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Abstract We present a fully polynomial time approximation scheme (FPTAS)
for minimizing an objective (aTx+γ )(bTx+ δ) under linear constraints Ax ≤ d.
Examples of such problems are combinatorial minimum weight product prob-
lems such as the following: given a graph G = (V, E) and two edge weights
a, b : E → R+ find an s − t path P that minimizes a(P)b(P), the product of its
edge weights relative to a and b.
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1 Introduction

The problem of minimizing a quadratic objective function xTQx + cTx under
m linear constraints Ax ≤ d is well-known to be NP-hard [4], even when Q
has only a single negative eigenvalue [9]. In case Q is positive semidefinite,
the problem can be solved efficiently ([6] or [12]). Here, we focus on the case
where the objective is the product of two affine functions:

z∗ = min (aTx + γ )(bTx + δ) Ax ≤ d. (1.1)
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The complexity status of this (in general non-convex) problem is open (cf. [9]).
We present a fully polynomial time approximation scheme (FPTAS) for this
class. More precisely, we present an algorithm which correctly decides whether
z∗ < 0, z∗ = 0 or z∗ > 0 holds and, in addition, computes for any given ε > 0 an
ε-approximate solution, i.e., a feasible solution of (1.1) whose objective value
differs from the optimum z∗ by at most ε|z∗|. (In case z∗ ≤ 0 we can even solve
the problem exactly in polynomial time.) The running time of the algorithm is
polynomially bounded in 1/ε and the size of (1.1).

In Sect. 3, we discuss possible applications of our result to combinatorial min-
imum weight product problems such as the following: given a graph G = (V, E)

with two non-negative edge weights a, b : E → R+, find an s − t path P mini-
mizing a(P)b(P), the product of its edge weights relative to a and b.

Remark Vavasis [11] presents an FPTAS for (more general) quadratic objec-
tives q(x) = xTQx + cTx with a bounded number of negative eigenvalues. His
work, however, is based on a different concept of “ε-approximate solution”: In
[11], a feasible x is ε-approximate if its objective value differs from the optimum
z∗ by at most

ε

(
max
Ax≤d

q(x) − min
Ax≤d

q(x)

)
.

This concept of “ε-approximation” is not suited for the combinatorial applica-
tions that we discuss in Sect. 3. It is unclear whether our results can somehow
be extended to the case of bounded number of negative eigenvalues.

2 The algorithm

Relative to (1.1), we consider the related system

α − aTx − γ = 0

β − bTx − δ = 0

A x ≤ d (2.1)

of m + 2 (in-)equalities in variables (α, β, x) ∈ R
n+2.

Let P ⊆ R
n+2 denote the polyhedron defined by (2.1) and let

P̂ := {
(α, β) | ∃x : (α, β, x) solves (2.1)

} ⊆ R
2

denote its projection into R
2.

With f (α, β) := αβ, our problem can thus be restated as

z∗ = min
(α,β)∈P̂

f (α, β). (2.2)
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Note that P̂, being a projection of P, may have exponentially many describing
inequalities. Yet we can clearly solve linear optimization problems over P̂, as
these reduce to LP’s over P. Indeed, for c ∈ R

2, we have

min(
α

β

)
∈P̂

cT
(

α

β

)
=̂ min⎛

⎜⎜⎝
α

β

x

⎞
⎟⎟⎠∈P

(cT, 0T)

⎛
⎝α

β

x

⎞
⎠ . (2.3)

Equivalently (cf., e.g., [10]), we can efficiently solve the separation problem
for P̂. As a consequence of this, we may apply the ellipsoid method to check
whether P̂ is full-dimensional or not and, – in case it is not, – determine the (pos-
sibly infinite) line segment that equals P̂. Thus, in case P̂ is not full-dimensional,
(2.2) reduces to a 1-dimensional quadratic problem, which is readily solved by
elementary calculus.

In what follows, we therefore assume throughout that P̂ is full-dimensional.
Next we can check (by means of linear programming) which of the four quad-
rants in R

2 is (properly) intersected by P̂. This allows us to distinguish between
the following three cases

z∗ = 0, z∗ < 0 and z∗ > 0,

which we treat separately.

z∗ = 0. This is tantamount to P̂ ⊆ R
2+ or P̂ ⊆ R

2− and P̂ intersecting (touching)
one of the coordinate axes. Assume, say, that P̂ ⊆ R

2+ and

min(
α

β

)
∈P̂

β = 0.

In this case an optimal solution x∗ of (2.2) is obtained by solving the second
problem in (2.3) with cT = (0, 1).

z∗ < 0, i.e., P̂ contains some (α, β) ∈ P̂ with αβ < 0.

Let P̂± :=
{(

α

β

)
∈ P̂ | α ≤ 0, β ≥ 0

}
and P̂∓ :=

{(
α

β

)
∈ P̂ | α ≥ 0, β ≤ 0

}
.

Then (2.2) basically reduces to two separate “convex” problems on P± resp.
P∓. Indeed, for z < 0 let

Lz :=
{(

α

β

)
| α < 0,β > 0, αβ ≤ z

}
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Fig. 1 Lz and Cz

and Cz := Lz ∩ P̂± (cf. Fig. 1). Clearly,

min(
α

β

)
∈P̂±

f (α, β) = min{z|Cz 
= ∅} (2.4)

holds. Now Cz is a convex set for z < 0 and it is straightforward to design a
separation algorithm for Cz (cf., e.g., [3], Sect. 10.6). It is then routine work
to verify that we may use the ellipsoid algorithm to determine (exactly) the
optimum value z∗± in (2.4): Note that, due to the KKT-conditions, the optimum
is achieved in a rational point x∗ = (α∗, β∗) of polynomially bounded size, say,
size(x∗) ≤ p. So x∗ can be computed exactly by rounding a sufficiently good
approximation x ∈ Cz. Such a (sufficiently small) set Cz 
= ∅ is obtained by
binary search for z∗.

Applying the same arguments to P̂∓ (in case this is non-empty), we obtain a
corresponding z∗∓ and observe that z∗ = min

{
z∗±, z∗∓

}
solves (2.2).

Fig. 2 P̂ ⊆ R
2+ and the level curve lz
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z∗ > 0. This case occurs when P̂ ⊆ R
2+ (or P̂ ⊆ R

2−) and P̂ does not touch
any coordinate axes. This case may be considered as “essentially concave”, as
several local minima may exist (cf. Fig. 2). In what follows we assume w.l.o.g.
that P̂ ⊆ R

2+.

Lemma 2.1 The minimum in (2.2) is achieved at a vertex of P̂.

Proof This is an immediate consequence of the fact that f (α, β) = αβ is quasi-
concave on R

2+ (cf. [2]), i.e., for any x1, x2 ∈ R
2+, f achieves its minimum on the

line segment [x1, x2] in one of the endpoints:

f (λx1 + (1 − λ)x2) ≥ min {f (x1), f (x2)} , λ ∈ [0, 1]. (2.5)

�
It is well-known that the vertices of a polyhedron have components with size
polynomially bounded in the size of the describing system of inequalities. Thus
the vertices of P and, the more, the vertices (α, β) of P̂ have size at most p with
p polynomially bounded in the size of the problem instance (1.1). In particular,
we conclude that

z := 2−2p ≤ z∗ ≤ 22p =: z (2.6)

holds.
We seek to determine the value z∗ approximately by binary search. Given

z < z < z we check whether z∗ < z holds (approximately) or not by approxi-
mating the level curve

�z =
{(

α

β

)
| αβ = z, α, β ≥ 0

}

by finitely many tangent lines at the points (αk, βk) = (
√

z(1+ε)k,
√

z(1+ε)−k),
k = 0, ±1, . . . , ±K, where K > 0 is chosen so that αK > 2p (hence K is polyno-
mially bounded in 1/ε and the size of (1.1)).

More precisely, to determine whether z∗ < z holds approximately, we solve
polynomially (in 1/ε and the size of (1.1)) many linear optimization problems

zk = min
x∈P̂

(βk, αk)x.

(Note that (βk, αk) is the gradient of f (α, β) = αβ in (αk, βk).)

Lemma 2.2 If zk ≤ 2z for some k, |k| ≤ K, then z∗ ≤ z. If zk > 2z for all k,
|k| ≤ K, then z ≤ (1 + ε)z∗.

Proof The first claim is obvious.
As to the second claim, assume zk > 2z for all k. Let z∗ = αβ, (α, β) ∈ P̂ and

assume w.l.o.g. that α ≥ β. Let k be the smallest k such that α ≤ αk. If k ≤ 0,
then β ≤ α ≤ α0 = β0 implies
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z0 ≤ β0α + α0β ≤ 2α0β0 = 2z,

a contradiction. Hence k ≥ 1. By assumption, we have

2z < zk ≤ βkα + αkβ ≤ βkαk + αkβ = z + αkβ.

Hence αkβ > z, i.e., β > βk. But then

αβ > αk−1βk = (1 + ε)−1z,

as claimed. �
This enables us to perform a binary search for z∗ on [z, z], solving (2.2) approx-
imately in time polynomially bounded in 1/ε and the size of (1.1): Start with
z := 2−p and z := 2p, where p bounds the size of the vertices of P̂. We then
let z := (z + z)/2 and apply Lemma 2.2. In case z ≤ (1 + ε)z∗, we replace z by
(1 + ε)−1z. Else we replace z by z. Note that in the latter case the computation
of zk provides us with some (α, β) ∈ P̂ such that αβ ≤ z. The equivalent (in the
sense of (2.3)) optimization problem over P provides us with a point (α, β, x) ∈ P
satisfying αβ ≤ z. So with each update of z we get some x satisfying Ax ≤ d and
(aTx+γ )(bTx+δ) ∈ [z, z]. Eventually, i.e., when z ≥ (1+ε)−1z or, equivalently,
z ≤ (1 + ε)z, we will thus have exhibited a good approximate solution.

3 Minimum weight product problems

Every combinatorial minimum weight problem

min
{

cTx | x ∈ D
}

, (3.1)

where D ⊆ {0, 1}n has a corresponding minimum ratio version, where the objec-
tive cTx is replaced by a quotient pTx/qTx with q > 0. Probably the best known
example is the so-called “tramp steamer problem”, where D ∈ {0, 1}E is the set
of directed circuits through a given node in a digraph G = (V, E) (cf., e.g., [1]).
Typically such minimum ratio problems seek to model multicriteria objective
functions (e.g., “maximize profit versus time”). Such minimum ratio versions
are well-studied in the literature and it is known since long [8] that the minimum
ratio version is (modulo polynomial time computation) at most as difficult as
the original minimum weight problem.

In the context of multicriteria objectives it is often equally natural to con-
sider other combinations of weights such as, e.g., product versions with objective
(aTx)(bTx). For example, if D ⊆ {0, 1}E is the set of s − t paths in a graph, then
a ∈ R

E+ may define failure probabilities and b ∈ R
E+ may define edge costs

[7]. In contrast to minimum ratio problems, however, such product versions of
minimum weight problems appear to be more difficult in general.
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Our FPTAS from Sect. 2 can be used to approximately solve minimum weight
product problems in case D ⊆ {0, 1}n is the vertex set of a polyhedron Ax ≤ d
and we are able to solve (3.1) efficiently. Thus, for example, our result applies
when D is the set of s − t paths, spanning trees or perfect matchings in a graph.
(Note that our arguments in Sect. 2 rely only on the assumption that we can
efficiently optimize a linear objective over Ax ≤ d.)

For simplicity, we restrict our discussion to minimum weight product s − t
paths as a generic example. Consider a directed graph G = (V, E) with two
given edge weights a, b : E → R+ and assume we are to find an s − t path p
minimizing the product a(p)b(p) of its edge weights relative to a and b. We first
seemingly relax our problem, replacing the path p by an s− t flow of value 1. Let
A ∈ R

n×m denote the node-arc incidence matrix of G and let d ∈ R
n have coor-

dinates ds = 1, dt = −1 and dv = 0 else. Then our relaxation can be written as

z∗ = min(aTx)(bTx)

Ax = d

x ≥ 0. (3.2)

Clearly z∗ ≥ 0 holds. Furthermore, z∗ = 0 holds only in the trivial case where
an s − t path p with a(p) = 0 or b(p) = 0 exists. Hence we may assume z∗ > 0.
In this case, the minimum in (3.2) is achieved at a vertex of the feasible region
(due to Lemma 2.1), which corresponds to an s − t path. So (3.2) is an exact
restatement of our original problem.

As our FPTAS from Sect. 2 obtains the ε-approximate solution x of (3.2) via
linear programming, we may assume w.l.o.g. that x is an s − t path. (Alterna-
tively, decompose x = λ1x1 +· · ·+λkxk into a convex combination of s− t paths
xi and use (2.5) to exhibit one of the s − t paths xi as an approximately optimal
solution.)

We like to remark that a similar approach also works for slightly different
objective functions like, e.g., f̃ (x) = (aTx)

√
bTx. All we need is that the level

curves of f̃ can be nicely approximated by piecewise linear functions.
We conclude our discussion by commenting on the complexity of the (exact)

problem (3.2). As pointed out by one of the referees, the corresponding max-
imization problem is NP-hard (contains Longest Path as a special case). The
complexity status of the minimization problem (3.2) is open and only two spe-
cial cases are known to be efficiently solvable: a = b (trivial) and a = 1 [7]. The
latter also follows from our approach by observing that it suffices to approxi-
mate the level curves only in the points α1 = 1, . . . , αn−1 = n−1, corresponding
to the possible values α = aTx for an s − t path x ∈ {0, 1}E.

Alternatively, the case a = 1 may also be settled directly by computing for
each possible path length k = 1, . . . , n−1 the corresponding minimum b-weight
bk over all s − t paths of length k (and observing that z∗ = min

k
kbk). The com-

putation of bk can be accomplished as follows. Let V0, . . . , Vk be k + 1 copies of
V and let Gk denote the directed graph on V0 ∪· · ·∪Vk with arcs going from Vt
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to Vt+1, joining vertices as in G. More precisely, the arc set Ek of Gk is given by

Ek = {
(it, jt+1) | (i, j) ∈ E, 0 ≤ t ≤ k − 1

}
,

where it is the copy of i in Vt.
The edge weights b : E → R+ give rise to edge weights b : Ek → R+ by

setting bit ,jt+1 = bij. Now bk, the minimum b-weight of an s − t path of length k
in G is simply the minimum b-weight of an s0 − tk path in Gk.

For general a, b : E → R+, (3.2) can be solved by computing all vertices of
P̂ ⊆ R

2 that minimize a linear function (α, β) → α + λβ, λ ∈ R+, over P̂. (Each
local minimizer of f (α, β) = αβ over P must be such a vertex.) These vertices
can be determined successively: let λ > 0 and consider the parametric minimum
s − t path problem with edge costs cλ = a + λb. For λ > 0 sufficiently small,
a min cost s − t path relative to cost cλ will be an s − t path x0 that is minimal
relative to a and, among all such a-minimal paths, has minimum b-weight. Stan-
dard sensitivity analysis then allows us to exhibit a largest interval [λ0 = 0, λ1]
such that x0 is optimal relative to cλ for each λ ∈ [λ0, λ1]. We then proceed by
chosing λ > λ1 sufficiently small and a min cost path x1 relative to cλ = a + λb
to determine the next interval [λ1, λ2] for which x1 is optimal etc.

The running time of this procedure basically equals the number of break-
points λ1, λ2, . . . in the parametric min cost s−t path problem with parametrized
cost function c = a + λb, λ ≥ 0. Gusfield [5] has shown that this number has
a subexponential bound O(nlog n). For this reason, we do not expect (3.2) to be
NP-hard.

To make our presentation selfcontained we briefly sketch the argument from
[5]. Let Bn denote the number of breakpoints in the parametric min cost path
problem. Furthermore, we let Bk

n denote the number of breakpoints if only
paths of length k are allowed, i.e., if we replace G by Gk as defined above.

For fixed k we estimate Bk
n as follows. Fix a node r in the middle layer

V�k/2� of Gk and let Bk
n(r) denote the number of breakpoints if only s − t paths

through r are allowed. As λ varies, the costs of s − r and r − t paths in Gk vary
independently. So we can conclude that

Bk
n(r) ≤ 2B�k/2�

n .

This proves

Bk
n ≤

∑
r

Bk
n(r) ≤ 2nB�k/2�

n

and Bk
n = O(nlog n) follows inductively. Hence also Bn ≤ ∑

k Bk
n = O(nlog n), as

claimed.
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