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Power Optimization for Connectivity Problems

Abstract. Given a graph with costs on the edges, the power of a node is the maximum cost

of an edge leaving it, and the power of the graph is the sum of the powers of the nodes of this

graph. Motivated by applications in wireless multi-hop networks, we consider four fundamen-

tal problems under the power minimization criteria: the Min-Power b-Edge-Cover problem

(MPb-EC) where the goal is to find a min-power subgraph so that the degree of every node v

is at least some given integer b(v), the Min-Power k-node Connected Spanning Subgraph prob-

lem (MPk-CSS), Min-Power k-edge Connected Spanning Subgraph problem (MPk-ECSS), and

finally the Min-Power k-Edge-Disjoint Paths problem in directed graphs (MPk-EDP). We give

an O(log4 n)-approximation algorithm for MPb-EC. This gives an O(log4 n)-approximation

algorithm for MPk-CSS for most values of k, improving the best previously known O(k)-

approximation guarantee. In contrast, we obtain an O(
√

n) approximation algorithm for MPk-

ECSS, and for its variant in directed graphs (i.e., MPk-EDP), we establish the following inap-

proximability threshold: MPk-EDP cannot be approximated within O(2log1−ε
n) for any fixed

ε > 0, unless NP-hard problems can be solved in quasi-polynomial time.

1. Introduction

Wireless multihop networks are an important subject of study due to their ex-

tensive applications (see e.g., [8, 24]). A large research effort has focused on
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performing network tasks while minimizing the power consumption of the radio

transmitters in the network. In ad-hoc networks, a range assignment to radio

transmitters means to assign a set of powers to mobile devices. We consider

finding a range assignment for the nodes of a network such that the result-

ing communication network satisfies some prescribed properties, and such that

the total power is minimized. Specifically, we consider “min-power” variants of

three extensively studied “min-cost” problems: the b-Edge Cover problem and

the k-Connected Spanning Subgraph Problem in undirected networks, and the

k-Edge-Disjoint Paths problem in directed networks.

In wired networks, generally we want to find a subgraph with the minimum

cost instead of the minimum power. This is the main difference between the

optimization problems for wired versus wireless networks. The power model for

undirected graphs corresponds to static symmetric multi-hop ad-hoc wireless

networks with omnidirectional transmitters. This model is justified and used in

several other papers [3, 4, 14].

An important network task is assuring high fault-tolerance ( [1–4, 11, 18]).

The simplest version is when we require the network to be connected. In this

case, the min-cost variant is just the min-cost spanning tree problem, while

the min-power variant is NP-hard even in the Euclidean plane [9]. There are

several localized and distributed heuristics to find the range assignment to keep

the network connected [18, 24, 25]. Constant approximation guarantees for the

min-power spanning tree problem are given in [4, 14]. For general k, the best
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previously known approximation ratio for the minimum power k-connected was

2k = O(k) [5, 11, 19].

Min-cost k-connected and k-edge connected spanning subgraph problems

have been extensively studied [7,10,12,13,16,17]. While the min-cost k-edge con-

nected spanning subgraph problem admits a 2-approximation algorithm [12,13],

no constant approximation guarantee is known for the min-cost k-connected

spanning subgraph problem. The best known approximation ratios for the latter

are O(ln k ·min{
√

k, n+k
n−k

ln k}) [17] and O(ln k) for n ≥ 2k2 [7].

The notation and preliminaries used in the paper are as follows. Let G =

(V, E) be an edge-weighted graph with cost c(e) on edge e ∈ E(G). We as-

sume that the cost c(e) is non-negative. For disjoint X, Y ⊆ V let δG(X, Y ) =

δE(X, Y ) be the set of edges from X to Y in E. We will often omit the subscripts

G, E if they are clear from the context. For brevity, δE(X) = δE(X, V \ X),

and degE(X) = |δE(X)| is the degree of X . For a function g on a groundset

U and S ⊆ U let g(S) =
∑

u∈S g(u). Given edge costs c(e), e ∈ E, the power

pG(v) = pE(v) of a node v in G is the maximum cost of an edge incident to v in E,

that is, p(v) = maxe∈δE(v) c(e). The power of G is p(G) = pE(V ) =
∑

v∈V p(v).

Note that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even

for unit costs. In this case, if G has no isolated nodes then c(G) = |E| and

p(G) = |V |. For example, if E is a perfect matching on V then p(G) = 2c(G). If

G is a clique then p(G) is roughly c(G)√
m
2

1. The following statement whose proof is

1 In this paper, we ignore that some numbers might not be integers, since the adaption to

floors and ceilings is immediate.
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presented in Section 3 shows that these are the extremal cases even for graphs

with general edge costs.

Lemma 1. For any graph G = (V, E), the following holds: c(G)
√

|E|
2

≤ p(G) ≤

2c(G). For a forest T , c(T ) ≤ p(T ) ≤ 2c(T ).

Throughout the paper, let G = (V, E) denote the input graph with nonnega-

tive costs on the edges; n denotes the number of nodes in G, and m the number

of edges in G. Let opt denote the optimal solution value of an instance at hand.

Given G, our goal is to find a minimum power spanning subgraph G of G that

satisfies some prescribed property. In undirected graphs, we consider the follow-

ing two variants. Given an integral function b on V , we say that G (or E) is

a b-edge cover if degG(v) ≥ b(v) for every v ∈ V , where degG(v) = degE(v) is

the degree of v in G. In the Minimum Power b-Edge Cover Problem (MPb-EC),

G is required to be a b-edge cover; the Minimum Power k-Edge Cover Problem

(MPk-EC) is a particular case when b(v) = k for all v ∈ V . It is easy to see that

the greedy algorithm that for every v ∈ V picks the lightest b(v) edges incident

to v is a (k + 1)-approximation algorithm for MPb-EC, where k = maxv∈V b(v).

The following simple example shows that the (k+1)-approximation ratio is tight

for this greedy algorithm. Take k + 1 stars with k leaves each, and join by an

edge every two heads of the stars. All edges have unit costs. Set b(v) = k if v is

a star center and b(v) = 0 otherwise. The greedy algorithm may pick the edges

of the stars, thus getting a solution of value (k + 1)
2
. The optimal solution is

obtained by picking the clique, and has power k+1. This example easily extends

to MPk-EC. We prove:
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Theorem 1. MPb-EC is APX-hard. It admits an O(log4 n)-approximation algo-

rithm.

A graph G is k-(node) connected if there are k internally disjoint paths be-

tween every pair of its nodes, i.e., for any two vertices s and t, there are k

paths from s to t such that none of these paths share any vertex with another

path except vertices s and t. In the Minimum Power k-Connected Spanning

Subgraph Problem (MPk-CSS) G is required to be k-connected. The motivation

of the “min-power” variant for wireless networks is similar to the one of the

“min-cost” variants for wired networks, e.g., for MPk-CSS we require that the

network remains connected even in failure of up to k − 1 vertices. The problem

admits an O(k)-approximation algorithm [5,11]. We prove:

Theorem 2. MPk-CSS admits a min(O(log4 n)+2α, k(1+ o(1))-approximation

algorithm where α is the best approximation factor for the MCk-CSS, i.e, α =

O(ln k · min{
√

k, n+k
n−k

ln k}) [17] and α = O(ln k) for n ≥ 6k2 [7]. Moreover,

MPk-CSS is APX-hard.

Theorem 2 is proved by combining Theorem 1 with part (i) of the following

theorem, and using the currently best known approximation guarantees [7, 16]

for the Min-Cost k-Connected Spanning Subgraph problem (MCk-CSS).

Theorem 3. (i) If there exists an α-approximation algorithm for the MCk-CSS

and a β-approximation algorithm for MPk-EC then there exists a (2α + β)-

approximation algorithm for MPk-CSS.
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(ii) If there exists a ρ-approximation for MPk-CSS then there exists a (2ρ + 1)-

approximation for MCk-CSS.

Note that part (ii) of Theorem 3 implies that MPk-CSS is almost as hard to

approximate as the Min-Cost k-Connected Spanning Subgraph problem.

We also consider the Min-Power k-Edge Connected Spanning Subgraph (MPk-

ECSS) problem where G is required to be k-edge connected. This problem admits

an O(k)-approximation algorithm [11]. We prove:

Theorem 4. MPk-ECSS is APX-hard and admits an O(
√

n)-approximation al-

gorithm.

Power optimization problems have been considered in asymmetric networks

as well [14]. This setting is mainly motivated for the purpose of broadcasting or

multicasting in multihop wireless networks. In this case, the power of a node v

is the maximum cost of an edge outgoing from v. We give some evidence that

minimum-power connectivity problems in directed graphs are hard by showing a

strong inapproximability result for a simple variant: the problem of finding the

minimum-power subgraph that contains k edge-disjoint directed (s, t)-paths. We

call it the Min-Power k-Edge-Disjoint Paths (MPk-EDP) problem, since it is the

“min-power variant” of the Min-Cost k-Edge-Disjoint Paths problem. We prove

the following strong inapproximability result for MPk-EDP, in contrast to the

polynomial solvability of the “min-cost” case.

Theorem 5. MPk-EDP cannot be approximated within O(2log1−ε n) for any fixed

ε > 0, unless NP-hard problems can be solved in quasi-polynomial time.
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We also note that, in contrast, the problem of finding Minimum Power k-

Vertex-Disjoint Paths (from s to t) in directed graphs can be solved in polynomial

time as follows. First, we can assume that we know the power p of s (there are at

most n possible values) and thus we know all edges of s that can be used in the

optimum solution (namely, edges of cost at most p). Now, we give zero cost to

all these edges (whose original costs were at most p), delete all the other edges

incident to s, and compute the minimum cost k internally vertex-disjoint paths

using the polynomial-time min-cost k-flow algorithm of Orlin [21], and a flow

decomposition. As the outdegree of every internal node is one, and the outdegree

of t is zero, this is an optimal solution to our minimum power vertex-disjoint

case.

Table 1 summarizes our main results.

Problem Approximation Ratio Hardness

MPb-EC min(O(log4 n), k + 1) APX-hard

MPk-CSS min(O(log4 n) + 2α, k(1 + o(1)) APX-hard, Ω(α)

MPk-ECSS O(
√

n) APX-hard

MPk-EDP – Ω

(

2log1−ε
n

)

Table 1. Our approximation ratios and hardness results (α is the best approximation ratio

for the Min-Cost k-Connected Spanning Subgraph problem).

Theorem 1 is proved in Section 2, Lemma 1 and Theorems 2, 3, and 4 are

proved in Section 3, and finally Theorem 5 is proved in Section 4. In the rest of

this section we show that already very restricted instances of MPb-EC, MPk-CSS,
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and MPk-ECSS are APX hard, thus proving the hardness results of Theorem 1,

2, and 4.

Theorem 6. The MPk-EC, MPk-CSS, and MPk-ECSS are APX-hard even for

k = 1.

Proof. To prove the theorem, we will use the following well-known formulation

of the Set-Cover Problem (SCP): in this formulation, J is the incidence graph

of sets and elements, where A is the family of sets and B is the universe (we

denote the edge set by I).

Input: A bipartite graph J = (A ∪ B, I) without isolated nodes.

Output: A minimum size subset T ⊆ A such that every node in B has a neighbor

in T .

The reduction is as follows. Given an instance J = (A ∪ B, I) for the SCP,

we construct a graph G = (V ∪ {r}, E) with edge cost function c by setting

c(e) = 1 for every e ∈ E, adding a new node r and edges of cost zero from r

to every a ∈ A; for MPk-EC we set b(v) = 1 for every v ∈ V , and for MPk-CSS

and MPk-ECSS we set k = 1. It is easy to see that SCP has a solution of size

τ if and only if the obtained instance of MPk-EC (MPk-CSS/MPk-ECSS) has a

solution of size |B|+ τ .

A 4-bounded instance SC-4 of SC is one in which all sets have size at most

4, that is degJ (a) ≤ 4 for every a ∈ A. Any solution to SC-4 has size ≥ |B|
4 .

Thus any solution for MPk-EC (MPk-CSS/MPk-ECSS) whose power is at most

(1 + ε)(|B| + τ) can be used to derive a solution to SC-4 of size at most τ +

τε + |B|ε ≤ (1 + 5ε)τ . Consequently, a (1 + ε)-approximation to MPk-EC gives
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a (1 + 5ε)-approximation to SC-4. Since SC-4 is APX-hard [22], APX-hardness

of MPk-EC (MPk-CSS/MPk-ECSS) follows.

Finally to obtain APX-hardness of MPk-EC (MPk-CSS/MPk-ECSS) for k >

1, we add vertices t1, . . . , tk−1 to graph G constructed above and we add edges

of zero cost from them to all previous vertices. The proof again follows from the

fact that each vertex corresponding to an element should be adjacent to at least

one edge of cost one. 2

2. Proof of Theorem 1

In this section, we present the proof of Theorem 1. Throughout this section we

assume that c(e) ∈ {1, . . . , n4} for every e ∈ E . In particular, opt ≤ n6. Indeed,

let c be the least integer so that {e ∈ E : c(e) ≤ c} is a b-edge cover. Edges

of cost ≥ cn2 do not belong to any optimal solution, and thus deleted from the

graph. Edges of cost ≤ c
n2 can be assigned zero costs, as adding all of them to the

solution affects only the constant in the approximation ratio (we also update the

value of b(v) for each v ∈ V , accordingly). This gives an instance with cmax

cmin
≤ n4,

where cmax and cmin denote the maximum and the minimum nonzero cost of an

edge in E , respectively. Further, for every e ∈ E set c(e) ← d c(e)
cmin
e. It is easy to

see that the loss incurred in the approximation ratio is only a constant, which

is negligible in our context.

Let b(V ) =
∑

v∈V b(v). For an edge set F and v ∈ V , let

bF (v) = max{b(v)− degF (v), 0}
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be the residual deficiency of v w.r.t. F (so b(v) = b∅(v)). Also, bF (V ) =
∑

v∈V bF (v).

Our algorithm runs with a parameter τ that should be set to τ = opt to achieve

the claimed approximation ratio. Specifically, we will prove:

Lemma 2. There exists a polynomial time algorithm that given an instance of

MPb-EC and an integer τ , either returns an edge set E ′ ⊆ E such that

pE′(V ) = τ ·O(log4 n) (1)

bE′(V ) ≤ log3 n (2)

or establishes that τ < opt.

Note that if τ < opt, the algorithm may return an edge set E ′ that satisfies

(1) and (2). Let us now show that Lemma 2 implies Theorem 1. Since opt is not

known, we apply binary search to find the minimum integer τ so that an edge

set E′ satisfying (1) and (2) is returned; then pE′(V ) = opt · O(log4 n) (note

that binary search for appropriate τ requires O(log n6) = O(log n) iterations).

Then we apply the greedy algorithm on G − E ′ to compute a bE′ -edge cover

E′′ of power ≤ opt · (log3 n + 1). Then E = E′ ∪ E′′ is a feasible solution,

and pE′∪E′′(V ) ≤ pE′(V ) + pE′′(V ) = opt · O(log4 n). Thus Lemma 2 implies

Theorem 1.

The proof of Lemma 2 follows. Let D(F ) = {v ∈ V : bF (v) > 0} be the

set of deficient nodes w.r.t. F , and D = D(∅) = {v ∈ V : b(v) > 0}. Let

µ = min{b(v) : v ∈ D}.

Lemma 3. There exists a polynomial time algorithm that given an instance of

MPb-EC with max{b(v) : v ∈ D} ≤ rµ and integers W , T , and τ , returns an



Power Optimization for Connectivity Problems 11

edge set F such that

pF (V ) ≤ 2

(

W |D|+ b(V ) log W

T

)

, (3)

and if τ ≥ opt then

bF (V ) ≤ τ

(

T log W +
µr

(2W )

)

. (4)

Proof. Let E0 = {e ∈ E : 1 ≤ c(e) ≤ 2} and Ei = {e ∈ E : 2i + 1 ≤ c(e) ≤ 2i+1}

for i = 1, . . . , log W . Consider the following algorithm that starts with F = ∅:

For i = 0 to log W do:

While there is v ∈ V with |δEi
(v, D(F ))| ≥ 2iT do F ← F + δEi

(v, D(F ))

End For

It is easy to see that the algorithm is polynomial. Let F be the edge set computed

by the algorithm. Let p′ =
∑

v∈D pF (v) and p′′ =
∑

v∈V \D pF (v) = pF (V )− p′.

The following two claims show that (3) holds.

Claim: p′ ≤ 2W |D|.

Proof: For every v ∈ D there is an i so that pF (v) ≤ 2i+1, with 2i ≤ W . Thus,

pF (v) ≤ 2W . Thus p′ ≤ 2W |D|. 2

Claim: p′′ ≤ 2b(V ) log W

T
.

Proof: If at iteration i we added to F edges incident to v, then the deficiency of v

drops by at least 2iT . Thus the total number of nodes in V \D incident to edges

added at iteration i is at most b(V )
(2iT ) . Since every added edge has cost at most

2i+1 the total increase in the power at iteration i is at most 2i+1b(V )
(2iT ) = 2b(V )

T
.

The claim follows. 2
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Assume that τ ≥ opt. Let O be a feasible solution with p(O) = pO(V ) ≤ τ .

Let A = {e ∈ O \ F : c(e) ≤ 2W}, B = (O − F ) − A. The following two claims

show that O \F decreases the deficiency of D(F ) by at most τ
(

T log W + rµ
2W

)

.

This implies (4), since bF (V ) = bF (D(F )).

Claim: A decreases the deficiency of D(F ) by at most τT log W .

Proof: Fix some i ≤ log W . Let Ai = Ei ∩ A. Since pAi
(V ) ≤ τ , the edges in

Ai are incident to at most τ
2i nodes. Note that |δAi

(v, D(F ))| ≤ T2i for every

v ∈ V . Thus each Ai reduces the deficiency of D(F ) by at most τT . The claim

follows. 2

Claim: B decreases the deficiency of D(F ) by at most µrτ
(2W ) .

Proof: The number of nodes in D(F ) adjacent to the edges in B is at most τ
(2W ) .

The deficiency of each v ∈ D(F ) is at most rµ. The claim follows. 2

The proof of Lemma 3 is complete. 2

Corollary 1. There exists a polynomial time algorithm that given an instance

of MPb-EC with max{bv : v ∈ D} ≤ rµ and an integer τ , returns an edge set F

such that: pF (V ) = τ · O(r + log2 n) and if τ ≥ opt then bF (V ) ≤ b(V )
2 .

Proof. For W = 2τµr
b(V ) and T = b(V )

(4τ log W ) , the algorithm from Lemma 3 computes

an edge set F such that (note that W = 2τ ·(µr)
b(V ) ≤ 2τ ≤ 2n6):

pF (V ) ≤ 2

(

2τr
µ|D|
b(V )

+ 4τ log2 W

)

≤ 4τ
(

r + 2 log2 W
)

= τ ·O(r + log2 n).

If τ ≥ opt then:

bF (V ) ≤ τ

(

b(V )

4τ
+

µrb(V )

4τµr

)

= b(V )

(

1

4
+

1

4

)

=
b(V )

2
.

2
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Proof of Lemma 2: Consider the following algorithm that starts with E ′ = ∅:

Algorithm b-Edge-Cover(τ)

While b(V ) ≥ log3 n do:

- Let V0 = {v ∈ V : 1 ≤ b(v) ≤ 2} and Vj = {v ∈ V : 2j + 1 ≤ b(v) ≤ 2j+1},

j = 1, . . . , log n.

- Let q be an index so that b(Vq) ≥ b(V )
log n

.

- Compute F as in Corollary 1 with b′(v) = b(v) if v ∈ Vq and b′(v) = 0 otherwise.

- If bF (Vq) ≤ b(Vq)
2 then: E′ ← E′ ∪ F , G← G− F , b← bF ;

Else declare “τ < opt” and STOP.

End While

If the algorithm declares “τ < opt” then this is correct, by Corollary 1. Let

us assume therefore that this is not so.

Claim: The algorithm calls to the algorithm from Corollary 1 O(log2 n) times.

Proof: Let Bt be the total residual deficiency before iteration t + 1 of the while

loop, where B0 = b(V ) ≤ n2. We have Bt+1 ≤ Bt(1 − 1/(2 logn)), so Bt ≤

B0(1− 1/(2 logn))
t
. Thus after at most

log(n2/ log3 n)

− log(1− 1/(2 logn))
= O(log2 n)

iterations the condition in the while loop is met, and the iterations stop. 2

From the last claim and Corollary 1, we obtain that pE′(V ) = τ · O(log4 n)

(note that when Algorithm b-Edge-Cover(τ) calls Corollary 1, we can set

r = 2 since the value of b(v) for each v ∈ Vq are within a factor 2 of each other).

2
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The proof of Theorem 1 is now complete.

3. Proof of Lemma 1 and Theorems 2–4

We first present the proof of Lemma 1 which is a basis to our results.

Proof of Lemma 1: Except the inequality c(G)
√

|E|
2

≤ p(G) the statement was

proved in [11, 19]. We restate the proof for completeness of exposition. The

inequality p(G) ≤ 2c(G) follows from

p(G) =
∑

v∈V

p(v) ≤
∑

v∈V

∑

e∈δ(v)

c(e) = 2
∑

e∈E

c(e) = 2c(G).

If T is a tree, root it at an arbitrary node r. Then c(T ) ≤ p(T ) since for each

v 6= r, p(v) is at least the cost of the parent edge of v.

We now show that

c(G) ≤
√

|E|
2
· p(G)).

Observe that for e = (u, v), c(e) ≤ min{p(u), p(v)}. Thus, it is sufficient to

prove that

∑

(x,y)∈E

min{p(x), p(y)} ≤
√

|E|
2

∑

v∈V

p(v) (5)

for any graph G = (V, E) with nonnegative weights p(v) on the nodes. Suppose

to the contrary that the statement is false, and let G = (V, E) with p be a

counterexample to (5) so that maxv∈V p(v) −minv∈V p(v) is minimal. Let µ =

minv∈V p(v), let U = {v ∈ V : p(v) = µ}, and let EU be the set of edges in E

with at least one endpoint in U . If |EU | ≤
√

|E|
2 |U | then the statement is also

false for G′ = (V ′, E′) = (V \ U, E \EU ) and p′ being the restriction of p to V ′
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since

∑

(x,y)∈E′

min{p′(x), p′(y)} ≥
∑

(x,y)∈E

min{p(x), p(y)} −
√

|E|
2
|U |µ >

>

√

|E|
2

∑

v∈V

p(v)−
√

|E|
2
|U |µ =

√

|E|
2

∑

v∈V ′

p′(v) >

>

√

|E′|
2

∑

v∈V ′

p′(v).

In particular, this implies a contradiction if U = V . Else, let µ′ = min{p(v) : v ∈

V \U} be the second minimum value of p. Then by setting p(v)← p(v) + µ′−µ

for every v ∈ U we obtain again a counterexample to (5). This contradicts our

choice of G, p. 2

We now prove Theorems 2 and 3. We need the following fundamental state-

ment due to Mader.

Theorem 7 ( [20]). In a k-connected graph G, any cycle in which every edge

is critical contains a node whose degree in G is k.

Here an edge e of a k-connected graph G is critical (w.r.t. k-connectivity) if G−e

is not k-connected.

The following corollary (e.g., see [20]) is used to get a relation between (k−1)-

edge covers and k-connected spanning subgraphs.

Corollary 2. If degJ (v) ≥ k − 1 for every node v of a graph J , and if F is an

inclusion minimal edge set such that J ∪ F is k-connected, then F is a forest.

Proof. If not, then F contains a cycle C of critical edges, but every node of this

cycle is incident to 2 edges of C and to at least k − 1 edges of G, contradicting

Mader’s Theorem. 2
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Proof of Theorem 3: By the assumption, we can find a subgraph J with

degJ(v) ≥ k − 1 of power at most β times the power of the optimal solution

to MPk-EC. Since the power of the optimal solution of MPk-EC is less than the

power of the optimal solution of MPk-CSS, the power of this subgraph p(J) is at

most β times the power of the optimal solution to MPk-CSS, i.e., p(J) ≤ βopt.

We reset the costs of edges in J to zero, and apply an α-approximation algorithm

for MCk-CSS to compute an (inclusion) minimal edge set F so that J ∪ F is k-

connected. By Corollary 2, F is a forest. Thus p(F ) ≤ 2c(F ) ≤ 2αopt, by

Lemma 1. Combining, we get the desired statement.

The proof of the other direction is similar. We find a min-cost (k − 1)-edge

cover J in polynomial time, and reset the costs of its edges to zero. Then we use

the ρ-approximation algorithm for MPk-CSS with the new cost function. The

edges with nonzero cost in this new graph form a forest F , by Corollary 2. Then

clearly c(J) is at most the minimum cost of a k-connected spanning subgraph,

and c(F ) is at most 2ρ times the minimum cost of a k-connected spanning

subgraph, by Lemma 1. This gives a (2ρ + 1)-approximation algorithm for the

Min-Cost k-Connected Spanning Subgraph problem. 2

We can combine the various existing approximation algorithms for the Min-

Cost k-Connected Spanning Subgraph problem [7, 16, 17] to get better approx-

imation for MPk-CSS. The currently best approximation ratios for the former

are O(ln k ·min{
√

k, n+k
n−k

ln k}) [17] and O(ln k) for n ≥ 6k2 [7].
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In particular, we set β = k in Theorem 3 to get a k(1 + o(1))-approximation

for any non-constant k. Using α = O(ln k · min{
√

k, n+k
n−k

ln k}) from [17] gives

the bound in Theorem 2.

Remark: In [16], a (2 + k
n
)-approximation algorithm was given for MCk-CSS

with metric costs. This does not imply that for metric costs we can set α = 2+ k
n

in Theorem 3. Note that our algorithm first resets the costs of the edges in a

k-edge cover to zero, and thus when applying an algorithm for min-cost k-CS

the triangle inequality property does not hold for the obtained k-CS instance.

To prove Theorem 4, we combine Lemma 1 with the following theorem due

to Cheriyan and Thurimella [6], which is the edge-connectivity counterpart of

Corollary 2.

Theorem 8 ( [6]). If degJ(v) ≥ k for every node v of a graph J , and if F is an

inclusion minimal edge set such that G∪F is k-edge connected, then |F | ≤ n−1.

Proof of Theorem 4: We use the O(log4 n)-approximation for MPb-EC. Then

we change the cost of these edges to zero and find the minimum cost k-edge con-

nected subgraph using the known 2-approximation algorithms for the minimum

cost k-edge connected subgraph problem [13]. From Lemma 1 and Theorem 8,

the power of this augmentation is at most 2
√

n
2 of the minimum power k-edge

connected subgraph. This gives an O(
√

n)-approximation algorithm. 2
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4. Proof of Theorem 5

To prove Theorem 5, we will show that approximating MPk-EDP is at least as

hard as approximating the following problem, which is an alternative formulation

of the LabelCover-Max Problem [15].

The MaxRep Problem:

Instance: A bipartite graph H = (A∪B, I), and equitable partitions A of A and

B of B into q sets of same size each.

Objective: Choose A′ ⊆ A and B′ ⊆ B with |A′ ∩ Ai| = |B′ ∩ Bj | = 1 for each

i, j = 1, . . . , q such that the subgraph induced by A′ ∪B′ has maximum number

of edges.

The bipartite graph and the partition of A and B induce a super-graph Γ

in the following way: The vertices in Γ are the sets Ai and Bj of size N . Two

sets Ai and Bj are connected by a (super) edge in Γ if and only if there exist

ai ∈ Ai and bj ∈ Bj which are adjacent in G. For our purposes, it is convenient

(and possible) to assume that the graph Γ is regular. Say that every vertex in Γ

has degree d, and hence, the number of super-edges is h = qd. Raz [23] proved:

Theorem 9 ( [23]). Let I be an instance of any NP-complete problem. For any

0 < ε < 1, there exists a (quasi-polynomial) reduction that maps I to an instance

G of MaxRep with n vertices so that: 1) If I corresponds to a yes instance then

there exists a feasible solution covering all super-edges, and 2) If I corresponds

to a no instance, then every MaxRep feasible solution covers at most h

2log1−ε n

super-edges.
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In the above reduction the size n of the MaxRep instance G is quasi-polynomial

in the size of the NP-complete instance. The following is implied from Theorem

9.

Theorem 10. Unless NP ⊆ DTIME(npolylogn), the MaxRep Problem admits

no 2log1−ε n-approximation algorithm, for any constant ε > 0.

The reduction. We reduce MaxRep to MPk-EDP. Let H be the bipartite in-

stance of MaxRep. Form an instance G for MPk-EDP as follows. First we put

H into G and give all the edges of H directions from the Ai vertices to the Bj

vertices. The edges of H are assigned cost n3. Add a source s and a sink t. For

each set Ai (Bi), 1 ≤ i ≤ q, we also add a local source si (a local sink ti). We

add d edge-disjoint paths of length 2 from si, 1 ≤ i ≤ q, into every aj
i ∈ Ai for

1 ≤ j ≤ N , and d edge-disjoint paths of length 2 from s to every si. These edges

are given cost 0. Finally, we add d edge-disjoint paths of length 2 from every

bj
i ∈ Bi, 1 ≤ i ≤ q, 1 ≤ j ≤ N into ti, and d edge-disjoint paths of length 2 from

ti into t. The first edge in each path from a vertex in Bi to ti gets cost n3 while

the rest of edges get cost 0.

A direct inspection shows that there exists h = dq edge-disjoint paths from

s to t and indeed we pick k = h for the MPk-EDP instance.

Let H be a MaxRep instance resulting from a yes instance of the NP-complete

instance and let G be the resulting MPk-EDP instance.

Lemma 4. The graph G admits a subgraph G′ of power-cost 2qn3 so that in G′

there exist k = h edge-disjoint paths from s to t.
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Proof. We select the following edges as a solution F to MPk-EDP. Let ai ∈

Ai, bj ∈ Bj be a MaxRep solution covering all the superedges as guaranteed

in Theorem 9. Add all the ai to bj edges into the solution. Note that the edge

(ai, bj) exists as the chosen representatives cover all the super-edges. Include all

the edges which are on a path from s to ai, 1 ≤ i ≤ q, and all edges which are

on a path from bj , 1 ≤ j ≤ q, to t. Clearly the solution F admits h edge-disjoint

s− t paths. The solution pays n3 per every ai because of the Ai to Bj edges and

n3 per every bj because of the d paths to tj . 2

Lemma 5. If G corresponds to a no instance of MaxRep then the cost of any

MPk-EDP solution is at least 0.2qn32
log1−ε n

4 .

Proof. The idea of the proof is to start with a solution for MPk-EDP and use it

to build a MaxRep solution that covers a number of superedges which is related

to the cost of this solution. Let F be the solution to MPk-EDP. Call a vertex v

active (with respect to F ) if at least one edge in F touches v. Let A′
i (respectively,

B′
j) be the collection of active vertices in Ai (respectively, Bj).

We may clearly assume that the outdegree of A′
i and B′

j vertices is nonzero

(vertices that do not obey this can be discarded). The power-cost is thus at least

(
∑

i |A′
i|+

∑

j |B′|j)n3.

Let (
∑

i |A′
i|+

∑

j |B′|j) = 2qρ. The average size of A′
i (respectively, |B′

j |) is

at most 2ρ. Call an Ai sparse if |A′
i| > 8ρ. Similarly, Bj is sparse if |B′

j | > 8ρ.

Remove from the super-graph Γ all the sparse sets Ai and Bj . Clearly, the

number of sparse Ai sets is no larger than q
4 and the same holds for Bj . Now

we update the number of s− t paths discarding paths of sparse sets. The loss of
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paths incurred by the removal of a sparse Ai or sparse Bj is at most d. Hence,

the removal of sparse Ai and Bj sets incurs a loss of at most 2 q
4d = h

2 paths.

Hence, at least h
2 s− t edge-disjoint paths still exist after this update.

We now dilute the path collections so that at most one path remains between

every pair of sets Ai, Bj . Since the remaining sets Ai and Bj are not sparse, the

number of active vertices in each set is bounded by 8ρ. Hence, the total number

of paths between every pair of sets Ai and Bj is at most (8ρ)2. Therefore, the

dilution results in a total number of paths of at least h
128ρ2 . Let F ′ be the subset

of
⋃

A′
i ∪

⋃

B′
j restricted to the non-sparse Ai, Bj .

We now create a feasible MaxRep solution by drawing a single vertex in every

non-sparse A′
i and B′

i with all elements being equally likely to be chosen. Let F ′′

be the resulting set of unique representatives; Clearly F ′′ is a feasible MaxRep

solution. Observe that a super-edge covered by F ′ has probability at least 1
64ρ2

to be covered by F ′′. The expected number of superedges covered by F ′′ is at

least h
8192ρ4 . This implies the existence of a MaxRep solution that covers this

many superedges. By Theorem 9, 8192ρ4 ≥ 2log1−ε n. Finally, we note that the

probabilistic construction of F ′′ can be easily de-randomized using the method

of conditional expectation and thus the claim follows. 2

By Lemma 4 and 5, it is hard to approximate MPk-EDP within 2
log1−ε n

4

10 .

Since ε can be chosen to be any arbitrary constant, the hardness result follows.
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