Skip to main content
Log in

Inverse stochastic dominance constraints and rank dependent expected utility theory

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider optimization problems with second order stochastic dominance constraints formulated as a relation of Lorenz curves. We characterize the relation in terms of rank dependent utility functions, which generalize Yaari's utility functions. We develop optimality conditions and duality theory for problems with Lorenz dominance constraints. We prove that Lagrange multipliers associated with these constraints can be identified with rank dependent utility functions. The problem is numerically tractable in the case of discrete distributions with equally probable realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, C., Tasche, D.: On the coherence of expected shortfall. Journal of Banking and Finance 26, 1487–1503 (2002)

    Article  Google Scholar 

  2. Arnold, B.C.: Majorization and the Lorenz Order: A Brief Introduction. Lecture Notes in Statistics 43, Springer-Verlag, Berlin, 1980

  3. Billingsley, P.: Probability and Measure. John Wiley & Sons, New York, 1995

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, 2000

  5. Choquet, G.: Theory of capacities. Annales de l'Institut Fourier Grenoble 5, 131–295 (1955)

    MathSciNet  Google Scholar 

  6. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM Journal on Optimization 14, 548–566 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Mathematical Programming 99, 329–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dentcheva, D., Ruszczyński, A.: Convexification of stochastic ordering constraints. Comptes Rendus de l'Academie Bulgare des Sciences 57 (3), 5–10 (2004)

    MathSciNet  Google Scholar 

  9. Dentcheva, D., Ruszczyński, A.: Semi-infinite probabilistic optimization: first order stochastic dominance constraints. Optimization 53, 583–601 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dentcheva, D., Ruszczyński, A.: Inverse stochastic dominance constraints and quantile utility theory. Comptes Rendus de l'Academie Bulgare des Sciences 58 (1), 11–16 (2005)

    Google Scholar 

  11. Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. Journal of Banking and Finance 30, 433–451 (2006)

    Article  Google Scholar 

  12. Dowd, K.: Beyond Value at Risk: The Science of Risk Management. Wiley, New York, 1997

  13. Dunford, N., Schwartz, J.T.: Linear Operators. Interscience Publishers, New York, 1958

  14. Fishburn, P.C.: Decision and Value Theory. John Wiley & Sons, New York, 1964

  15. Gastwirth, J.L.: A general definition of the Lorenz curve. Econometrica 39, 1037–1039 (1971)

    Article  MATH  Google Scholar 

  16. Gol'shtein, E.G.: Duality Theory in Mathematical Programming and Its Applications. Nauka, Moscow, 1971, in Russsian

  17. Hadar, J., Russell, W.: Rules for ordering uncertain prospects. The American Economic Review 59, 25–34 (1969)

    Google Scholar 

  18. Klein Haneveld, W.K., van der Vlerk, M.H.: Integrated chance constraints: reduced forms and an algorithm. Stochastic Programming E-Print Series, 2002

  19. Lorenz, M.O.: Methods of measuring concentration of wealth. Journal of the American Statistical Association 9, 209–219 (1905)

    Article  Google Scholar 

  20. Muliere, P., Scarsini, M.: A note on stochastic dominance and inequality measures. Journal of Economic Theory 49, 314–323 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. John Wiley & Sons, Chichester 2002

  22. Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean–risk models. SIAM Journal on Optimization 13, 60–78 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Prékopa, A.: Probabilistic Programming. In: Ruszczyński, A., Shapiro, A. (eds) Stochastic Programming. Elsevier, Amsterdam, 2003

  24. Quiggin, J.: A theory of anticipated utility. Journal of Economic Behavior and Organization 3, 225–243 (1982)

    Article  Google Scholar 

  25. Quiggin, J.: Generalized Expected Utility Theory - The Rank-Dependent Expected Utility Model. Kluwer, Dordrecht, 1993

  26. Quirk, J.P., Saposnik, R.: Admissibility and measurable utility functions. Review of Economic Studies 29, 140–146 (1962)

    Article  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, 1970

  28. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. Journal of Banking and Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  29. Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Deviation measures in risk analysis and optimization. Research Report 2002-7, Department of Industrial and Systems Engineering, University of Florida, 2002

  30. Rothschild, M., Stiglitz, J.E.: Increasing risk: I. A definition. Journal of Economic Theory 2, 225–243 (1969)

    MathSciNet  Google Scholar 

  31. Schmeidler, D.: Integral representation without additivity. Proceedings of the Anerican Mathematical Society 97, 255–261 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1947

  34. Wang, S.S., Yong, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insurance Mathematics and Economics 21, 173–183 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, S.S., Yong, V.R.: Ordering risks: expected utility versus Yaari's dual theory of risk. Insurance Mathematics and Economics 22, 145–161 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Ruszczyński.

Additional information

Research supported by the NSF awards DMS-0303545, DMS-0303728, DMI-0354500 and DMI-0354678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dentcheva, D., Ruszczyński, A. Inverse stochastic dominance constraints and rank dependent expected utility theory. Math. Program. 108, 297–311 (2006). https://doi.org/10.1007/s10107-006-0712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0712-x

Keywords

Navigation