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Abstract

We address the question to what extent polyhedral knowledge about
individual knapsack constraints suffices or lacks to describe the convex
hull of the binary solutions to their intersection. It turns out that the
sign patterns of the weight vectors are responsible for the types of combi-
natorial valid inequalities appearing in the description of the convex hull
of the intersection. In particular, we introduce the notion of an incom-
plete set inequality which is based on a combinatorial principle for the
intersection of two knapsacks. We outline schemes to compute nontrivial
bounds for the strength of such inequalities w.r.t. the intersection of the
convex hulls of the initial knapsacks. An extension of the inequalities to
the mixed case is also given. This opens up the possibility to use the
inequalities in an arbitrary simplex tableau.

1 Introduction

Starting with the basic research on knapsack polyhedra in the seventies by [1],
[4] and [9], many papers have emerged in the past that deal with the polyhe-
dral structure of knapsack problems. The interest in the combinatorics of a
binary knapsack problem is justified by the fact that every general integer pro-
gramming problem can be described as the intersection of a finite number of
knapsack problems. As a starting point, it is clear that principle investigations
about knapsack problems automatically provide insight into more general in-
teger programming polyhedra. A study of the substantial literature on binary
knapsack polyhedra also reveals that linear inequalities for such a special inte-
ger program are based on covers, i.e., subsets of variables such that the sum of
the associated weights in the knapsack constraint exceeds the given capacity.
In other words, a cover is a forbidden substructure or a minor whose presence
must be prohibited by linear constraints. One basic observation is that the sum
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of the variables in such a cover can be at most the cardinality of the cover minus
1. More general techniques such as extended weight inequalities may be used
to express further linear constraints associated with covers, see [8].

Given that fact that a description for knapsack problems is based on such
a simple principle like covers, it is quite natural to ask whether or not there
are other geometric or combinatorial principles that play a role for binary in-
teger programs when several constraints are to be considered simultaneously.
Little research in this direction has been carried out. In [7] extended weight
inequalities for the single knapsack problem have been generalized to multiple
constraints with nonnegative coefficients. Fernandez and Jgrnsten [2] show the
existence of cover type inequalities when a <-constraint is intersected with a >-
constraint. Giinlitk and Pochet [3] propose the principle of mixing for a specific
mixed-integer model.

The fundamental geometric difference between the single knapsack con-
straint and the presence of several constraints is that in the latter case incom-
parabilities between the weight vectors occur. These incomparabilities between
the weight vectors are reflected in a new substructure that we refer to as an
”incomplete set” that is responsible for new types of constraints that cannot be
explained with cover- and knapsack type constraints.

The following notation is used throughout the paper. Given integer data
a;,b; € Z for i = 0,...,n we define the set of feasible solutions to the first and
second knapsack constraint by X; and Xo, respectively. X denotes the integer
points lying in the intersection of the two constraints.

X1 ={ze{0,1}": Zaixi < ap}, (1)

Xy = {.’E € {0, 1}n : zn:blifz < b()}, (2)
=1
X={re{0,1}": ze X, NX). (3)

It is well known that in general we have that conv(X) # conv(X7) N conv(Xs).
Without loss of generality we can assume that a; > 0. If this condition does
not hold, then we can complement variables so as to meet this requirement.
Therefore, the set of variables N = {1,...,n} can always be partitioned into
sets Ny and N_ such that

Ny={i€eNJa;>0,b;>0} and N_={ie€ N |a; >0, b; <0}.

It turns out that the sign pattern for the two dimensional vectors (a;,b;) is
essentially responsible for the types of combinatorial valid inequalities appearing
in the description of conv(X).

The paper is organized as follows. We begin our discussions in Section 2
with an extension of cover constraints when the feasible region is described
by the intersection of two constraints in binary variables. The main difficulty
is that in the presence of two constraints with different sign patterns for the



column vectors, the corresponding set of binary solutions satisfying the two
constraints simultaneously does not define an independence system. Hence,
covers or circuits of the system may not always exist. We prove in particular that
when the second constraint has only weights plus-minus-one, then all forbidden
minors for the intersection arise from covers for a conic combination of the two
constraints. However, in the general case of arbitrary weight values, there exist
forbidden minors for the intersection which do not correspond to covers for any
conic combination of the two constraints. This illustrates an essential difference
between polyhedra associated with integer programs defined by the intersection
of several constraints and the single knapsack problem. Section 3 deals with a
general combinatorial inequality that plays an important role for the intersection
of several constraints. It is based on the concept of so-called incomplete sets,
i.e., sets of columns that cannot be simultaneously set to one unless a certain
subset of other items is also set to one. It turns out that these inequalities are
under mild assumptions very strong. The strength of such inequalities can be
computed with several constructions that we outline in Section 4. Section 5
discusses extensions to the mixed integer scenario.

2 Forbidden minors for the intersection of two
knapsacks

In this section we investigate the role that the sign patterns of the column
vectors in two knapsack constraints play in the derivation of combinatorial valid
inequalities.

For the single knapsack problem, an important class of inequalities consists
of the cover inequalities. A cover for a knapsack constraint is a subset of items
whose total weight exceeds the capacity. Hence, a cover is a forbidden minor
for a single knapsack constraint whose existence must be forbidden in terms of
a linear inequality. If C' denotes the cover, then such a cover constraint requires

that

oz <|C] -1

jeC
If C is minimal, then C defines a circuit of the independence system defined by
all the feasible solutions to the single knapsack problem. In the following we
discuss the existence of such “forbidden minor”inequalities for the case of the
intersection of two knapsacks. The main difficulty is that in the presence of two
constraints with different sign patterns for the column vectors, the corresponding
set of binary solutions satisfying the two constraints simultaneously does not
define an independence system. Hence, circuits do not exist.

In particular if such inequalities exist, we would like to know whether they
can be found in one of the two knapsacks or as valid inequalities for a conic
combination of the two knapsacks. We now consider valid inequalities of the
type

d om0 -1, (4)

i€C



We start with a simple observation. Consider the problem of finding x € X =
X1 N Xy with Xy = {z € {0,1}" : 31 | a;z; < ap} and Xo = {x € {0,1}" :
> i biwi < bo}.

Observation 1 Suppose that N_ =, i.e., a; > 0 and b; >0 fori=1,... n.

Let the inequality
d a<|Cl-1 (5)
eC

be valid for all points in X. Then (5) is either valid for Xy or for Xs.

Proof: 1f (5) is valid for X, then C is not a feasible set for X. Since N_ = 0, it
follows that every true superset of C is also not feasible for X. Moreover, since
C is not feasible for X, C is not feasible for X or it is not feasible for X5. By
definition, C' defines a cover for the corresponding knapsack constraint. O

This observation is not true when some coefficients are negative as the fol-
lowing example shows. This is a first indication that the derivation of valid
inequalities for the intersection of two constraints gets significantly more com-
plicated in the presence of both positive and negative coeffficients in the second
knapsack constraint. In fact, sign patterns of the weight vectors influence the
inequality description quite substantially. More precisely, the next examples
illustrate that there exist valid inequalities for X of the form

dowm <] -1,
i€C

with C C N such that C is neither a cover for X; nor a cover for X5. Only
the simultaneous consideration of the two constraints allows us to derive this
inequality.

Example 1 Consider the problem
X ={zec{0,1}? x+a, <1 (6)

We have that X = {(0,0), (0,1)}. Therefore z; < 0 is valid for X. On the other
hand the inequality is not valid for a binary set defined by (6) or (7) only.

We can also present a slightly more elaborate example.
Example 2 Consider the problem

X = {z € {0,1}® :132,+1120+2425+1924+ 2925+ 3376+ 2127+ 1825 < 78 (8)

1+ Xt @3+ my— w5— T— T7— x3<0 }.

(9)

In this example we have that Ny = {1,2,3,4} and N_ = {5,6,7,8}. The
inequality
T3+ 24 < 1 (10)



is valid for X. Indeed if we want a feasible solution with x3 = x4 = 1, then we
need at least two variables from {5,6,7,8} set to one in order to satisfy (9).
But then the value obtained in (8) is at least 82 which exceeds the capacity.
Therefore no solution includes z3 = x4 = 1. On the other hand, it is clear
that (10) is neither valid for X; nor for X since it is easy to construct feasible
solutions including x3 = x4 = 1 for both single knapsacks. O

These examples illustrate that the presence of negative coefficients in the
second constraint leads to simple inequalities that cannot be derived by the
analysis of a single constraint. It is however possible in these examples to de-
duce valid inequalities by considering a conic combination of the two initial
inequalities. The following quite general statement can be made. The proof
follows a suggestion made by one anonymous referee.

Theorem 1 Let X = X7 N X, with

X, ={xze{0,1}": Zaixi <ao}, (11)
i=1

Xo={ze{0,1}": Zbixi <bo}, (12)
i=1

with a; € Zy,b; € Z. Let J C{1,...,n} be such that the inequality

>z < I -1 (13)

jeJ

is valid for X. If b; € {-1,0,1} for all i = 1,...,n, then there exist conic
multipliers u,v > 0 such that (13) is valid for the single knapsack set X (u,v) =
{z €{0,1}" : x satisfies u(11)+v(12)}.

Proof: We consider the linear relaxations of X; and X5 that we denote by P;
and P, respectively. Note that following our assumptions b; € {—1,0,1}, we
have that b = (by1,...,b,) is totally unimodular and therefore P, = conv(Xs).
In particular, every vertex of P, is integer. Consider then F = {z € {0,1}" :
> ey i = |J|}. We claim that F N (PN Py) =0. Let p € FN (P NPy) #0, by
contradiction. Since p € Py, it can be written as a nontrivial convex combination
of vertices v', ..., v* of P,. Notice that since Y, ; x; < |J] is valid for Py, all
vertices v!,...,v* must be in F. In fact, we now have that v* € F N P, for
all . Moreover p € F' N P, N Py, i.e., p satisfies a’p < ag. Since p is a convex
combination of the v, it follows that at least one of the v?, v% say, satisfies
a”v® < ay. This implies that v’ € F N P, N P,. But since the vertices of P, are
integer, this is a contradiction with the validity of (13). Hence FN (P NPy) = (.



It implies that the system

alz <ag (14)

vz < by (15)
ieJ

r; <1 i=1,...,n (17)

is infeasible. Hence by the Farkas Lemma we can find multipliers u, v, w, s; >
0,7 =1,...,n corresponding to (14), (15), (16), (17) respectively such that

(ua + vb) + Z sie; > w supp(J), (18)
i=1
(uao—l—vbo)—i—ZSi < wl|J|, (19)
i=1

where supp(J) is the support vector of J and e; is the ¢ — th unit vector. We
claim that u,v are the desired multipliers. Consider z € X (u,v) and multiply
(18) by z. We obtain

w Z z; < (ua +vb) 'z + Z 5;%; by (18)
icJ i=1

n
< (uag + vbg) + Z S since z € X (u,v)
i=1

< wl|J| by (19).
Therefore, we have for all € X (u,v), since w > 0 (and obviously w # 0),
Z xZ; < |J|7
ieJ
which implies the result for every integer point x € X (u,v). (I

Example 2 continued Consider again the set X defined by the constraints
(8) and (9) in Example 2. We compute the combination (8)418(9) of the two
constraints. This leads to the inequality

31xq + 2925 + 4223 + 3724 + 115 + 1526 + 327 + 028 < 78 (20)

which is therefore satisfied by all points in X. For this knapsack, we remark
that {3,4} is a cover. In other words, 3 + x4 < 1 is a valid inequality for a
conic combination of the two initial constraints. O

Since in our initial example the constraint z3 + x4 < 1 defines a cover for an
aggregated knapsack constraint, one might be tempted to think that Theorem



1 can be further extended so as to consider general weight vectors in the second
constraint instead of the special values +1. This extension is however not true.
It can happen that a simple combinatorial cover type inequality is valid for the
intersection of two constraints while the same inequality is not valid for any
conic combination of the two constraints. We prove this result next.

Theorem 2 There exist instances defining X, X1, Xo according to (1), (2) and
(3) for which there exist valid inequalities for X of the form

Z Zj S |J| -1
JjeJ
which do not define a cover constraint for all valid single knapsack relaxations

of X. In particular, for every u,v > 0, the inequality > .. ;x; < |J| —1 is not
valid for

jeJ

n

X(u,v) ={z € {0,1}": Z(uai + vb;)z; < uag + vbo}.
i=1

Proof: Consider the set

X ={zxec{0,1}?: 2,4z, <2 (21)

By simple enumeration we obtain X = {(0,0), (1,0)}. In particular the inequal-
ity x2 < 0 is valid. We next show that it is not valid for any knapsack obtained
by taking a conic combination of the two constraints (21) and (22). Let u,v > 0
be real multipliers and

X (u,v) = {x € {0,1}* : (2u — 2v)21 + (u + v)z2 < 2u}.

We now show that for all u,v > 0, there exists at least one solution of X (u,v)
If v < u we clearly have (0,1) € X (u,v).

Ifv>u, (1,1) € X(u,v). Indeed by adding the two coeflicients, we obtain 3u—wv
which, by hypothesis, satisfies 3u — v < 2u.

Hence we conclude that x5 < 0 is never valid for X (u,v). t

Theorem 2 makes precise that for the intersection of even two constraints
with arbitrary sign patterns, forbidden minors exist that never define circuits
of the independence system defined by the set of binary solutions to a single
knapsack relaxation. This implies that cutting planes based on single knapsack
polyhedra are not sufficient to tackle binary programs with many constraints.
The polyhedral situation in the presence of several constraints is however much
more complex. In the next section we present a general principle that allows us
to derive valid inequalities for programs with several constraints. The principle
is simple to state, but algorithmically quite difficult to detect. It is based on an
incomplete set of items, i.e., a subset of variables that cannot be simultaneously
set to one unless a second distinct set of items is also set to one.



3 Incomplete set inequalities

Recall that we consider the binary program
n
X1 ={ze{0,1}": Zaixi <ap},
i=1

Xo={z €{0,1}": > biz; < by},
i=1

X ={ze{0,1}":z€ X1 N X},
with the set of variables N = {1,...,n} being partitioned into sets
N+:{Z€N‘a2 >0,b; 20} and N_ :{Z€N|a120,bl <0}

In the following, we use the convenient notation a(T) = >, a;, and b(T) =
EieT b; for some subset " C Ny U N_. We now introduce the basic notion to
derive valid inequalities for X.

Definition 1 Let I C Ny UN_. We call I an incomplete set if a(I) < ag and
b(I) > by. Along with an incomplete set I, we introduce the quantities

o —a(l)

r(I)=a
b(I) - b07

e(I)

called the residue and the excess of the incomplete set, respectively.

The name “incomplete set” comes from the fact that I is infeasible on its own
but could be made feasible by setting appropriate variables of N_ \ I to 1.

Example 3 Consider the problem

X ={zc{0,1}7 : 21+3w+223+204+3x5+2x6+277 < 12
3r1+2x0— x3 — x5—3r—2x7 <1 }

Let us consider I = {1,2,3,4}. We see that r(I) = 4 and e(I) = 3. The set
is represented in Figure 1, each variable being represented by its corresponding
vector. Note that because we have a canonical form, all the vectors point to the
right and either upward (for the columns in N, ) or downward (for the columns
in N_). In the figure, the residue and the excess of the chosen set are illustrated.
This means that, to turn I into a feasible set, we have to find (an)other vector(s)
whose sum lies in the box indicated as the “feasible box”. In the example shown
in Figure 2, we must select at least item 6 to complete I to a feasible set. It
follows that a valid inequality for X is

1+ a0+ 23+ 74 — 26 < 3.
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Figure 2: We must take at least xg to complete I into a feasible set



Let us now explain more generally how we derive an incomplete set inequal-
ity. We start with an incomplete set I and its associated residue r(I) and excess
e(I). We then consider the subproblem

Pr={rec{0,1}": Z a;x; <r(l)
JEN_\I
. by ze(l) 1
JEN_\I
where t = |[N_\ I|. The next proposition indicates how a valid inequality can be
generated from I and the set of solutions of P;. We suppose that the solutions

in Py are represented as the columns of a matrix. We first need to make precise
the notion of covering.

Definition 2 Let A € {0,1}"*™ be a binary matriz. We call C C {1,...,m}
a covering of A if

ieC
with 1 being an m-dimensional row vector.

For the ease of notation, we define, if P; = ), that () is a covering of P;.

Proposition 1 Let I be an incomplete set for X, and Py be the set of solutions
of the corresponding subproblem. Let I€ be any covering of Pr, i.e., Y icrc Ti >
1 is valid for P;. Then the inequality

o= >z <l -1 (23)

i€l jeIC
1s valid for X.

Proof: The only way that inequality (23) can be violated is if there exists some
valid point z € X with z; = 1 for all i € I and z; = 0 for all j € I®. But this
is impossible by the construction of P; and I¢. O

In the special case where N, is empty, a particular subfamily of incomplete
set inequalities (I¢ = ()) have been introduced in [2]. We remark that the
authors use the name partial cover instead of incomplete set.

Proposition 1 has a very simple interpretation. Suppose that we fix the value
of the variables in I to 1. By computing the set P;, we try to search for all
the possibilities to complete I into a feasible set. An inequality of the type
(23) indicates that if all the variables of I are set to 1, then at least one of the
variables from I¢ has to be set to 1.

Example 2 (continued) Consider the set

X = {.13 € {0, 1}8 13z +11xo4+24x3+1924+2925+33x6+21x74+18xg < 78
(24)

r1+ X9+ a3+ 14— T5— T— x7— a8 <0 }
(25)

10



Let us first consider the incomplete set I; = {3,4}. We compute
r(I1) =35, e(I1) = 2.
It is readily verified that P;, = (. Therefore
r3+x4 <1

is satisfied by all the points in X5. It can be verified that it actually defines a
facet of conv(X). We then consider I = {2,4}. We compute the residue and
the excess and obtain

T(IQ) = 487 6(_[2) = 2.

It can be verified that Pr, = {e5 + es, e7 + eg}. Two ways to minimally cover
Py, are either I = {8} or IS = {5,7}. Therefore the inequalities

To+ T4 —1w8 <1 (26)
Ta+xy—x5 —x7 <1 (27)
are valid incomplete set inequalities for X. O

4 The strength of incomplete set inequalities

In the previous sections we made an attempt to shed some light on the question
how far one can go using polyhedral information about single knapsack poly-
hedra for a binary optimization problem with two constraints. The family of
incomplete set inequalities are indeed based on a principle that applies to several
original constraints in contrast to cover inequalities based on a one dimensional
constraint.

This suggests to tackle binary problems with several constraints incorporat-
ing incomplete set inequalities. The problem, however, is that it seems quite
involved to come up with efficient general heuristic schemes for the cut gener-
ation. We believe that such a cut generation tool must be specialized towards
specific families of instances. We refrain from going further into this topic here.
Instead we want to give further evidence how strong these inequalities can be
compared with the single knapsack relaxations. To demonstrate this effect we
have randomly generated a series of binary instances with twelve variables and
two nontrivial constraints whose coefficients are in the interval [—15,15]. For
each such instance we first computed separately the inequality description for
the convex hull of all binary solutions associated with each of the two initial con-
straints. We then selected an incomplete set inequality and generated a strongly
perturbed objective function from the corresponding normal vector. Next we
compare the bound provided by the lower and upper bounds of the variables
together with the two initial constraints and the incomplete set inequality with
the bound given by the intersection of the two convex hulls and the true inte-
ger optimum. The results are surprising — at least for us. Table 1 presents a
selection of our tests on one instance with three different objective functions.

11



incomplete set inequality
objective

T1+ T3+ w5 — 211 <2
128171 + 171$3 + 31415 - 991‘11
+12x2 — 731’4 — 19%12 + 31%10

IP optimum

LP bound w/ inc. set ineq.
LP bound w/ 2 convex hulls
Initial LP bound

516
538
568
641

incomplete set inequality
objective

T+ 3+ T8+ 211 <3
2000z 4+ 2101x3 + 2151xg + 2272211
+512x9 4+ 73325 + 333x9 + 121219

IP optimum

LP bound w/ inc. set ineq.
LP bound w/ 2 convex hulls
initial LP bound

7257
7475
7968
8668

incomplete set inequality
objective

3+ 5+ w6 — T12 < 2
11287x3 4+ 1569025 + 12003z — 17123212
+4000x9 + 3459211 — 121229 + 300127

IP optimum

LP bound w/ inc. set ineq.
LP bound w/ 2 convex hulls
initial LP bound

35152
36619
36795
43006

Table 1: Comparison of the performance of an incomplete set inequality vs.
adding all the facets of conv(X;) and conv(Xs) to the formulation wrt. a per-
turbed objective

12



In all these cases the bound given by one incomplete set inequality and
the original LP formulation outperforms the bound provided by taking the full
description of the two convex hulls in account. (The latter formulation roughly
includes 4000 constraints)! We conclude from these tests that incomplete set
inequalities seem to have a good effect on the quality of a formulation. In order
to support this hypothesis we next develop a tool to analyze the strength of a
given incomplete set inequality

Soai— > @< |1 - 1. (28)

el jeIc

In particular we investigate how strong it is to use the inequalities obtained by
both knapsacks separately compared to one incomplete set inequality. Therefore
we focus on the program

max in - Z x; (29)
el JEIC
s.t. x € conv(X;) N conv(Xs),
where Xy = {x € {0,1}" : > ;. v aiv; < ag} corresponds to the first inequality
and Xo = {z € {0,1}" : >, oy, bizi — X ;cn bjz; < bo} corresponds to the
second inequality.

By definition the value of the linear program (29) is bounded above by |I].
We assume that the inequality is tight such that the value of the linear program
is bounded below by |I| — 1. Therefore it is natural to define the strength of an
incomplete set inequality, with respect to the two knapsacks taken separately
as

s(I,1°) = max{z T — Z xj @ € conv(Xy) Neonv(Xa)} — (|I] —1).
i€l jeIc

A value of s(I, I€) close to 1 indicates that the inequality is strong and that it re-
flects information that is not contained in the knapsacks taken separately. Table
2 provides us with the information about the strength of all the incomplete set
inequalities that define facets for the instance analyzed in Table 1. In total we

strength 0 0.5 0.667 0.75
# facets | 12 20 7 2
% facets | 29% 49% 1™% 5%

Table 2: Percentage of the incomplete set type facets that reach a given strength

have 41 inequalities with 1—coefficients that meet our definition of an incom-
plete set inequality or correspond to a cover inequality. 29% of these inequalities
are indeed already valid for one of the two knapsack relaxations. By definition,
their strength is zero. The majority of these inequalities have a strength of 0.5.

13



The remaining ones have a strength of even more than two thirds. The fact that
the strength of these inequalities seems to be surprisingly high in this example,
motivates us to analyze this question further. Unfortunately, the optimization
problem (29) is extremely difficult to solve as it requires two convex hull repre-
sentations. This leads us to develop analytically strong bounds on the strength
of inequality (28). Throughout we use the notation A € X, where A is a set of
indices, to describe the fact that x € X; with x; = 1 for all ¢ € A, z; = 0 for all
j & A. We start with an example.

Example 4 Consider

X = {z €{0,1}" :32,+629+6234+214+ Trs+316+817+623+1029 < 34 (30)

Tx1+7T0+923 —10x5—4x6— x7—3x8— 319 <0 }.
(31)

It can be checked that
T1+x3+2a+27 <3 (32)

is valid for X. We denote I = {1, 3,4, 7}. We now show that s(I) > 1/2. To do
this we find a point = € conv(Xy) Nconv(Xs) with =1 + x5 + x4 + x7 = 3.5.
Let us remark that (32) is not valid for (31) and F' = {5, 6,8} is a set such that
TUF € Xs. Of course we have that TUF ¢ X;. On the other hand, it suffices to
remove an element from I in order to obtain a solution for the first constraint.
In particular I\ {3} UF € X;. Finally, we also remark that I U {5} € X; and
I\ {3} U{5} € X5. Together this means that

Tu{steX;  andI\{3}U{5,6,8} € X;.

By taking half of the sum of the incidence vectors of these two sets, this shows
that the point z with coordinates

1 1 1
551=1,$3=§,$4=17$5=1,$6=§,$7=17$8=5 (33)

belongs to conv(X;). We also have that
TU{5,6,8) € Xo  and I\{3}U{5} € Xo.

By taking again half of the sum of the incidence vectors of these two sets,
we obtain the same point x defined by (33). This shows that x € conv(X3).
Therefore = € conv(X1) N conv(X;) and s(I) > 1. O

The example illustrates a constructive way to compute a bound on the
strength of a given inequality (28). In the remainder of this section we for-
malize this construction.

We consider an inequality (28) that is valid for X; N X5. In order to state
the main result about its strength, the following assumption is made.

Assumption 1 There exist F C N_\ (I UIY) and iy such that [UF € Xy
cmd]\{zo}UF e X1 N Xo.

14



If the first part of Assumption 1 is not satisfied, it simply means that the
inequality (28) is also valid for X5. In this case, the strength would be trivially
0. The second part of Assumption 1 requires that the inequality is sufficiently
tight. This condition is however not always satisfied. The following definition
is related to the choices of F' and i refered to Assumption 1.

Definition 3 We define H C F', F # H such that I UH € Xy, with H being
possibly empty.

Let p denote the cardinality of the largest partition of F'\ H, say (Gi,..., C_?Ilj)
such that I UH UG} € X, for all i with G} = (F\ H)\ G}.

Let q denote the cardinality of the smallest partition of F\ H, say (G2,.. ., Gg)
such that I\ {io} UH UG? € Xy for all i with G? = (F \ H) \ G%.

Let T be a bipartite graph, T = ((V1,Va2), E), with p nodes in Vi and q nodes in
Vo. There is an edge between i € V1 and j € Vo whenever G} N G? # .

Theorem 3 Let (28) be a valid inequality for the intersection of two knapsacks.
We have, under Assumption 1, that

s(I,19) > &,

1
#lvlw where T' is a connected component of the bipartite
2
graph T of Definition 3.

with Kk = max; \Vl‘
1

Proof: Let T? = ((V&, V), E%) be a connected component of T for which
d
. Let Vi = {vy,...,vs} and Vi = {wy, ..., w;}. Each element of

Vi’
Ve 41V B

V¢ is in correspondence with one set G} of the partition introduced in Definition

3. We consider the union of these sets taken over the vertices from V¢,

E= ] Gl (34)

ievy

K =

Next we show that the point x with coordinates

zi=1 for all i € T\ {io}
o=

o T VIV

x; =1 foralli e H

T foralli e E

. = 1 _
VAV
belongs to conv(X7) N conv(Xy).
We first show that x € conv(X;). It is indeed a convex combination of the
incidence vectors of the sets

I\{ic)UF,JUHUG, ,...,IUHUG,_, (35)

v1?

d
with coefficients —-2 respectively. The sets listed

1 1
VAV VAV VRV
in (35) all belong to X; by Assumption 1 and Definition 3.
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We now show that = € conv(X2). To do this, we first notice that E’ defined as
E=J&
ieV?

is exactly equal to E' defined in (34). Indeed suppose that F # E’. Then there
exists j € F'\ H such that j € G} for some i € V¢ and

j €G3 forallkeTy. (36)

On the other hand since (G2,. .., G‘?]) is a partition of F'\ H, there exists a set G7
that contains j. Therefore the vertex corresponding to G should be connected
to that corresponding to G}, and hence to Vi%. This contradicts (36). It follows
that x is a convex combination of the incidence vectors of the sets

TUF,I\{ic}UHUG:, ,...T\ {io} UH,G>, (37)

. . |V1d\ 1 1 . T
with coefficients VARIVED VATVE ) VRV respectively. The sets listed
in (37) all belong to X2 by Assumption 1 and Definition 3. O

Theorem 3 relates the strength of an incomplete set inequality with the size
of partitions in a certain graph. The construction itself is very general and only
depends on the instance. This is why the result can be applied whenenver As-
sumption 1 holds. It is easy to modify the construction so as to apply to general
inequalities for the intersection of two convex hulls. Returning to the incomplete
set inequalities, from the initial example one might get the impression that the
strength of this family of inequalities is always at least 0.5. This, however is not
true as the next example shows. This example also illustrates the construction
elucidated in the proof of Theorem 3.

Example Let us consider the set

X ={z € {0, 1}7 Tr1+HTro 42234224 +205+ 206 +227 < 17
7$1+7$2—31‘3—31‘4—31‘5—31’6—3,@7 < 0 },

and the valid inequality 1 + x2 < 1. Defining F' = {3,4,5,6,7} and ig = {1}
shows that Assumption 1 holds. For Definition 3, we set H = {3}. The first
partition is obtained by one set Gi = F'\ H, with I U H U () € X;. The second
partition consists of two sets G2 = {4,5} and G2 = {6, 7}, with I\ {io JUHUG? €
X5, 1 =1,2. The bipartite graph has one node in V; and two nodes in V5, which
are both connected to the node in V5. We have one connected component with
[Vil/(|[VY| + |V?3|) = 1/3. By Theorem 3, this shows that z; + 22 < 1 has a
strength of at least 1/3. It can be checked that it is also the exact strength of
the inequality.

The value of Theorem 3 is that it allows us to compute a bound for the
strength of an incomplete set inequality for every instance. Note that this is
nontrivial as the strength is defined as the value of an optimization problem that
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requires the enumeration of all the facets of the two knapsack polyhedra. This is
impossible to do for more than 15—20 variables. Next we want to verify whether
Theorem 3 is applicable in many cases and then use it to compute bounds on the
strength. Note that in order to apply Theorem 3, it is necessary that Assumption
1 holds! For our tests we have generated randomly two instances with 40 and
50 variables respectively. Since it is too expensive to enumerate all possible
incomplete sets, we decided to generate randomly one million incomplete sets
for each instance. For each generated set, we first check whether its residue
and its excess are in a reasonable interval (to avoid computing irrelevant sets).
We then compute the corresponding incomplete set inequality and try to apply
Theorem 3 in order to obtain a bound on the strength. Among the obtained
inequalities, some are valid for the knapsack X5 only. We also get rid of them.
The results for the remaining inequalities are reported in Table 3. For each

strength ? 0.5 0.6 0.667 0.75 0.8 or more
Instance 1 (40 var) 13% 36% 25% 16% 8% 2%
11719 inequalities tested

Instance 2 (50 var) 3% 44% 9%  32% 12% 0%

18128 inequalities tested

Table 3: Computing of a bound on the strength using Theorem 3

instance, we report on the proportion of inequalities reaching a given computed
bound. The column “?” indicates the proportion of inequalities for which
Theorem 3 cannot be applied and a refined version of the theorem would be
needed. We conclude that in the vast majority of cases Assumption 1 holds.
There are only approximately 10% of the inequalities that we detected to which
Theorem 3 did not apply. Furthermore we also see that the bound computed
by Theorem 3 is in all the cases at least equal to 0.5.

5 Extension to the mixed case

In [6], the authors show that valid inequalities for the binary knapsack can be
extended to the case where one continuous variable appears. In this section,
we show that the incomplete set inequalities can also be extended to the mixed
case by lifting the continuous variables. We consider the models

n
X1 = {(z,s,t) € {0,1}" x R? : Zaixi < ag + s},

i=1
X2 = {(.’)3787t) S {0,1}" X Ri : Zbl.’ljz < bO —f—t}’

i=1

X ={(z,81) € {0,1}" xR : (z,5,t) € X1 N Xa}.
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We also define the restricted sets X = {x € {0,1}": (£,0,0) € X;} fori=1,2
and similarly for X. We first fix s = t = 0 and find a valid incomplete set

inequality

i€l i€l

for the restricted set X”. We also consider its associated residue r(I) and excess
e(I) as defined in Section 3. In the following we consider that (38) is not valid
for the single knapsacks X| and X7 taken separately. We now show how to lift
the variables s and ¢ in (38) and obtain the valid inequality

infzxi‘FOlS‘FﬁtS‘I‘*l (39)

i€l i€l

for the set X. To do this we define a lifting function as proposed in [5],

$u,v) =min [I| = 1=z + Y (40)

i€l i€l
s.t. Z a;x; <agp+u
ieN
Z bix; — Z bix; <by+wv
iEN, iEN_
x; € {0, l}n

A pair (a, 8) is a valid pair of lifting coefficients if and only if
cut+ Bv < Bluv) (41)
for all (u,v) € R%.

Lemma 1 If there exists at least one solution x € X" such that ), ., x; —
Y icrc i = |I| =1, then
é(u,v) € {0,—1}

for all (u,v) € R3.
Proof: Let us fix u,v > 0. Two cases occur.

1. > ,cr @i > ap +wu. In this case, the solution provided by the hypothesis gives
a value of 0, while it is clearly impossible to achieve less than that.

2. > ier @i < ao +wu. In this case, it may be possible to have a value of ¢ lower
than 0. It can only be —1 by setting x; = 1 for all i € [. (]

The question is now to find the points (u,v) for which the value of ¢ goes from
0 to —1. These points determine a finite set of linear inequalities which define
the valid lifting coeflicients. We next reintroduce two notations used earlier to
compute the strength of an inequality.
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Definition 4 We define the sets F and H as
F = arg min{a(S) : |b(S)| > e(I),S € N_\ (TUI)},
H = arg min{b(S) : a(S) <r(I),S C N_\ (TUI)}.

The set F and H determine thresholds from which the function ¢ takes the
value —1.

Observation 2 (i) For allu > a(F) —r(I) and v > 0,
¢(U7U) =-1
(1i) Foru>0,v>e(l)— |b(H)|,
QS(U,U) =-1
Proof: For u > a(F)—r(I),v > 0, it turns out that /U F is an optimal solution

of (40). This proves part (i).
Similarly for u > 0,v > e(I) — [b(H)|, [ U H is an optimal solution of (40). O

Observation 2 provides bounds for the lifting coefficients a and (.

Lemma 2 Necessary conditions for lifting coefficients a and 8 of (39) are

a < _71

S WE) )
1

b= S wa

Proof: First remark that, by definition of F, we always have a(F) > r(I)
since (38) is valid for X". Similarly we also have |b(H)| < e(I). Therefore the
inequalities given in the lemma are always well defined. To find them, we express
conditions (41) for (u,v) = (a(F) —r(I),0) and (u,v) = (0,e(I) — [b(H)|). O

As one might expect, the condition on «, 3 given in Lemma 2 are in general not
sufficient to describe a valid lifting pair.

Theorem 4 For each set G C N_\ (I UIY), we define an inequality g
(a(G) —r(I)) "o+ (e(I) = b(G) "B < —1,

where a™ = max{a,0}. The set 11 of valid lifting coefficients is a polyhedron
defined as

IT = {(«a, B) : (a0, B) satisfy I for all G with a(G) > r(I) and b(G) < e([)

o< — 1
~a(F)—r(I)
1
) )
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Proof: We need to show that for all (a,3) € IT and all (u,v) € R%, we have

au + Bv < ¢(u,v). (42)
Let us fix (o,3) € II and (u,v) € R3. If ¢(u,v) = 0, we clearly have the
condition since «, 8 < 0. Let us now suppose that ¢(u,v) = —1. By definition

of ¢, there exists a set K C N_\ (I UIY), optimal for (40) such that a(I U
K) < ap+wuand b(I U K) < by + v. We just need to prove inequality (42)
for u = (a(IUK) —ag)™ <wand v = (b(IUK) —by)" < v. Notice that
(4,9) = ((a(K) — (D))", (e(I) — |b(K)|)*"). Three cases occur. If u,v > 0,
then the inequality au + v < ¢(u,v) appears in the representation of the
polyhedron. If w = 0, then ¥ > 0 since the inequality to be lifted is valid for
X", and v > e(I) — |b(H)| by definition of H. Therefore (42) is satisfied by the
condition on B. Similarly if ¥ = 0, the inequality is satisfied by the condition
on «, by definition of F. O

Example 5 Consider the set
X = {(z,s,t) € {0,1}° x R% :Ta1 + 832 + 625 + 974 + 1025 < 22+ 5
4xq1 + 319 —x3 — 314 — D15 < T 1.
If we fix s =t = 0, we find that z1 +x5 < 1 is a valid inequality for the restricted
set. To lift s and ¢, we consider the lifting function
¢(u,v) =min 1 —zy — 29
s.t. Tx1 + 8x2 + 623 + 94 + 1025<22 + u

4z 4 3x9 — 3 — 3x4 — D5 <V

x; € {0,1}.
The lifting function is depicted in Figure 3. The function takes the value 0 in
the white region and the value —1 in the gray region. The points marked with

a circle determine linear inequalities that define the polyhedron of valid lifting
coefficients. These five inequalities are

660 < —1
2a+40 < —1
3a+20 < -1
9o+ < -1

12« < -—1.

The polyhedron they describe is shown in Figure 4. It has two vertices (—2/9,—1/6)
and (—1/12,—3/8) which are therefore the two pairs of maximal lifting coeffi-
cients. They lead to the valid inequalities

+ 2 1t<1
14+ T2 — -85 — =
1 279 gt =

1 3
$1+x2_ﬁs_§t§1

20



Figure 3: The value of the lifting function ¢(u,v)
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Figure 4: The polyhedron IT of valid lifting coefficients determined by the linear
inequalities obtained at the circled points of Figure 3
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In the following example we indicate how lifted incomplete set inequalities can
be generated from a simplex tableau.

Example 6 We consider the problem

min  x1+ 2x2+ 3x3+ 4xs+ Srs+ 64 (43)
s.t.  17x14+17x9+24x3+1304+2125+1526+ 51 <54
—1421—1925—13x3—18x4—13x5—29x¢ +S9 < -53
+T7x1+2022+182x3+1924+ 8x5+1624 +s3 < 44
—1221— Txo—1lx3— 6x4—1025—1424 +s54 < =30
T, To, T3, T4, Ty, Tg e {0,1}

An optimal LP solution z* for (43) is
x] =25 =1,23 = 0.28, 25 = 0.56, s] = 4.74, s5 = 2.88.

We consider the optimal LP tableau. In particular, the first two rows of the
optimal LP tableau can be written in integer form as

15221 — 63z9+137x3— 78x4+108x5 +1459—29s4 = 128 (44)
—2214+118x4 +120x4+ 13x5+137x6—1152+13s4 = 193. (45)

We relax 14ss in (44) and aggregate 29s, into one continuous variable ¢;. Sim-
ilarly we relax 13s4 in (45) and aggregate 11s, into one continuous variable .
This yields the relaxed problem

15221 — 6339+13Tw3— T8xz4+108x5 <128+t (46)

In order to obtain a canonical form, i.e. all coefficients of (46) are nonnegative,
we introduce the complemented variables Zo = 1 — 29 and T4 = 1 — 4. We
finally consider the modified relaxed problem

152x1+ 63%x2+137x3+ 78x4+108xs5 <128 4+ t4 (47)
—2x1—118%5 —120Z4+ 13x5+137Tx6 < —45 + to. (48)

We first fix t; = to = 0 and consider the restricted set. Our incomplete set
is I = {6} with r(I) = 128 and e() = 182. We see that in order to com-
pensate for such an excess, we need to set To = T4 = 1 but this exceeds
the residue in (47). Hence zg < 0 is a valid inequality for the restricted
set. We now need to lift the inequality. Therefore we consider the function
o(t1,t2) = min{—x¢|(47), (48),x; € {0,1}}. We obtain

-1 if t1 > 0,t2 > 62
d(t1,t2) = -1 ift1 > 13,5 >0
0 otherwise
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This implies that a pair of valid maximal lifting coefficients is (I—;, 5—21) for tq

and to respectively. If we substitute back ¢; = 29s4 and t; = 11sy, we obtain
the valid inequality
11

&827

which cuts off x*. O

29
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