Skip to main content

Advertisement

Log in

Solution dependence on initial conditions in differential variational inequalities

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

In the first part of this paper, we establish several sensitivity results of the solution x(t, ξ) to the ordinary differential equation (ODE) initial-value problem (IVP) dx/dt = f(x), x(0) =  ξ as a function of the initial value ξ for a nondifferentiable f(x). Specifically, we show that for \(\Xi_T \equiv \{\,x(t,\xi^0): 0 \leq t \leq T\,\}\) , (a) if f is “B-differentiable” on \(\Xi_T\) , then so is the solution operator x(t;·) at ξ0; (b) if f is “semismooth” on \(\Xi_T\) , then so is x(t;·) at ξ0; (c) if f has a “linear Newton approximation” on \(\Xi_T\) , then so does x(t;·) at ξ0; moreover, the linear Newton approximation of the solution operator can be obtained from the solution of a “linear” differential inclusion. In the second part of the paper, we apply these ODE sensitivity results to a differential variational inequality (DVI) and discuss (a) the existence, uniqueness, and Lipschitz dependence of solutions to subclasses of the DVI subject to boundary conditions, via an implicit function theorem for semismooth equations, and (b) the convergence of a “nonsmooth shooting method” for numerically computing such boundary-value solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.P. and Cellina A. (1984). Differential Inclusions. Springer, New York

    MATH  Google Scholar 

  2. Aubin J.P. and Frankowska H. (1990). Set-Valued Analysis. Birkäuser, Basel

    MATH  Google Scholar 

  3. Auslender A. (1976). Optimization: Méthodes Numériques. Masson, Paris

    Google Scholar 

  4. Aumann R.J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  5. Border K.C. (1985). Fixed point theorems with applications to economics and game theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Çamlibel, M.K.: Complementarity methods in the analysis of piecewise linear dynamical systems. PhD Thesis, Center for Economic Research, Tilburg University (2001)

  7. Çamlibel M.K., Heemels W.P.M.H. and Schumacher J.M. (2002). On linear passive complementarity systems. Eur. J. Control 8: 220–237

    Article  Google Scholar 

  8. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    MATH  Google Scholar 

  9. Cottle R.W., Pang J.S. and Stone R.E. (1992). The Linear Complementarity Problem. Academic, Cambridge

    MATH  Google Scholar 

  10. Facchinei F. and Pang J.S. (2003). Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York

    Google Scholar 

  11. Filippov A.F. (1962). On certain questions in the theory of optimal control. SIAM J. Control Optim. 1: 76–84

    MATH  Google Scholar 

  12. Gowda M.S. (2004). Inverse and implicit function theorems for H-differentiable and semismooth functions. Optim. Methods Softw. 19: 443–460

    Article  MathSciNet  MATH  Google Scholar 

  13. Heemels, W.P.H.: Linear complementarity systems: a study in hybrid dynamics. PhD Thesis, Department of Electrical Engineering, Eindhoven University of Technology (1999)

  14. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Well-posedness of linear complementarity systems. In: 38th IEEE Conference on Decision and Control, Phoenix, pp. 3037–3042 (1999)

  15. Heemels W.P.M.H., Schumacher J.M. and Weiland S. (2000). Linear complementarity systems. SIAM J. Appl. Math. 60: 1234–1269

    Article  MathSciNet  MATH  Google Scholar 

  16. Kummer B. (1988). Newton’s method for non-differentiable functions. In: Guddat, J., Bank, B., Hollatz, H., Kall, P., Klatte, D., Kummer, B., Lommatzsch, K., Tammer, K., Vlach, M. and Zimmermann, K. (eds) Advances in Mathematical Optimization., pp 114–125. Akademie-Verlag, Berlin

    Google Scholar 

  17. Lloyd N.G. (1978). Degree Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Mifflin R. (1977). Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 1: 957–972

    MathSciNet  Google Scholar 

  19. Mordukhovich B.L (2006). Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin

    Google Scholar 

  20. Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York

    MATH  Google Scholar 

  21. Pang J.S. and Ralph D. (1996). Piecewise smoothness, local invertibility and parametric analysis of normal maps. Math. Oper. Res. 21: 401–426

    MathSciNet  MATH  Google Scholar 

  22. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Mathematical Programming, Series A. doi:10.1007/s10107-006-0052-x

  23. Pang J.S., Sun D. and Sun J. (2003). Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28: 39–63

    Article  MathSciNet  MATH  Google Scholar 

  24. Perko L. (1991). Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7. Springer, Berlin

    Google Scholar 

  25. Qi L. (1993). Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18: 227–244

    MathSciNet  MATH  Google Scholar 

  26. Qi L. and Sun J. (1993). A nonsmooth version of Newton’s method. Math. Program. 58: 353–368

    Article  MathSciNet  Google Scholar 

  27. Robinson S.M. (1980). Strongly regular generalized equations. Math. Oper. Res. 5: 43–62

    MathSciNet  MATH  Google Scholar 

  28. Robinson S.M. (1992). Normal maps induced by linear transformations. Math. Oper. Res. 17: 691–714

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin

    MATH  Google Scholar 

  30. Schumacher J.M. (2004). Complementarity systems in optimization. Math. Program. Ser. B 101: 263–296

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen J. and Pang J.S. (2005). Linear complementarity systems: Zeno states. SIAM J. Control Optim. 44: 1040–1066

    Article  MathSciNet  MATH  Google Scholar 

  32. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)

  33. Teschl, G.: Ordinary differential equations and dynamical systems. Manuscript, Department of Mathematics, University of Vienna (2004). Available via URL: http://www.radon.mat.univie.ac.at/˜gerald/ftp/book-ode/

  34. Warga J. (1981). Fat homeomorphism and unbounded derivate containers. J. Math. Anal. Appl. 81: 545–560

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shi Pang.

Additional information

It is our great pleasure to dedicate this article to honor Professor Alfred Auslender on the occasion of his 65th birthday. Professor Auslender’s impact on the authors’ work began with his 1976 monograph [3] and continues to date.

The work of J.-S. Pang is supported by the National Science Foundation under grants CCR-0353074, DMS-0508986, and a Focused Research Group Grant DMS-0353016. The work of D. E. Stewart is supported by the National Science Foundation under a Focused Research Group grant DMS-0138708.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, JS., Stewart, D.E. Solution dependence on initial conditions in differential variational inequalities. Math. Program. 116, 429–460 (2009). https://doi.org/10.1007/s10107-007-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0117-5

Keywords

Navigation