Skip to main content

Advertisement

Log in

Continuous optimization methods for structure alignments

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Structural Alignment is an important tool for fold identification of proteins, structural screening on ligand databases, pharmacophore identification and other applications. In the general case, the optimization problem of superimposing two structures is nonsmooth and nonconvex, so that most popular methods are heuristic and do not employ derivative information. Usually, these methods do not admit convergence theories of practical significance. In this work it is shown that the optimization of the superposition of two structures may be addressed using continuous smooth minimization. It is proved that, using a Low Order-Value Optimization approach, the nonsmoothness may be essentially ignored and classical optimization algorithms may be used. Within this context, a Gauss–Newton method is introduced for structural alignments incorporating (or not) transformations (as flexibility) on the structures. Convergence theorems are provided and practical aspects of implementation are described. Numerical experiments suggest that the Gauss–Newton methodology is competitive with state-of-the-art algorithms for protein alignment both in terms of quality and speed. Additional experiments on binding site identification, ligand and cofactor alignments illustrate the generality of this approach. The softwares containing the methods presented here are available at http://www.ime.unicamp.br/∼martinez/lovoalign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreani R., Dunder C. and Martínez J.M. (2003). Order-Value Optimization: formulation and solution by means of a primal Cauchy method. Math. Methods Oper. Res. 58: 387–399

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreani, R., Martínez, J.M., Martínez, L., Yano, F.: Low Order-Value Optimization and Applications. In: Technical Report MCDO 051013, Department of Applied Mathematics, State University of Campinas, Brazil, 2005

  3. Andreani R., Martínez J.M., Salvatierra M. and Yano F. (2006). Quasi-Newton methods for order-value optimization and value-at-risk calculations. Pac. J. Optim. 2: 11–33

    MATH  MathSciNet  Google Scholar 

  4. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. and Bourne P.E. (2000). The protein data bank. Nucleic Acids Res. 28: 235–242

    Article  Google Scholar 

  5. Brinkmann G., Dress A.W.M., Perrey S.W. and Stoye J. (1997). Two applications of the Divide & Conquer principle in the molecular sciences. Math. Program. 79: 71–97

    MathSciNet  Google Scholar 

  6. Chreneik J.E., Burgin A.B., Pommier Y., Stewart L. and Redinbo M.R. (2003). Structural impact of the Leukemia Drug 1-Beta-D-Arabinofuranosyleytosine (Ara-C) on the Covalent Human Topoisomerase I-DNA Complex. J. Biol. Chem 278: 12461–12466

    Article  Google Scholar 

  7. Gerstein M. and Levitt M. (1998). Comprehensive assessment of automatic structural alignment against a manual standard, the Scop classification of proteins. Protein Sci. 7: 445–456

    Article  Google Scholar 

  8. Golub G.H. and Loan Ch.F. (1983). Matrix Computations. Johns Hopkins, Baltimore

    MATH  Google Scholar 

  9. Holm L. and Park J. (2000). DaliLite workbench for protein structure comparison. Bioinformatics 16: 566–567

    Article  Google Scholar 

  10. Holm L. and Sander C. (1993). Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233: 123–138

    Article  Google Scholar 

  11. Holm L. and Sander C. (1996). Mapping the protein universe. Science 273: 595–602

    Article  Google Scholar 

  12. Kabsch W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallog. A 34: 827–828

    Article  Google Scholar 

  13. Kearsley S.K. (1989). On the orthogonal transformation used for structural comparisons. Acta Crystallog. A 45: 208–210

    Article  Google Scholar 

  14. Kedem K., Chew L.P. and Elber R. (1999). Unit-vector RMS (URMS) as a tool to analyze molecular dynamics trajectories. Proteins 37: 554–564

    Article  Google Scholar 

  15. Kleywegt G.J. (1996). Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallog. D 52: 842–857

    Article  Google Scholar 

  16. Kolodny R., Koehl P. and Levitt M. (2005). Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J. Mol. Biol. 346: 1173–1188

    Article  Google Scholar 

  17. Kolodny R. and Linial N. (2004). Approximate protein structural alignment in polynomial time. P. Natl. Acad. Sci. USA 101: 12201–12206

    Article  Google Scholar 

  18. Krissinel, E., Henrick, K.: Protein structure comparison in 3D based on secondary structure matching (SSM) followed by C-alpha alignment, scored by a new structural similarity function. In: [Kungl, A.J., Kungl, P.J. (eds.)] Proceedings of the First international Conference on Molecular Structural Biology. Vienna, September 3–7 (2003)

  19. Krissinel E. and Henrick K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallog. D 60: 2256–2268

    Article  Google Scholar 

  20. Lupyan D., Leo-Macias A. and Ortiz A.R. (2005). A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21: 3255–3263

    Article  Google Scholar 

  21. Needleman B. and Wounsch C.D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48: 443–453

    Article  Google Scholar 

  22. Neubert K.D. (1998). Flashsort1 Algorithm. Dr. Dobb’s J. 23: 123–124

    Google Scholar 

  23. Nocedal J. and Wright S.J. (1999). Numerical Optimization. Springer, New York

    MATH  Google Scholar 

  24. Nunes A.M., Aparicio R., Santos M.A.M., Portugal R.V, Dias S.M.G., Neves F.A.R, Simeoni L.A., Baxter J.D., Webb P. and Polikarpov I. (2004). Crystallization and preliminary X-ray diffraction studies of isoform alpha 1 of the human thyroid hormone receptor ligand-binding domain. Acta Crystallog. D 60: 1867–1870

    Article  Google Scholar 

  25. Ortiz A.R., Strauss C.E. and Olmea O. (2002). MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 11: 2606–2621

    Article  Google Scholar 

  26. Redinbo M.R., Stewart L., Kuhn P., Champoux J.J. and Hol W.G.J. (1998). Crystal structures of Human Topoisomerase I in covalent and noncovalent complexes with DNA. Science 279: 1504–1513

    Article  Google Scholar 

  27. Sandelin E. (2005). Extracting multiple structural alignments: a comparison of a rigorous and a heuristic approach. Bioinformatics 21: 1002–1009

    Article  Google Scholar 

  28. Shatsky M., Nussinov R. and Wolfson H.J. (2002). Flexible protein alignment and hinge detection. Proteins 48: 242–256

    Article  Google Scholar 

  29. Shyndialov I.N. and Bourne P.E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1: 739–747

    Article  Google Scholar 

  30. Subbiah S., Laurents D.V. and Levitt M. (1993). Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr. Biol. 3: 141–148

    Article  Google Scholar 

  31. Taylor W.R. (1991). Protein structure alignment using iterated double dynamic programming. Protein Sci. 8: 654–665

    Google Scholar 

  32. Taylor W.R. and Orengo C.A. (1989). Protein structure alignment. J. Mol. Biol. 208: 1–22

    Article  Google Scholar 

  33. Wagner R.A. and Fischer M.J. (1974). string-to-string correction problem. J. ACM 21: 168–173

    Article  MATH  MathSciNet  Google Scholar 

  34. Weisstein, E.W.: ‘Rodrigues’ Rotation Formula, MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/RodriguesRotationFormula.html

  35. Ye Y. and Godzik A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl. 2): ii246–ii255

    Google Scholar 

  36. Ye L., Li Y.L., Mellstrom K., Mellin C., Bladh L.G., Koehler K., Garg N., Collazo A.M.G., Litten C., Husman B., Persson K., Ljunggren J., Grover G., Sleph P.G., George R. and Malm J. (2003). Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor beta(1). J. Med. Chem. 46: 1580–1588

    Article  Google Scholar 

  37. Zhu J. and Weng Z. (2005). A novel protein structure alignment algorithm. Proteins 58: 618–627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Mario Martínez.

Additional information

This work was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grants 01-04597-4 - 02-14203-6 and 05-56773-1) and CNPq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreani, R., Martínez, J.M., Martínez, L. et al. Continuous optimization methods for structure alignments. Math. Program. 112, 93–124 (2008). https://doi.org/10.1007/s10107-006-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0091-3

Keywords

Navigation