Skip to main content
Log in

New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. Among the problems which can be transformed into a StQP are the general quadratic problem over a polytope, and the maximum clique problem in a graph. In this paper we present several new polynomial-time bounds for StQP ranging from very simple and cheap ones to more complex and tight constructions. The main tools employed in the conception and analysis of most bounds are Semidefinite Programming and decomposition of the objective function into a sum of two quadratic functions, each of which is easy to minimize. We provide a complete diagram of the dominance, incomparability, or equivalence relations among the bounds proposed in this and in previous works. In particular, we show that one of our new bounds dominates all the others. Furthermore, a specialization of such bound dominates Schrijver’s improvement of Lovász’s θ function bound for the maximum size of a clique in a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anstreicher K. and Burer S. (2005). D.C. Versus copositive bounds for standard QP. J. Glob. Optim. 33: 299–312

    Article  MathSciNet  MATH  Google Scholar 

  2. Bomze I.M. (1998). On standard quadratic optimization problems. J. Glob. Optim. 13: 369–387

    Article  MathSciNet  MATH  Google Scholar 

  3. Bomze I.M. (2000). Copositivity aspects of standard quadratic optimization problems. In: Dockner, E., Hartl, R., Luptacik, M. and Sorger, G. (eds) Dynamics, Optimization and Economic Analysis., pp 1–11. Physica, Heidelberg

    Google Scholar 

  4. Bomze I.M. (2002). Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22: 17–37

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze I.M., Dür M., de Klerk E., Quist A., Roos C. and Terlaky T. (2000). On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18: 301–320

    Article  MATH  Google Scholar 

  6. Bomze I.M. and de Klerk E. (2002). Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24: 163–185

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze I.M. and Locatelli M. (2004). Undominated d.c. decompositions of quadratic functions and applications to branch-and-bound approaches. Comput. Optim. Appl. 28(2): 227–245

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M., Locatelli, M., Tardella, F.: Efficient and cheap bounds for (Standard) Quadratic Optimization, Technical Report dis tr 2005/2010, Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Universitá degli Studi di Roma “La Sapienza”, available at http://www.optimization-online.org/DB_HTML/2005/07/1176.html (2005)

  9. Boyd S. and Vandenberghe L. (2004). Convex Optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Laurent M., Parrillo P.A. and Klerk E. (2006). A PTAS for the minimization of polynomials of fixed degree over the simplex. Theor. Comp. Sci. 361: 210–225

    Article  MATH  Google Scholar 

  11. de Klerk E. and Pasechnik D.V. (2002). Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12: 875–892

    Article  MathSciNet  MATH  Google Scholar 

  12. Diananda P.H. (1967). On non-negative forms in real variables some or all of which are non-negative. Proc. Camb. Philos. Soc. 58: 17–25

    MathSciNet  Google Scholar 

  13. Dür M. (2002). A class of problems where dual bounds beat underestimation bounds. J. Glob. Optim. 22: 49–57

    Article  MATH  Google Scholar 

  14. Falk J. (1969). Lagrange multipliers and nonconvex programs. SIAM J. Control 7: 312–321

    Article  MathSciNet  Google Scholar 

  15. Frank M. and Wolfe P. (1956). An algorithm for quadratic programming. Naval Res. Logist. Q. 3: 95–110

    Article  MathSciNet  Google Scholar 

  16. Gibbons L.E., Hearn D.W., Pardalos P.M. and Ramana M.V. (1997). Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22: 754–768

    Article  MathSciNet  MATH  Google Scholar 

  17. Gower J.C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl. 67: 81–97

    Article  MathSciNet  MATH  Google Scholar 

  18. Horst R. and Tuy H. (1990). Global Optimization: Deterministic Approaches. Springer, Berlin

    MATH  Google Scholar 

  19. Ibaraki T. and Katoh N. (1988). Resource Allocation Problems: Algorithmic Approaches. MIT Press, Cambridge

    MATH  Google Scholar 

  20. Lasserre J.B. (2001). Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11: 796–817

    Article  MathSciNet  MATH  Google Scholar 

  21. Lemaréchal, C., Oustry, F.: Semidefinite relaxations and Lagranian duality with application to combinatorial optimization, INRIA research report, vol. 3710 (1999)

  22. Markowitz H.M. (1952). Portfolio selection. J. Finance 7: 77–91

    Article  Google Scholar 

  23. Markowitz H.M. (1995). The general mean-variance portfolio selection problem. In: Howison, S.D., Kelly, F.P. and Wilmott, P. (eds) Mathematical Models in Finance, vol. 93–99., pp. Chapman & Hall, London

    Google Scholar 

  24. Motzkin T.S. and Straus E.G. (1965). Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17: 533–540

    MathSciNet  MATH  Google Scholar 

  25. Nesterov, Y.E.: Global Quadratic Optimization on the Sets with Simplex Structure, Discussion paper 9915, CORE. Catholic University of Louvain, Belgium (1999)

  26. Nowak I. (1999). A new semidefinite programming bound for indefinite quadratic forms over a simplex. J. Glob. Optim. 14: 357–364

    Article  MATH  Google Scholar 

  27. Pena J., Vera J. and Zuluaga L. (2007). Computing the stability number of a graph via linear and semidefinite programming. SIAM J. Optim. 18: 87–105

    MathSciNet  MATH  Google Scholar 

  28. Rockafellar R.T. (1970). Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  29. Schrijver A. (1979). A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory 25: 425–429

    Article  MathSciNet  MATH  Google Scholar 

  30. Sahinidis N.V. and Tawarmalani M. (2002). Convex extensions and envelopes of lower semi-continuous functions. Math. Prog. 93: 247–263

    Article  MathSciNet  MATH  Google Scholar 

  31. Tardella F. (1990). On the equivalence between some discrete and continuous optimization problems. Ann. Oper. Res. 25: 291–300

    Article  MathSciNet  MATH  Google Scholar 

  32. Tardella F. (2004). Connections between continuous and combinatorial optimization problems through an extension of the fundamental theorem of linear programming. Electron. Notes Discret. Math. 17: 257–262

    Article  MathSciNet  Google Scholar 

  33. Tuy, H.: A general deterministic approach to global optimization via d.c. programming. In: Fermat days 85: Mathematics for optimization, vol. 129. North-Holland Math. Stud., Toulouse/France, pp. 273–303 (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Tardella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Locatelli, M. & Tardella, F. New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115, 31–64 (2008). https://doi.org/10.1007/s10107-007-0138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0138-0

Keywords

Mathematics Subject Classification (2000)

Navigation