict IPM iterations, but rather to test the extent to
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which certain theoretically-motivated complexity measure and/or convergence measures
might or might not be relevant to computational practice. Nevertheless, presuming for
the moment that the SDPLIB is a representative data set of the universe of relevant SDP
instances, it would be interesting to see if certain combinations of different measures can
do a better job of accounting for differences in IPM iterations. For example, might
there be a systematic correlation between IPM iterations and, say, κ on those SDPLIB
instances for which C(d) =∞?

The high correlation between κ and log(gm) shown in Table 4 clarifies the intuition
that the SDPLIB suite has some systematic behavioral patterns. An overarching ques-
tion is to construct or otherwise identify a reasonably-sized set of SDP problem instances
that might be better suited to empirically examine issues related to the computational
behavior of algorithms for SDP.
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Appendix: Computation on the SDPLIB Suite

In this appendix we present tables with all computed measures for the SDPLIB suite.
In these tables, floating point numbers are shown in scientific notation; for example we
see from Table 5 below that Dd for problem arch0 is 3.5× 103, etc.

Table 5: Aggregate Geometry Measure gm and IPM iteration
counts obtained by SDPT3-3.1 for the SDPLIB Suite

Problem Iterations err Dp gp Dd gd gm

arch0 24 2.5 1 2.0 4 3.5 3 2.0 6 7.7 3
arch2 23 3.7 1 2.0 4 4.1 3 2.0 6 8.8 3
arch4 21 4.8 1 2.0 4 6.1 3 2.0 6 1.0 4
arch8 21 1.6 2 2.0 4 3.2 4 1.8 6 2.1 4
control1 17 1.9 1 9.3 4 8.7 5 5.0 3 9.4 3
control2 20 9.3 0 3.0 5 1.3 6 1.5 4 1.5 4
control3 20 1.5 1 7.7 5 5.7 6 3.2 4 3.8 4
control4 21 2.1 1 1.3 6 1.1 7 4.9 4 6.2 4
control5 22 1.8 1 2.0 6 1.7 7 6.2 4 7.8 4
control6 22 2.0 -6 3.8 1 3.1 6 5.2 7 9.2 4 1.5 5
control7 24 2.2 1 4.1 6 5.0 7 1.1 5 1.5 5
control8 24 2.1 1 5.5 6 5.8 7 1.4 5 1.7 5
control9 25 1.6 1 7.0 6 5.7 7 1.7 5 1.8 5
control10 24 1.1 -5 4.0 1 8.3 6 1.8 8 2.0 5 3.3 5
control11 26 1.1 -6 3.3 1 1.0 7 1.7 8 2.3 5 3.4 5
equalG11 16 2.0 -6 8.0 2 1.6 3 6.4 5 2.2 3 6.5 3
equalG51 17 1.0 3 2.0 3 1.0 6 3.1 3 8.9 3
gpp100 18 1.0 2 ∞ ∞ 1.9 2 ∞
gpp124-1 18 9.0 -6 1.2 2 ∞ ∞ 1.9 2 ∞
gpp124-2 17 1.2 2 ∞ ∞ 2.4 2 ∞
gpp124-3 15 1.2 2 ∞ ∞ 2.8 2 ∞
gpp124-4 17 5.0 -6 1.2 2 ∞ ∞ 3.5 2 ∞
gpp250-1 16 6.0 -5 2.5 2 ∞ ∞ 4.0 2 ∞
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Problem Iterations err Dp gp Dd gd gm

gpp250-2 17 7.0 -6 2.5 2 ∞ ∞ 4.8 2 ∞
gpp250-3 16 7.0 -6 2.5 2 ∞ ∞ 5.9 2 ∞
gpp250-4 19 2.5 2 ∞ ∞ 7.2 2 ∞
gpp500-1 24 5.0 2 ∞ ∞ 7.9 2 ∞
gpp500-2 15 5.0 -6 5.0 2 ∞ ∞ 9.6 2 ∞
gpp500-3 17 5.0 2 ∞ ∞ 1.2 3 ∞
gpp500-4 17 5.0 2 ∞ ∞ 1.5 3 ∞
hinf1 23 5.9 0 ∞ ∞ 7.6 1 ∞
hinf2 17 4.0 2 1.5 5 3.8 5 5.0 3 1.8 4
hinf3 19 5.0 -6 1.1 3 ∞ ∞ 1.5 4 ∞
hinf4 23 6.6 1 ∞ ∞ 1.8 3 ∞
hinf5 18 1.1 -4 2.5 3 ∞ ∞ 1.0 5 ∞
hinf6 24 9.0 -6 5.7 3 ∞ ∞ 6.8 4 ∞
hinf7 17 5.0 -6 3.7 4 ∞ ∞ 3.5 5 ∞
hinf8 21 6.0 -6 1.0 3 ∞ ∞ 1.6 4 ∞
hinf9 19 1.2 -5 1.1 5 3.1 2 1.8 4 1.0 6 2.8 4
hinf10 37 2.1 1 ∞ ∞ 1.6 3 ∞
hinf11 32 1.3 1 ∞ ∞ 1.3 3 ∞
hinf12 60 1.1 -5 1.0 0 ∞ ∞ 1.4 3 ∞
hinf13 23 6.8 -2 5.5 3 ∞ ∞ 9.4 4 ∞
hinf14 26 2.3 -4 3.1 2 ∞ ∞ 3.3 3 ∞
hinf15 24 1.1 -1 8.8 3 ∞ ∞ 1.8 5 ∞
maxG11 15 8.0 2 8.0 2 6.1 2 1.4 3 8.6 2
maxG32 16 2.0 3 2.0 3 1.6 3 3.6 3 2.2 3
maxG51 17 1.0 3 1.0 3 1.1 3 2.1 3 1.2 3
mcp100 12 1.0 2 1.0 2 9.2 1 1.9 2 1.1 2
mcp124-1 13 1.2 2 1.2 2 6.7 1 1.9 2 1.2 2
mcp124-2 13 1.2 2 1.2 2 1.1 2 2.3 2 1.4 2
mcp124-3 13 1.2 2 1.2 2 1.6 2 2.8 2 1.6 2
mcp124-4 13 1.2 2 1.2 2 2.3 2 3.5 2 1.8 2
mcp250-1 14 2.5 2 2.5 2 1.5 2 4.0 2 2.5 2
mcp250-2 13 2.5 2 2.5 2 2.3 2 4.8 2 2.9 2
mcp250-3 13 2.5 2 2.5 2 3.4 2 5.9 2 3.3 2
mcp250-4 13 2.5 2 2.5 2 4.7 2 7.2 2 3.8 2
mcp500-1 15 5.0 2 5.0 2 2.9 2 7.9 2 4.9 2
mcp500-2 16 5.0 2 5.0 2 4.6 2 9.6 2 5.8 2
mcp500-3 15 5.0 2 5.0 2 6.7 2 1.2 3 6.7 2
mcp500-4 14 5.0 2 5.0 2 1.0 3 1.5 3 7.8 2
qap5 11 6.0 0 ∞ ∞ 1.3 3 ∞
qap6 18 7.0 0 ∞ ∞ 3.3 3 ∞
qap7 21 8.0 0 ∞ ∞ 4.1 3 ∞
qap8 20 9.0 0 ∞ ∞ 7.1 3 ∞
qap9 17 1.0 1 ∞ ∞ 1.1 4 ∞
qap10 17 1.1 1 ∞ ∞ 1.5 4 ∞
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Problem Iterations err Dp gp Dd gd gm

qpG11 16 8.0 2 1.6 3 4.9 3 6.5 3 2.5 3
qpG51 17 1.0 3 2.0 3 2.4 4 2.6 4 5.9 3
ss30 19 2.2 2 1.0 3 1.8 4 2.4 5 5.6 3
theta1 12 1.0 0 5.0 1 1.1 3 1.1 3 8.8 1
theta2 14 1.0 0 1.0 2 3.2 3 3.3 3 1.8 2
theta3 15 1.0 0 1.5 2 6.2 3 6.3 3 2.8 2
theta4 15 1.0 0 2.0 2 9.9 3 1.0 4 3.8 2
theta5 15 1.0 0 2.5 2 1.4 4 1.4 4 4.7 2
theta6 14 1.0 0 3.0 2 1.9 4 1.9 4 5.7 2
thetaG11 19 8.0 2 2.4 3 2.0 2 9.5 2 7.8 2
truss1 10 1.9 1 4.6 2 6.1 1 1.3 1 5.1 1
truss2 17 4.9 2 6.5 4 4.1 3 1.3 2 2.0 3
truss3 12 4.7 1 1.1 3 6.2 1 3.1 1 1.0 2
truss4 11 2.8 1 6.8 2 6.1 1 1.9 1 6.9 1
truss5 17 1.3 3 1.8 5 4.4 3 3.3 2 4.3 3
truss6 27 2.7 3 1.6 6 1.4 5 4.5 2 2.3 4
truss7 26 1.8 3 1.1 6 1.4 5 3.0 2 1.7 4
truss8 16 2.5 3 3.3 5 4.4 3 6.3 2 6.9 3

Table 6: Condition Measure C(d) Computation for the SD-
PLIB Suite

‖d‖ log C(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) Bound Bound Bound Bound
arch0 9.9 -1 1.0 0 3.3 4 3.1 5 3.3 4 3.1 5
arch2 9.9 -1 1.0 0 3.4 4 3.1 5 3.4 4 3.1 5
arch4 9.8 -1 1.0 0 3.6 4 3.1 5 3.7 4 3.1 5
arch8 9.5 -1 1.0 0 3.9 4 3.1 5 4.1 4 3.3 5
control1 3.9 -1 5.3 -2 4.4 4 9.7 4 8.3 5 1.8 6
control2 2.5 -2 1.0 -1 9.9 4 3.2 5 3.9 6 1.3 7
control3 2.9 -1 6.8 -2 1.4 5 8.1 5 2.0 6 1.2 7
control4 1.7 -1 4.6 -2 1.8 5 1.4 6 3.9 6 3.1 7
control5 1.3 -1 5.6 -2 2.1 5 2.2 6 3.8 6 3.9 7
control6 1.9 -1 2.6 -2 2.9 5 3.4 6 1.1 7 1.3 8
control7 3.2 -1 4.6 -2 3.6 5 4.5 6 7.9 6 9.8 7
control8 2.8 -1 4.7 -2 3.7 5 6.1 6 7.8 6 1.3 8
control9 9.5 -2 6.3 -2 4.2 5 7.8 6 6.7 6 1.2 8
control10 1.5 -1 2.5 -2 4.5 5 9.1 6 1.8 7 3.6 8
control11 3.0 -2 5.5 5 1.1 7
equalG11 1.3 -3 1.0 -0 8.0 2 1.6 3 6.4 5 1.3 6
equalG51 9.6 -1 1.0 3 2.0 3
gpp100 0.0 0 1.0 0 1.0 2 2.0 2 ∞ ∞
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‖d‖ C(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) Bound Bound Bound Bound
gpp124-1 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-2 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-3 0.0 0 1.0 0 1.2 2 2.5 2 ∞ ∞
gpp124-4 0.0 0 2.5 0 1.2 2 2.5 2 ∞ ∞
gpp250-1 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-2 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-3 0.0 0 1.0 0 2.5 2 5.0 2 ∞ ∞
gpp250-4 0.0 0 2.1 0 2.5 2 5.0 2 ∞ ∞
gpp500-1 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-2 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-3 0.0 0 1.0 0 5.0 2 1.0 3 ∞ ∞
gpp500-4 0.0 0 1.6 0 5.0 2 1.0 3 ∞ ∞
hinf1 0.0 0 8.3 -2 2.4 0 5.1 0 ∞ ∞
hinf2 1.0 -5 1.1 -3 3.5 0 5.6 0 3.5 5 5.6 5
hinf3 0.0 0 4.5 -4 2.2 1 3.4 1 ∞ ∞
hinf4 0.0 0 7.7 -3 6.4 1 1.0 2 ∞ ∞
hinf5 0.0 0 5.0 -5 1.2 2 1.8 2 ∞ ∞
hinf6 0.0 0 9.0 -5 3.3 1 5.8 1 ∞ ∞
hinf7 0.0 0 1.0 -5 1.7 2 2.7 2 ∞ ∞
hinf8 0.0 0 3.7 -4 6.4 1 1.3 2 ∞ ∞
hinf9 1.2 -2 4.7 -6 9.3 1 1.7 2 2.0 7 3.6 7
hinf10 0.0 0 1.2 -2 1.9 2 3.3 2 ∞ ∞
hinf11 0.0 0 2.8 -2 3.4 2 6.0 2 ∞ ∞
hinf12 0.0 0 9.1 -3 1.1 2 2.3 2 ∞ ∞
hinf13 0.0 0 8.0 -5 2.8 1 7.4 1 ∞ ∞
hinf14 0.0 0 1.6 -3 2.1 1 7.1 1 ∞ ∞
hinf15 0.0 0 4.0 -5 3.8 1 1.2 2 ∞ ∞
maxG11 1.3 -3 1.0 0 8.0 2 8.0 2 6.4 5 6.4 5
maxG32 1.0 0 2.0 3 2.0 3
maxG51 1.0 -3 1.0 0 1.0 3 1.0 3 1.0 6 1.0 6
mcp100 1.0 -2 1.0 0 1.0 2 1.0 2 1.0 4 1.0 4
mcp124-1 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-2 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-3 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp124-4 8.1 -3 1.0 0 1.2 2 1.2 2 1.5 4 1.5 4
mcp250-1 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-2 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-3 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp250-4 4.0 -3 1.0 0 2.5 2 2.5 2 6.2 4 6.2 4
mcp500-1 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
mcp500-2 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
mcp500-3 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
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‖d‖ C(d)
Lower Upper Lower Upper

Problem ρP (d) ρD(d) Bound Bound Bound Bound
mcp500-4 2.0 -3 1.0 0 5.0 2 5.0 2 2.5 5 2.5 5
qap5 0.0 0 1.0 0 4.3 2 4.3 2 ∞ ∞
qap6 0.0 0 1.0 0 5.4 2 5.4 2 ∞ ∞
qap7 0.0 0 1.0 0 6.1 2 6.1 2 ∞ ∞
qap8 0.0 0 1.0 0 1.0 3 1.0 3 ∞ ∞
qap9 0.0 0 1.0 0 1.7 3 1.7 3 ∞ ∞
qap10 0.0 0 1.0 0 1.6 3 1.6 3 ∞ ∞
qpG11 1.3 -3 1.0 0 8.0 2 8.0 2 6.4 5 6.4 5
qpG51 1.0 -3 1.0 0 1.0 3 1.0 3 1.0 6 1.0 6
ss30 1.9 0 1.0 0 1.7 3 1.9 4 1.7 3 1.9 4
theta1 2.5 -1 1.0 0 5.0 1 5.2 1 2.0 2 2.1 2
theta2 2.5 -1 1.0 0 1.0 2 2.2 2 4.0 2 8.9 2
theta3 2.5 -1 1.0 0 1.5 2 4.1 2 6.0 2 1.6 3
theta4 2.5 -1 1.0 0 2.0 2 6.2 2 8.0 2 2.5 3
theta5 2.5 -1 1.0 0 2.5 2 8.7 2 1.0 3 3.5 3
theta6 1.0 0 3.0 2 1.1 3
thetaG11 1.0 0 2.4 3 2.4 3
truss1 1.3 -2 3.3 -1 3.0 0 4.0 0 2.2 2 3.0 2
truss2 5.1 -4 2.0 -1 8.5 0 1.3 1 1.7 4 2.6 4
truss3 5.4 -3 1.7 -1 4.0 0 1.0 1 7.4 2 1.9 3
truss4 9.0 -3 2.5 -1 3.2 0 6.9 0 3.6 2 7.7 2
truss5 1.9 -4 9.1 -2 1.1 1 3.3 1 5.9 4 1.8 5
truss6 9.0 -5 2.5 -1 3.2 0 6.4 0 3.6 4 7.1 4
truss7 1.4 -4 3.3 -1 3.0 0 3.2 0 2.1 4 2.3 4
truss8 1.0 -4 5.0 -2 1.9 1 5.1 1 1.9 5 5.1 5

Table 7: IPM Iterations, Non-Strict Complementarity
Measure κ, Degeneracy Measure γ, and Solution Prop-
erties Obtained by SDPT3-aug on 85 Problems in the
SDPLIB Suite

IPM Solution Properties
Problem Iterations err κ γ pd dd

arch0 29 1.5 -10 -2.76 0.00 174/174 75/75

arch2 28 4.9 -11 -2.04 0.00 174/174 57/57

arch4 27 3.6 -11 -3.92 0.00 174/174 61/61

arch8 21 3.7 -8 -2.17 0.05 174/174 107/113

control1 22 5.6 -11 -2.88 0.24 21/21 16/21

control2 25 2.4 -11 -2.14 0.27 66/66 48/66



32

IPM Solution Properties
Problem Iterations err κ γ pd dd

control3 26 8.0 -11 -1.71 0.35 136/136 88/136

control4 25 1.5 -10 -1.66

control5 28 2.1 -10 -1.48

control6 28 5.6 -10 -2.14

control7 31 4.8 -10 -1.92

control8 28 5.0 -10 -2.38

control9 33 5.2 -10 -2.28

control10 32 1.4 -9 -2.40

control11 33 1.5 -9 -2.28

equalG11 16 1.1 -6 -2.94 0.00 801/801 28/28

equalG51 17 9.0 -7 -3.69 0.00 1001/1001 105/105

gpp100 18 6.9 -7 -3.65 0.00 101/101 15/15

gpp124-1 15 1.4 -6 -3.79 0.00 125/125 10/10

gpp124-2 20 7.1 -8 -3.18 0.00 125/125 10/10

gpp124-3 17 2.8 -8 -4.17 0.00 125/125 21/21

gpp124-4 26 4.2 -7 -3.41 0.00 125/125 21/21

gpp250-1 17 3.2 -6 -3.42 0.00 251/251 15/15

gpp250-2 19 3.6 -6 -3.76 0.00 251/251 28/28

gpp250-3 16 6.8 -6 -3.77 0.00 251/251 36/36

gpp250-4 20 7.6 -10 -5.44 0.00 251/251 36/36

gpp500-1 24 2.8 -8 -3.15 0.00 501/501 21/21

gpp500-2 15 5.3 -6 -3.69 0.00 501/501 36/36

gpp500-3 21 2.5 -10 -3.29 0.00 501/501 55/55

gpp500-4 17 2.4 -8 -3.45 0.00 501/501 55/55

hinf1 29 1.8 -8 -8.62 0.50 12/13 5/10

hinf2 23 1.5 -7 -2.50 0.52 13/13 10/21

hinf3 31 9.1 -8 -0.69

hinf4 27 9.8 -10 -4.61 0.47 12/13 8/15

hinf5 26 2.9 -6 -1.68

hinf6 34 1.5 -9 -2.35 0.47 12/13 8/15

hinf7 23 1.7 -7 -2.61

hinf8 37 1.5 -8 -2.85

hinf9 21 3.3 -6 -2.04
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IPM Solution Properties
Problem Iterations err κ γ pd dd

hinf10 41 5.4 -8 -8.98 0.43 12/21 2/ 3

hinf11 36 1.7 -7 -4.18 0.42 18/31 4/ 6

hinf12 55 1.3 -5 -1.68

hinf13 41 1.4 -5 -1.77

hinf14 31 4.7 -7 -2.85 0.47 39/73 11/15

hinf15 44 2.2 -5 -3.26 0.51 45/91 11/15

maxG11 19 1.5 -11 -3.05 0.00 800/800 21/21

maxG32 21 4.6 -11 -2.93 0.00 2000/2000 45/45

maxG51 19 9.6 -13 -5.35 0.00 1000/1000 105/105

mcp100 16 1.2 -13 -9.44 0.00 100/100 15/15

mcp124-1 17 6.9 -14 -7.98 0.84 124/124 22/136

mcp124-2 17 5.6 -14 -10.30 0.00 124/124 21/21

mcp124-3 16 2.7 -13 -8.69 0.00 124/124 21/21

mcp124-4 16 2.0 -13 -9.23 0.00 124/124 15/15

mcp250-1 18 1.7 -13 -9.21 0.89 250/250 35/325

mcp250-2 17 3.9 -13 -8.90 0.33 250/250 30/45

mcp250-3 17 1.0 -13 -8.80 0.00 250/250 36/36

mcp250-4 16 8.9 -13 -6.47 0.00 250/250 36/36

mcp500-1 19 7.5 -9 -4.12 0.96 500/500 75/1830

mcp500-2 19 1.3 -13 -5.41 0.64 500/500 43/120

mcp500-3 17 7.0 -13 -5.97 0.00 500/500 45/45

mcp500-4 17 3.7 -13 -8.36 0.00 500/500 66/66

qap5 14 4.9 -13 -11.89 0.81 26/136 1/ 1

qap6 31 2.9 -9 -1.75 0.00 229/229 78/78

qap7 24 1.1 -8 -3.40 0.00 358/358 105/105

qap8 22 3.8 -8 -3.77 0.00 529/529 136/136

qap9 22 5.7 -8 -3.67 0.00 748/748 210/210

qap10 24 2.2 -8 -3.94 0.00 1021/1021 325/325

qpG11 18 7.6 -11 -3.02 0.00 800/800 21/21

qpG51 29 5.4 -12 -12.42 0.00 1000/1000 1/ 1

ss30 22 2.3 -10 -3.55 0.00 132/132 7/ 7

theta1 16 5.9 -14 -10.27 0.00 104/104 28/28

theta2 16 5.1 -13 -8.27 0.00 498/498 136/136
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IPM Solution Properties
Problem Iterations err κ γ pd dd

theta3 17 5.8 -14 -9.36 0.00 1106/1106 300/300

theta4 17 1.6 -13 -7.84 0.00 1949/1949 528/528

theta5 17 2.0 -13 -7.42 0.00 3028/3028 861/861

theta6 17 9.0 -12 -2.03 0.00 4375/4375 1225/1225

thetaG11 23 7.9 -13 -5.35 0.33 1600/2401 3/ 3

truss1 12 1.2 -13 -14.79 0.33 4/ 6 3/ 4

truss2 16 1.9 -12 -3.92

truss3 13 9.9 -9 -4.65 0.85 27/27 20/137

truss4 11 8.0 -9 -9.91 0.76 12/12 9/37

truss5 18 4.3 -10 -11.50 0.99 208/208 208/25426

truss6 16 8.1 -8 -2.22 0.99 172/172 126/13204

truss7 27 1.1 -12 -2.45

truss8 19 6.8 -10 -11.70 1.00 496/496 496/136504


