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Abstract Assuming that the primal part of the sequence generated by a Newton-
type (e.g., SQP) method applied to an equality-constrained problem converges to a
solution where the constraints are degenerate, we investigate whether the dual part
of the sequence is attracted by those Lagrange multipliers which satisfy second-order
sufficient condition (SOSC) for optimality, or by those multipliers which violate it.
This question is relevant at least for two reasons: one is speed of convergence of
standard methods; the other is applicability of some recently proposed approaches
for handling degenerate constraints. We show that for the class of damped Newton
methods, convergence of the dual sequence to multipliers satisfying SOSC is unlikely
to occur. We support our findings by numerical experiments. We also suggest a simple
auxiliary procedure for computing multiplier estimates, which does not have this
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undesirable property. Finally, some consequences for the case of mixed equality and
inequality constraints are discussed.

Keywords Degenerate constraints · Second-order sufficient condition · Newton
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1 Introduction

Consider the problem

minimize f (x) subject to F(x) = 0, (1)

where f : Rn → R is a smooth function and F : Rn → Rl is a smooth mapping. Sta-
tionary points of problem (1) and the associated Lagrange multipliers are characterized
by the Lagrange optimality system

�(x, λ) = 0, (2)

� : Rn × Rl → Rn × Rl , �(x, λ) =
(
∂L

∂x
(x, λ), F(x)

)
,

where L : Rn × Rl → R, L(x, λ) = f (x) + 〈λ, F(x)〉 is the Lagrangian function
of problem (1).

The set of Lagrange multipliers �(x̄) associated with a stationary point x̄ of (1) is
the solution set of the system of linear equations with respect to λ ∈ Rl . Specifically,

�(x̄) =
{
λ ∈ Rl

∣∣∣ (F ′(x̄))T
λ = − f ′(x̄)

}
. (3)

Evidently, �(x̄) is a singleton if and only if the linear independence constraint qua-
lification (LICQ) holds: rank F ′(x̄) = l. Otherwise �(x̄) is an affine set parallel to
ker(F ′(x̄))T = (im F ′(x̄))⊥, where ker A stands for the null subspace of a linear
operator A, while im A stands for the image subspace.

We note that the situation when LICQ is violated but multipliers exist is not unu-
sual and deserves special consideration. For example, it is known that for degenerate
problems of the form of (1) multipliers associated with a local solution exist generi-
cally, provided the number of variables is large enough with respect to the number of
constraints (see Lemma 1 and subsequent discussion in [4,5]). The case of violation of
classical constraint qualifications has been a subject of considerable interest in the past
decade, both in the general case (e.g., [1,4,8,11,12,15,16,18,32]) and in the special
case of equilibrium or complementarity constraints (e.g., [2,3,9,17,22,26–28]).

Not assuming LICQ for problem (1) means the absence of strong regularity in the
sense of [25], and consequently, the absence of nice sensitivity properties and of nice
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On attraction of Newton iterates and violation of second-order sufficiency 273

convergence properties of Newton-type methods. In particular, we face the situation
where any solution of the Lagrange system (2) of the form (x̄, λ), λ ∈ �(x̄), is
degenerate.

To tackle the problem of degeneracy, various local stabilization and regularization
methods have been proposed in [8,11,18,21,32] (see also [7,29–31]). Despite lack
of LICQ, some of those methods do achieve superlinear or quadratic convergence
from points (x̃0, λ̃0) sufficiently close to pairs (x̄, λ̄) with λ̄ ∈ �(x̄) satisfying the
second-order sufficient condition (SOSC) for optimality

〈
∂2L

∂x2 (x̄, λ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ ker F ′(x̄)\{0}. (4)

Typically, underlying local algorithms for degenerate problems is the following philo-
sophy (see, for example [18] and especially [32], where this is explicit). It is assumed
that an outer strategy generates a primal–dual sequence {(xk, λk)} approaching (x̄, λ̄)
with the needed property (4), which guarantees that the local phase is activated at a
certain iteration k, with (x̃0, λ̃0) = (xk, λk). This local phase forces fast convergence
of the sequence {(x̃ k, λ̃k)} despite the point x̄ violating LICQ.

When the primal trajectory converges to x̄ , the question of whether or not the
dual trajectory converges to λ̄ ∈ �(x̄) satisfying SOSC is also relevant for speed
of convergence of the primal sequence in standard algorithms (i.e., not specifically
designed to handle degeneracy). It has been observed in [31, Sect. 6] that when SQP
converges slowly, the apparent reason is precisely convergence of the dual sequence to
multipliers violating SOSC (see also Sect. 6 and Proposition 2 below with comments
preceding it). This is also consistent with all the other examples of slow convergence
of SQP in the degenerate case that we found in the literature and examined. Of course,
this paper is not the first one where it is realized that slow convergence of SQP in the
degenerate case has to do with “bad” dual behavior. In fact, some stabilized versions
of SQP achieve better convergence properties precisely by adjusting in this or that
way the multipliers estimates, e.g., [7,31]. The goal of this paper is to make it clear
what exactly is the problem, to define with precision the set of troublesome multipliers
attracting dual iterates (these are not simply multipliers violating SOSC!), and to show
that convergence to troublesome multipliers is not only something that may happen
but, in fact, is something that should be expected to happen.

We note that assuming SOSC (4) for some λ̄ ∈ �(x̄), the point x̄ is an isola-
ted local minimizer of (1) and convergence of {xk} to x̄ can be expected for (good
implementations of) good algorithms, even in the degenerate cases (of course, the
speed of convergence is another matter, as already mentioned). Here, one can even
think of x̄ as being the unique stationary point of (1). Convergence of {λk} to the nee-
ded λ̄ satisfying SOSC, on the other hand, is by no means a given (SOSC usually holds
for some multipliers but not for all of them). Without making far-reaching conclusions
for other formats of optimization problems and/or other types of algorithms, we show
that, at least for the class of damped Newton methods for (1) (or for (2)), the conclu-
sion is actually negative: the dual sequence is “very unlikely” to approach multipliers
satisfying the needed SOSC. Moreover, we define a special subclass of multipliers
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violating SOSC, called critical multipliers, and show that noncritical multipliers can-
not attract Newton iterations.

Definition 1 The multiplier λ̄ ∈ �(x̄) is referred to as critical if

∃ ξ ∈ ker F ′(x̄)\{0} such that
∂2L

∂x2 (x̄, λ̄)ξ ∈ im(F ′(x̄))T
,

and noncritical otherwise.

Since (im F ′(x̄))T = (ker F ′(x̄))⊥, it is immediate that criticality implies that

∃ ξ ∈ ker F ′(x̄)\{0} such that

〈
∂2L

∂x2 (x̄, λ̄)ξ, ξ

〉
= 0.

In particular, SOSC (4) is violated. Evidently, critical multipliers form a special sub-
class within the multipliers violating SOSC.

We consider the following iterative process. Let (xk, λk) ∈ Rn × Rl be the current
iterate. The next iterate has the form

(
xk+1, λk+1

)
=

(
xk, λk

)
+

(
αkξ

k, βkη
k
)
, (5)

where (ξ k, ηk) satisfies the Newton equation for (2), i.e.,

�
(

xk, λk
)

+�′ (xk, λk
) (
ξ k, ηk

)
= 0, (6)

and {αk} and {βk} are sequences of real numbers such that

α̂ ≥ αk ≥ α̌ > 0, βk ≥ β̌ > 0 ∀ k. (7)

The above iterative scheme includes the Newton method for Lagrange system (2),
globalized by a linesearch procedure for its squared residual

	 : Rn × Rl → R, 	(x, λ) = 1

2
‖�(x, λ)‖2. (8)

In this case, we have αk = βk ∀ k in (5), and stepsizes satisfy (7) under standard
assumptions.

The sequential quadratic programming (SQP) is also a special case of our scheme.
In SQP, ξ k is computed as a stationary point of

minimize
〈
f ′ (xk

)
, ξ

〉 + 1
2

〈
∂2 L
∂x2

(
xk, λk

)
ξ, ξ

〉
subject to F

(
xk

) + F ′ (xk
)
ξ = 0,

and λk+1 is set to be an associated multiplier. For SQP, we have in (5) that βk = 1 ∀ k,
while αk is computed by a linesearch procedure for some nonsmooth penalty function.
Under standard assumptions, (7) holds.
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On attraction of Newton iterates and violation of second-order sufficiency 275

The effect of attraction of the dual sequence {λk} to critical multipliers was first
reported in [13] for a special case of the iterative scheme (5)–(7). To expose the effect
in question, we start with the following simple example.

Example 1 Let n = l = 1, f (x) = x2, F(x) = x2.
We have that x̄ = 0, �(x̄) = R, the SOSC (4) is satisfied for any λ̄ > −1, and

the unique critical multiplier is λ̄ = −1. The Newton equation (6) takes the form
(1 + λk)ξ k + xkηk = −(1 + λk)xk , 2xkξ k = −(xk)2.

Suppose that λk �= −1. Then ξ k = −xk
(
1 + ηk/(1 + λk)

)
, and if xk �= 0, it

follows that ηk = −(1 + λk)/2, ξ k = −xk/2. Hence,

xk+1 = xk + αkξ
k = (1 − αk/2) xk,

λk+1 + 1 = λk + βkη
k + 1 = (1 − βk/2)

(
λk + 1

)
.

Thus, if (7) holds with α̂ < 4 and β̂ < 4, and αk �= 2, βk �= 2 ∀ k, and if x0 �= 0 and
λ0 �= −1, then xk �= 0 and λk �= −1 ∀ k, and the trajectory

{
(xk, λk)

}
is correctly

defined and converges linearly to (0, −1). In particular, {λk} converges to the (unique!)
critical multiplier.

It turns out that the phenomenon observed in Example 1 is rather “persistent”. In
fact, this example was not specially constructed with some goal in mind. It is easy to
see taking other small examples of problem (1) with nonunique multipliers that the
dual sequence {λk}, obtained by means of the Newton equation, inevitably tends to a
critical multiplier. This is quite remarkable, because the set of critical multipliers is
typically very small (just one point in Example 1!), while the set of other multipliers is
large (the whole space except for one point in Example 1!). It is therefore of interest to
investigate and explain the observed phenomenon. In this sense, it is important to make
the following observation. It cannot be possible to prove that {λk} must converge to a
critical multiplier. Indeed, if the sequence

{
(xk, λk)

}
happens to hit an exact solution

of the Lagrange system so that�(xk̄, λk̄) = 0 for some iteration k̄ (for example, if we
start with x0 = x̄ and λ0 ∈ �(x̄)), the sequence obviously would be “attracted” to this
solution, in the sense that (xk, λk) = (xk̄, λk̄) for all k ≥ k̄. Of course, here λk̄ may
be noncritical (for example, if we start at x0 = x̄ and a noncritical λ0 ∈ �(x̄)). This
situation of “finite termination” is certainly atypical and one can disregard it as not very
interesting. But since it is possible in principle, it indicates that there cannot exist a
proof showing that {λk} converges to critical multipliers. Instead, the goal should be to
show that if convergence to noncritical multipliers occurs, then this implies something
unlikely. This would in turn justify the observed convergence to critical multipliers.
For those reasons, the required analysis is somewhat subtle and unusual.

It can be said that the phenomenon discussed in this paper joins the list of other
possible negative effects that must be taken into account when Newton-type methods
are implemented. For example, the well-known Maratos effect [23] in SQP, or the
effect of false numerical convergence of some generalized Newton methods [24]. For
satisfactory numerical performance, certain care should be taken when implementing
the related algorithms. Similarly, Newton-type methods for degenerate problems also
require some safeguards in order to avoid convergence to critical multipliers.

123
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Let x̄ = 0, and assume (without loss of generality) that f (0) = 0. Since conver-
gence to x̄ is part of our setting and we are investigating properties at the limit, we can
locally represent twice continuously differentiable f and F in the following form:

f (x) = 〈a, x〉 + 1

2
〈Ax, x〉 + r(x), F(x) = B1x + 1

2
B2[x, x] + R(x),

where a ∈ Rn ; A is a symmetric n×n-matrix; B1 is an l×n-matrix; B2 : Rn×Rn → Rl

is a symmetric bilinear mapping; function r : Rn → R and mapping R : Rn → Rl are
twice differentiable near 0, their second derivatives are continuous at 0, and r(0) = 0,
r ′(0) = 0, r ′′(0) = 0, R(0) = 0, R′(0) = 0, R′′(0) = 0. Note that under these
assumptions,

r(x) = o
(
‖x‖2

)
, r ′(x) = o (‖x‖) , r ′′(x) → 0 as x → 0, (9)

R(x) = o
(
‖x‖2

)
, R′(x) = o (‖x‖) , R′′(x) → 0 as x → 0. (10)

For this setting, the Lagrange system (2) takes the form

a + B
T

1λ+ H(λ)x + r ′(x)+ (
R′(x)

)T
λ = 0, B1x + 1

2
B2[x, x] + R(x) = 0,

(11)

where H(λ) is the (symmetric) matrix of the quadratic form

x → ∂2L

∂x2 (0, λ)[x, x] = 〈Ax, x〉 + 〈λ, B2[x, x]〉 : Rn → R,

that is,

H(λ)x = Ax + (B2[x])T
λ, x ∈ Rn,

with B2[x] being the linear operator from Rn to Rl (l × n matrix), defined by

B2[x]ξ = B2[x, ξ ], ξ ∈ Rn .

In what follows, we consider a ∈ im B
T

1 , so that the point (x̄, λ) with x̄ = 0 is a
solution of the system (11) for any λ ∈ �(x̄), where �(x̄) is an affine set parallel to
ker B

T

1 .
The Newton direction (ξ k, ηk) for (11) is then given by the following relations:

Hkξ
k + B

T

1 η
k +

(
B2[xk]

)T

ηk + r ′′(xk)ξ k +
(

R′′(xk)[ξ k]
)T

λk +
(

R′(xk)
)T

ηk

= −a − B
T

1λ
k − Hk xk − r ′(xk)−

(
R′(xk)

)T

λk, (12)
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B1ξ
k + B2

[
xk, ξ k

]
+ R′(xk)ξ k = −B1xk − 1

2
B2

[
xk, xk

]
− R(xk), (13)

where Hk = H(λk). For each x ∈ Rn , define the decomposition x = x1 + x2, x1 ∈
(ker B1)

⊥ = im B
T

1 , x2 ∈ ker B1. Similarly, for each y ∈ Rl , define the decomposition

y = y1 + y2, y1 ∈ im B1, y2 ∈ (im B1)
⊥ = ker B

T

1 . Let
 be the orthogonal projector

onto ker B1 in Rn , and P be the orthogonal projector onto ker B
T

1 in Rl . For each
λ ∈ Rl , define Ĥ(λ) as the (symmetric) matrix of the quadratic form

x2 → ∂2L

∂x2 (x̄, λ)[x2, x2] = 〈Ax2, x2〉 + 〈λ, B2[x2, x2]〉 : ker B1 → R,

that is,

Ĥ(λ)x2 = 
H(λ)x2, x2 ∈ ker B1. (14)

The matrix Ĥ(λ) can be regarded as the reduced Hessian of the Lagrangian function. In
particular, SOSC (4) means precisely that Ĥ(λ) is positive definite. With this notation,
λ̄ ∈ �(x̄) is a critical multiplier according to Definition 1 if, and only if, the matrix
Ĥ(λ̄) is singular.

The rest of the paper is organized as follows. We start our analysis in Sect. 2, with
the case where the derivatives of f and F vanish at a solution. In Sect. 3, we extend
the analysis to the general case by means of the Liapunov–Schmidt procedure. In
Sect. 4 we suggest an auxiliary scheme for computing the multiplier estimates, which
does not have the exhibited effect of attraction to critical multipliers. Some numerical
experiments are presented in Sect. 5. Consequences for the general case of mixed
equality and inequality constraints are discussed in Sect. 6. Concluding remarks are
given in Sect. 7.

2 The case of complete degeneracy

In this section, we deal with the case when a = 0 and B1 = 0, so that f ′(x̄) = 0
and F ′(x̄) = 0. In this case, im(F ′(x̄))T = (ker F ′(x̄))⊥ = {0}, and Definition 1 says
that λ̄ ∈ �(x̄) = Rl is critical if, and only if, the matrix ∂2 L

∂x2 (x̄, λ̄) is singular. Or,

equivalently, H(λ̄) is singular (recall (14), where ker B1 = Rn and
 is the identity).
We first state our result, then discuss our assumptions and conclusions, and then give
the proof.

Proposition 1 Suppose that the iterative process given by (5)–(7) correctly generates
the trajectory

{
(xk, λk)

}
, and there exists an infinite set K ⊂ {0, 1, . . .} possessing

the following properties:

(A1) The subsequence
{
(xk, λk) | k ∈ K

}
converges to (x̄, λ̄) with x̄ = 0 and some

λ̄ ∈ �(x̄)(= Rl).
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278 A. F. Izmailov, M. V. Solodov

(A2) The subsequence
{
λk+1 | k ∈ K

}
converges to the same λ̄.

Then either λ̄ is a critical multiplier or

‖B2[xk, xk]‖ = o(‖xk‖2), k ∈ K , (15)

and if xk �= 0 ∀ k ∈ K then

B2[χ, χ ] = 0 (16)

for any accumulation point χ ∈ Rn \{0} of the sequence {xk/‖xk‖ | k ∈ K }.
Assuming (A1) and (A2), suppose that xk �= 0 ∀ k ∈ K and, in addition, that
r(·) ≡ 0, R(·) ≡ 0, and that

(A3) there exists an infinite subset K̃ of K such that xk+1 − (1 − αk)xk �= 0 ∀ k ∈
K̃ and the subsequence {(xk+1 − (1 − αk)xk)/‖xk+1 − (1 − αk)xk‖ | k ∈
K̃ } converges either to χ or to −χ , where χ is the limit of the subsequence
{xk/‖xk‖ | k ∈ K̃ }.

Then either λ̄ is a critical multiplier or (16) holds and the matrix B2[χ ](H(λ̄))−1

(B2[χ ])T
is singular.

We next explain the result stated above.
The Assumptions (A1) and (A2) are trivial with respect to the questions we are

investigating; essentially they just say that there is convergence in some sense. If {xk}
converges to x̄ and {λk} converges to some compact subset of�(x̄) and ‖λk+1−λk‖ →
0, they are satisfied automatically on some subsequence K . We note that even the first
assertion, obtained under those minimal assumptions, already shows quite special
behavior of the primal sequence, if λ̄ would be a noncritical multiplier. Indeed, if λ̄
is noncritical, then (15) shows that the primal trajectory enters x̄ tangentially to the
null set of the quadratic mapping associated to B2. Apparently, there are no particular
reasons for this to happen, and we do not observe this behavior in our examples and
experiments. We emphasize that the first assertion is obtained without “technical”
assumptions, such as (A3).

The Assumption (A3) may appear somewhat questionable. Nevertheless, it is not
unreasonable and can be justified for the kind of analysis we are doing. First of all,
note that the required property is asked to hold only on some further subsequence K̃
of K , and not for all of K . Let r(·) ≡ 0 and R(·) ≡ 0 (this is a handy simplification
but it is not all that necessary, see Remark 1 below).

We first discuss the first part of (A3), i.e., xk+1 − (1 − αk)xk �= 0, k ∈ K̃ . From
(5) to (13) it follows that

2B2

[
xk, xk+1 − (1 − αk)x

k
]

= 2αk B2

[
xk, ξ k

]
+ 2αk B2

[
xk, xk

]

= −αk B2

[
xk, xk

]
+ 2αk B2

[
xk, xk

]

= αk B2

[
xk, xk

]
.
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On attraction of Newton iterates and violation of second-order sufficiency 279

Hence, according to (7), if for some k it holds that xk+1 − (1 −αk)xk = 0 then neces-
sarily B2[xk, xk] = 0. In the case under consideration, this means that xk is feasible,
which is already an unusual situation for a method linearizing equality constraints
with curvature. Furthermore, if the matrix B2[χ ](H(λ̄))−1(B2[χ ])T

exists and is non-
singular, and k ∈ K is large enough, then it can be seen that ηk = 0 (this follows from
(7) and from (22); the latter to be established soon, within the proof of Proposition 1).
Hence, according to (12), ξ k = −xk (note that by (A1), the existence of (H(λ̄))−1

implies nonsingularity of Hk for all k ∈ K large enough). But from (5) we then
obtain that B2[xk+1, xk+1] = (1 − αk)

2 B2[xk, xk] = 0, λk+1 = λk . This means that
B2[xk, xk] = 0 and λk = λ̄ for all k ∈ K large enough. This is, of course, an excep-
tional situation (the linearization method somehow stays feasible and the multiplier
is never updated). Therefore, assuming that xk+1 − (1 − αk)xk �= 0 for k ∈ K (or at
least on a subset K̃ of K ) appears more than reasonable.

We now discuss the second part of (A3). The point x̃ k+1 = xk+1 − (1 − αk)xk =
αk(xk + ξ k) is obtained as a result of the full Newton step from xk , multiplied by
αk . By the Assumption (A3), there should exist some subsequence K̃ of K such that
{x̃ k+1 | k ∈ K̃ } enters x̄ tangentially to the same direction χ as {xk | k ∈ K̃ }, or
tangentially to the opposite direction −χ . If αk = 1 for k large enough (full Newton
step), then x̃ k+1 = xk+1 for k large enough, and the required property holds if, for
example, the subsequence {xk+1 | k ∈ K̃ } enters x̄ tangentially to the same direction
χ as the subsequence {xk | k ∈ K̃ }. Note that this holds automatically if, say, the
entire sequence {xk} converges to x̄ tangentially to some direction χ . While this is a
technical assumption, it is certainly completely reasonable (for a reasonable algorithm
in a situation when it does converge to a solution). At the very least, there is no good
reason for it not to hold, at least on some subsequence, which is all that is needed in
our analysis. We also checked whether the Assumption (A3) holds in our numerical
experiments in Sect. 5, and observed that this appears to be always the case when the
primal sequence converges (we examined a good portion of test problems with respect
to (A3), although not all of them).

We now discuss the second assertion of Proposition 1, which is the main
result. According to this assertion, if λ̄ is noncritical, then it holds that the matrix
B2[χ ](H(λ̄))−1(B2[χ ])T

is singular for χ ∈ Rn \{0} satisfying B2[χ, χ ] = 0. This
is an exceptional/unlikely situation for the following reasons. Clearly, the matrix in
question cannot be singular if H(λ̄) is positive or negative definite and

rank B2[χ ] = l. (17)

Now, SOSC (4) means that H(λ̄) is positive definite. In the terminology of [19], (17)
means that the quadratic mapping ξ → B2[ξ, ξ ] : Rn → Rl is 2-regular in the
direction χ . The above always holds if this quadratic mapping is 2-regular in any
nonzero direction in its null set, which is a generic property for quadratic mappings!
(See [19, Proposition 1.3.7], [14, Proposition 1]).

We conclude that the matrix B2[χ ](H(λ̄))−1(B2[χ ])T
is generically nonsingular

if SOSC holds. In other words, its singularity is extremely unlikely to occur, and
thus convergence to a noncritical multiplier must be an unlikely event. In addition,
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280 A. F. Izmailov, M. V. Solodov

by Example 3 below, the matrix B2[χ ](H(λ̄))−1(B2[χ ])T
can be nonsingular even if

H(λ̄) is not positive or negative definite. Moreover, Example 2 shows that even if the
matrix B2[χ ](H(λ̄))−1(B2[χ ])T

happens to be singular (however unlikely this is in
general), convergence to critical multipliers can still be observed. Putting together all
those considerations, examples and numerical experiments of Sect. 5, we believe that
one obtains a rather conclusive picture.

Before passing to the proof of Proposition 1, we note that

‖ηk‖ = β−1
k ‖λk+1 − λk‖ ≤ β̂−1‖λk+1 − λk‖ → 0, k ∈ K , (18)

by (5), the second condition in (7), and by (A1) and (A2).

Proof (of Proposition 1) Suppose that λ̄ is a noncritical multiplier, i.e., H(λ̄) is nonsin-
gular. Evidently, {Hk | k ∈ K } converges to H(λ̄), and hence, the tail of the sequence
{H−1

k | k ∈ K } is correctly defined and bounded. From now on, we consider k ∈ K
large enough.

From (12), where a = 0 and B1 = 0, taking into account (9), (10), and (18), we
obtain

ξ k = −xk − H−1
k

(
B2[xk]

)T

ηk

−H−1
k

(
r ′(xk)+

(
R′(xk)

)T

λk + r ′′(xk)ξ k

+
(

R′′(xk)[ξ k]
)T

λk +
(

R′(xk)
)T

ηk
)

= −xk − H−1
k

(
B2[xk]

)T

ηk + Skξ
k + o

(
‖xk‖

)
,

where Sk : Rn → Rn is a linear operator satisfying ‖Sk‖ → 0 as k → ∞. Then we
easily obtain that

ξ k = −xk − H−1
k

(
B2[xk]

)T

ηk + o
(
‖xk‖

)
. (19)

(Note that, according to (18), the second term in the right-hand side is o(‖xk‖), and
thus, could be dropped here. However, we prefer to keep this term since it will play
its role in the future; see below.)

By substituting (19) into (13), where B1 = 0, we obtain that

B2

[
xk, xk

]
+ B2

[
xk

]
H−1

k

(
B2

[
xk

])T

ηk = 1

2
B2

[
xk, xk

]
+ o

(
‖xk‖2

)
,

that is,

B2

[
xk, xk

]
= −2B2

[
xk

]
H−1

k

(
B2[xk]

)T

ηk + o
(
‖xk‖2

)
.
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Using (18), we now obtain (15). Then (16) follows immediately, and the first assertion
is thus proved.

Throughout the rest of the proof, we shall make the assumption that the matrix
B2[χ ](H(λ̄))−1(B2[χ ])T

is nonsingular, since otherwise the second assertion is ob-
tained.

Set χk = xk/‖xk‖. It is easy to see that if r(·) ≡ 0, R(·) ≡ 0 then there is no
little-o term in (19). Then by (5), we obtain that

xk+1 − (1 − αk)x
k = −αk H−1

k (B2[xk])T
ηk . (20)

Thus, by boundedness of {αk} and of the tail of {H−1
k | k ∈ K }, we conclude that

there exists an independent constant γ1 > 0 such that

‖xk‖‖ηk‖ ≥ γ1

∥∥∥xk+1 − (1 − αk)x
k
∥∥∥ . (21)

From (20) it further follows that

B2[xk, xk+1 − (1 − αk)x
k] = −αk B2[xk]H−1

k (B2[xk])T
ηk . (22)

Hence, by the first condition in (7) and by the nonsingularity of the matrix
B2[χ ](H(λ̄))−1(B2[χ ])T

, and by (21), there exists an independent constant γ2 > 0
such that

∥∥∥B2

[
χk, xk+1 − (1 − αk)x

k
]∥∥∥ = αk‖xk‖B2[χk]H−1

k

(
B2[χk]

)T

ηk‖
≥ α̌γ2‖xk‖‖ηk‖
≥ α̌γ1γ2

∥∥∥xk+1 − (1 − αk)x
k
∥∥∥ . (23)

On the other hand, by the Assumption (A3), by (16), and by the continuity of B2,

∥∥∥∥B2

[
χk,

xk+1 − (1 − αk)xk

‖xk+1 − (1 − αk)xk‖
]∥∥∥∥ → 0, k ∈ K̃ ,

contradicting (23). This completes the proof. ��

Remark 1 In the second assertion of Proposition 1, assumptions r(·) ≡ 0 and R(·) ≡ 0
can be dropped. The argument becomes somewhat less strict, but it still gives an
explanation of the effect in question. Specifically, assume that r and R are three times
differentiable at 0. Then it is easy to see that (9) and (10) transform into

r(x) = O(‖x‖3), r ′(x) = O(‖x‖2), r ′′(x) = O(‖x‖), (24)

R(x) = O(‖x‖3), R′(x) = O(‖x‖2), R′′(x) = O(‖x‖), (25)
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and instead of (20), one obtains

xk+1 − (1 − αk)x
k = −αk H−1

k

(
B2[xk]

)T

ηk + O
(
‖xk‖2

)
. (26)

Then by boundedness of {αk} and of the tail of {H−1
k | k ∈ K }, we conclude that

∥∥∥xk+1 − (1 − αk)x
k
∥∥∥ = O

(
‖xk‖‖ηk‖

)
+ O

(
‖xk‖2

)
. (27)

From (26) it further follows that

B2

[
xk, xk+1 − (1 − αk)x

k
]

= −αk B2[xk]H−1
k

(
B2[xk]

)T

ηk + O
(
‖xk‖3

)
.

By the first condition in (7) and by nonsingularity of B2[χ ](H(λ̄))−1(B2[χ ])T
, it still

holds that there exists an independent constant γ̃ > 0 such that the norm of the first
term in the right-hand side is not less than γ̃ ‖xk‖2‖ηk‖. At the same time, the big-O
term in the right-hand side depends on the properties of r and R, and generally, there
is no reason for this big-O term to be little-o, or for it to be somehow related to the
first term in the right-hand side. Thus, we can expect that there exists γ > 0 such that

∥∥∥B2

[
xk, xk+1 − (1 − αk)x

k
]∥∥∥ ≥ γ max

{
‖xk‖2‖ηk‖, ‖xk‖3

}
. (28)

In particular, this is always the case when ‖xk‖ = o(‖ηk‖).
On the other hand, by the Assumption (A3), by (16), by the continuity of B2 and

by (27), we obtain

∥∥∥B2

[
xk, xk+1 − (1 − αk)x

k
]∥∥∥

=
∥∥∥∥B2

[
χk,

xk+1 − (1 − αk)xk

‖xk+1 − (1 − αk)xk‖
]∥∥∥∥ ‖xk‖‖xk+1 − (1 − αk)x

k‖

= o
(

max
{
‖xk‖2‖ηk‖, ‖xk‖3

})
, k ∈ K̃ ,

which contradicts (28).

We next present some more subtle examples, to complement what has been al-
ready observed in Example 1 and established in Proposition 1. Example 2 demons-
trates that convergence to critical multipliers may still persist even when the matrix
B2[χ ](H(λ̄))−1(B2[χ ])T

happens to be singular (this is the situation not covered by
Proposition 1). Example 3 shows that this matrix can be nonsingular even without
SOSC (or more generally, when H(λ̄) is not sign-defined).

Example 2 Let n = 2, l = 1, 〈Ax, x〉 = x2
1 − x2

2 , B2[x, x] = x2
1 − x2

2 , r(·) ≡ 0,
R(·) ≡ 0. Here, the unique critical multiplier is −1. Moreover, for any λ ∈ �(x̄) = R
the matrix H(λ) is not positive or negative definite. Furthermore,
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B2[χ ] (H(λ))−1 (B2[χ ])T =
(
χ2

1 − χ2
2

)
/(1 + λ)

is singular (equals to 0) for each λ �= −1 and each χ ∈ Rn such that B2[χ, χ ] = 0.
The Newton system (12), (13) takes the form

(
1 + λk

)
ξ k

1 + xk
1η

k = −
(

1 + λk
)

xk
1 ,

(
1 + λk

)
ξ k

2 − xk
2η

k = −
(

1 + λk
)

xk
2 ,

2
(

xk
1ξ

k
1 − xk

2ξ
k
2

)
= −

(
(xk

1 )
2 − (xk

2 )
2
)
.

Suppose that λk �= −1 and B2[xk, xk] �= 0. Then ξ k
1 = −xk

1 (1 + ηk/(1 + λk)),
ξ k

2 = −xk
2 (1 + ηk/(1 + λk)), ηk = −(1 + λk)/2. Hence, ξ k

1 = −xk
1/2, ξ k

2 = −xk
2/2,

and

xk+1
1 = xk

1 + αkξ
k
1 = (1 − αk/2) xk

1 , xk+1
2 = xk

2 + αkξ
k
2 = (1 − αk/2) xk

2 ,

λk+1 + 1 = λk + βkη
k + 1 = (1 − βk/2)

(
λk + 1

)
.

Thus, if (7) holds with α̂ < 4 and β̂ < 4, and αk �= 2, βk �= 2 ∀ k, and if B2[x0,

x0] �= 0 and λ0 �= −1, then B2[xk, xk] �= 0 and λk �= −1 ∀ k, and moreover,
the trajectory {(xk, λk)} is correctly defined and converges linearly to (0, −1). In
particular, convergence to (the unique) critical multiplier is still observed.

Example 3 Let n = 2, l = 1, 〈Ax, x〉 = x2
1 , B2[x, x] = x2

1 − x2
2 , r(·) ≡ 0, R(·) ≡ 0.

Here, the critical multipliers are −1 and 0. Moreover, SOSC holds with λ ∈ (−1, 0),
while for λ < −1 or λ > 0 the matrix H(λ) is not positive or negative definite.
Nevertheless,

B2[χ ] (H(λ))−1 (B2[χ ])T = χ2
1 /(1 + λ)− χ2

2 /λ,

is nonsingular (not equal to 0) for each λ �∈ {−1, 0} and each χ ∈ X \{0} such that
B2[χ, χ ] = 0. The Newton system (12), (13) takes the form

(
1 + λk

)
ξ k

1 + xk
1η

k = −
(

1 + λk
)

xk
1 , −λkξ k

2 − xk
2η

k = λk xk
2 ,

2
(

xk
1ξ

k
1 − xk

2ξ
k
2

)
= −

(
(xk

1 )
2 − (xk

2 )
2
)
.

Suppose that λk �= −1, λk �= 0, and λk(xk
1 )

2 �= (1 + λk)(xk
2 )

2. Then ξ k
1 = −xk

1 (1 +
ηk/(1 + λk)), ξ k

2 = −xk
2 (1 + ηk/λk),

ηk = −1

2
λk

(
1 + λk

) (xk
1 )

2 − (xk
2 )

2

λk(xk
1 )

2 − (1 + λk)(xk
2 )

2
.
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If, e.g., xk
2 = 0 then it is easy to see that ηk = −(1 + λk)/2, ξ k

1 = −xk
1/2, ξ k

2 = 0.
Hence,

xk+1
1 = xk

1 + αkξ
k
1 = (1 − αk/2) xk

1 , xk+1
2 = xk

2 + αkξ
k
2 = 0,

λk+1 + 1 = λk + βkη
k + 1 = (1 − βk/2)

(
λk + 1

)
.

We thus conclude that if the trajectory hits the line x2 = 0 (e.g., if x0
2 = 0), then the

trajectory stays on this line, and moreover, its behavior with respect to variables x1
and λ is similar to that in Example 1: under the appropriate assumptions on {αk} and
{βk}, the sequence {(xk

1 , λ
k)} converges linearly to (0, −1).

By a similar argument it can be seen that if the trajectory hits the line x1 = 0 (e.g.,
if x0

1 = 0), then the trajectory stays on this line, and the sequence {(xk
2 , λ

k)} converges
linearly to (0, 0).

Now suppose that B2[xk, xk] = (xk
1 )

2 − (xk
2 )

2 = 0. Then ηk = 0, ξ k
1 = −xk

1 ,
ξ k

2 = −xk
2 , and hence,

xk+1
1 = xk

1 + αkξ
k
1 = (1 − αk)x

k
1 , xk+1

2 = xk
2 + αkξ

k
2 = (1 − αk)x

k
2 ,

λk+1 = λk + βkη
k = λk .

Thus, if (7) holds with α̂ < 2 ∀ k, the primal trajectory converges linearly to (or
finitely terminates at) 0 staying within the set defined by B2[x, x] = 0, while the dual
trajectory does not leave λk whatever this λk is. (Finite termination happens in the
case of full Newton step, that is, when αk = 1 for all k).

Note that the primal trajectory can hit the set defined by B2[x, x] = 0 even if
B2[x0, x0] �= 0. Indeed, let, e.g.,

(
x0

1λ
0
)2 =

(
x0

2 (1 + λ0)
)2
. (29)

It is easy to see that in this case (x1
1)

2 = (x1
2)

2, and λ2 = λ1 = −1/2 is a noncritical
multiplier.

Of course, the above situation of convergence to a noncritical multiplier is very
special. In fact, numerical experiments for this problem demonstrate the following. If
x0 and/or λ0 are slightly perturbed, so that (29) is “almost” satisfied, and if αk = 1
∀ k, then the first two steps are indeed in the direction of the point (0, −1/2), but
afterwards, the primal trajectory keeps on approaching 0, while the dual trajectory
leaves the vicinity of −1/2 and eventually converges to a critical multiplier.

3 The general case

Let the Assumptions (A1) and (A2) hold, and let r and R be three times differentiable
at 0. We first show that under these assumptions either λ̄ is a critical multiplier or

∥∥∥P B2

[
xk, xk

]∥∥∥ = o
(
‖xk‖2

)
(30)
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for k ∈ K , where P is the orthogonal projector in Rl onto ker B
T

1 . Recall that (A1)
and (A2) imply (18).

Suppose that λ̄ is a noncritical multiplier, that is, Ĥ(λ̄) is nonsingular. For each k set
Ĥk = Ĥ(λk). Evidently, {Hk | k ∈ K } converges to H(λ̄), and hence, {Ĥk | k ∈ K }
converges to Ĥ(λ̄), and the tail of the sequence {Ĥ−1

k | k ∈ K } is correctly defined
and bounded. From now on, we consider k ∈ K large enough.

To reduce the present setting to the case of complete degeneracy, we shall use the
Liapunov–Schmidt procedure (e.g., [10, Chap. VII]).

Let In be the identity operator in Rn . Applying (In − 
) and 
 to both sides of
(12), and taking into account (18), (24), (25) and the inclusion a ∈ im B

T

1 , we obtain

B
T

1 η
k
1 + (In −
)

(
(Hk + Mk)ξ

k + (B2[xk])T
ηk

)

= −a − B
T

1λ
k
1 − (In −
)

(
Hk xk + O(‖xk‖2)

)
, (31)



(
(Hk + Mk)ξ

k + (B2[xk])T
ηk

)
= −


(
Hk xk + O(‖xk‖2)

)
, (32)

where we defined the linear operator

Mk : Rn → Rn, Mkξ = r ′′(xk)ξ +
(

R′′(xk)[ξ ]
)T

.

Note that ‖Mk‖ = O(‖xk‖).
Let Il be the identity operator in Rl . Applying (Il − P) and P to both sides of (13),

and taking into account (25), we obtain that

B1ξ
k
1 + (Il − P)

(
B2[xk, ξ k] + R′(xk)ξ k

)

= −B1xk
1 − (Il − P)

(
1

2
B2[xk, xk] + O(‖xk‖3)

)
, (33)

P
(

B2[xk, ξ k] + R′(xk)ξ k
)

= −P

(
1

2
B2[xk, xk] + O(‖xk‖3)

)
. (34)

Recall that ‖R′(xk)‖ = O(‖xk‖2). Clearly, the linear operators B : (ker B)⊥ =
im B

T

1 → im B1, defined by Bx1 = B1x1, and B∗ : im B1 → im B
T

1 = (ker B1)
⊥,

defined by B∗y1 = B
T

1 y1, are invertible. It follows that for each k large enough, the
linear operators

Bk : im B
T

1 → im B1, Bk x1 = B1x1 + (Il − P)
(

B2[xk, x1] + R′(xk)x1

)
,

B∗
k : im B1 → im B

T

1 , B∗
k y1 = B

T

1 y1 + (In −
)
(

B2[xk]
)T

y1,
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are invertible, and

B−1
k = B−1 + O

(
‖xk‖

)
, (B∗

k )
−1 = (B∗)−1 + O

(
‖xk‖

)
. (35)

The relation (33) evidently implies that

Bkξ
k
1 + (Il − P)

(
B2[xk, ξ k

2 ] + R′(xk)ξ k
2

)
= −Bk xk

1 + O
(
‖xk‖2

)
.

Applying B−1
k to both sides of the latter equality, we now obtain that

ξ k
1 = −xk

1 + M̃kξ
k
2 + O

(
‖xk‖2

)
, (36)

where we defined the linear operator

M̃k = −B−1
k (Il − P)

(
B2[xk] + R′(xk)

)
.

Note that ‖M̃k‖ = O(‖xk‖). Furthermore, the relation (31) can be written in the form

B∗
kη

k
1 + (In −
)

(
(Hk + Mk)ξ

k + (B2[xk])T
ηk

2

)

= −a − B
T

1λ
k
1 − (In −
)

(
Hk xk + O(‖xk‖2)

)
.

Applying (B∗
k )

−1 to both sides of the latter equality, and taking into account the second
relation in (35), and (36), we derive

ηk
1 = −(B∗

k )
−1

(
a + B

T

1λ
k
1

)

−(B∗
k )

−1(In −
)
(
(B2[xk])T

ηk
2 + (Hk + Mk)ξ

k + Hk xk + O(‖xk‖2)
)

= −(B∗
k )

−1B∗ (
(B∗)−1a + λk

1

)

−(B∗
k )

−1(In −
)
(
(B2[xk])T

ηk
2 + (Hk + Mk)(x

k + ξ k)

−Mk xk + O(‖xk‖2)
)

=
(

Il + M̃1
k

) (
λ̂− λk

1

)
+ M̃2

k η
k
2

−(B∗
k )

−1(In −
)(Hk + Mk)
(

xk
2 + ξ k

2 + M̃kξ
k
2

)
+ O

(
‖xk‖2

)
,

where λ̂ = −(B∗)−1a ∈ �(x̄)∩ im B1 is the uniquely defined normal multiplier (the
one with the smallest norm), and we defined the linear operators

M̃1
k = (B∗

k )
−1B∗ − Il ,

M̃2
k = −(B∗

k )
−1(In −
)(B2[xk])T

.
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Note that ‖M̃1
k ‖ = O(‖xk‖), ‖M̃2

k ‖ = O(‖xk‖), and that by the Assumption (A1),
{λk

1} → λ̂. We then further obtain that

ηk
1 =

(
Il + M̃1

k

) (
λ̂− λk

1

)
+ M̃2

k η
k
2

−(B∗
k )

−1(In −
)(Hk + Mk)
(
(In + M̃k)(x

k
2 + ξ k

2 )− M̃k xk
2

)
+ O(‖xk‖2)

=
(

Il + M̃1
k

) (
λ̂− λk

1

)
+ M̃2

k η
k
2 + Ck

(
xk

2 + ξ k
2

)
+ O

(
‖xk‖2

)
, (37)

where we defined the linear operator

Ck = −(B∗
k )

−1(In −
)(Hk + Mk)
(

In + M̃k

)
.

Note that the sequence {Ck | k ∈ K } is bounded. By substituting (36) and (37) into
(32), and by taking into account (18), we obtain



(
(Hk + Mk)

(
ξ k

2 − xk
1 + M̃kξ

k
2

)

+ (B2[xk])T
(
ηk

2 + (Il + M̃1
k )(λ̂− λk

1)+ M̃2
k η

k
2 + Ck(x

k
2 + ξ k

2 )
))

= −

(

Hk xk + O(‖xk‖2)
)
,

and hence,



((
(Hk + Mk)(In + M̃k)+ (B2[xk])T

Ck

)
ξ k

2 + (B2[xk])T
ηk

2

)

= −

(

Hk

(
xk − xk

1

)
+

(
B2[xk]

)T (
λ̂− λk

1

)
+ O

(
‖xk‖2

))
,

which can be written in the form



(
(Hk + M̂k)ξ

k
2 + (B2[xk])T

ηk
2

)

= −

(

Hk xk
2 + (B2[xk])T

(λ̂− λk
1)+ O(‖xk‖2)

)
, (38)

where we defined the linear operator

M̂k = Hk M̃k + Mk(In + M̃k)+ (B2[xk])T
Ck .

Note that ‖M̂k‖ = O(‖xk‖).
Similarly, by substituting (36) into (34), we obtain

P
(

B2

[
xk, ξ k

2 − xk
1 + M̃kξ

k
2

]
+ R′(xk)

(
ξ k

2 − xk
1 + M̃kξ

k
2

))

= −P

(
1

2
B2[xk, xk] + O(‖xk‖3)

)
,
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and hence,

P
(

B2[xk, ξ k
2 ] + B2[xk, M̃kξ

k
2 ] + R′(xk)(In + M̃k)ξ

k
2

)

= −P

(
1

2
B2[xk, xk

1 + xk
2 ] −1

2
B2[xk, 2xk

1 ] + O(‖xk‖3)

)
,

which can be written in the form

P
(

B2[xk, ξ k
2 ] + Nkξ

k
2

)
= −P

(
1

2
B2[xk, xk

2 − xk
1 ] + O(‖xk‖3)

)
, (39)

where we defined the linear operator

Nk = B2[xk]M̃k + R′(xk)(In + M̃k).

Note that ‖Nk‖ = O(‖xk‖2).
Observe that for each k large enough, the linear operator

Hk : ker B1 → ker B1, Hk x2 = 
(Hk + M̂k)x2,

is invertible, and

H−1
k = Ĥ−1

k + O(‖xk‖),

where (14) was taken into account. Applying H−1
k to both sides of (38) and using

(18), we now obtain

ξ k
2 = −xk

2 − Ĥ−1
k 
(B2[xk])T

(
λ̂− λk

1 + ηk
2

)
+ O(‖xk‖2)

= −xk
2 − Ĥ−1

k 
(B2[xk])T
ηk

2 + O
(
‖xk‖‖λk

1 − λ̂‖
)

+ O(‖xk‖2). (40)

In particular,

ξ k
2 = O(‖xk‖). (41)

By substituting (40) into (39), we then derive the equality

P B2

[
xk, xk

2 + Ĥ−1
k 
(B2[xk])T

ηk
2

]

= P

(
1

2
B2

[
xk, xk

2 − xk
1

]
− Nk

(
xk

2 + Ĥ−1
k 
(B2[xk])T

ηk
2

))

+ O
(
‖xk‖3

)
+ O

(
‖xk‖2‖λk

1 − λ̂‖
)

= 1

2
P B2

[
xk, xk

2 − xk
1

]
+ O

(
‖xk‖3

)
+ O

(
‖xk‖2‖λk

1 − λ̂‖
)
,
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which can be written in the form

P B2[xk, xk] = −2P B2[xk]Ĥ−1
k 
(B2[xk])T

ηk
2 + O(‖xk‖3)+ O(‖xk‖2‖λk

1 − λ̂‖).

From (18) and from the convergence of {λk
1} to λ̂, we now obtain (30). And conse-

quently,

P B2[χ, χ ] = 0. (42)

Furthermore, by (5), (36), (40) and (41), and by the boundedness of {αk} and of the
tail of {H−1

k | k ∈ K }, we conclude that

xk+1 − (1 − αk) xk = αk

(
xk + ξ k

)
= αk

(
xk

1 + ξ k
1

)
+ αk

(
xk

2 + ξ k
2

)

= −αk Ĥ−1
k 
(B2[xk])T

ηk
2

+ O
(
‖xk‖2

)
+ O

(
‖xk‖‖λk

1 − λ̂‖
)
, (43)

and in particular

∥∥∥xk+1 − (1 − αk)x
k
∥∥∥ = O

(
‖xk‖‖ηk

2‖
)

+ O
(
‖xk‖2

)
+ O

(
‖xk‖‖λk

1 − λ̂‖
)
. (44)

From (43) it further follows that

P B2

[
xk, xk+1 − (1 − αk)x

k
]

= −αk P B2[xk]Ĥ−1
k 
(B2[xk])T

ηk
2 + O

(
‖xk‖3

)
+ O

(
‖xk‖2‖λk

1 − λ̂‖
)
.

If we suppose that the linear operator P B2[χ ]Ĥ−1
k 
(B2[χ ])T

is nonsingular on ker B
T

1
(that is, the null space of this operator on this subspace is trivial) then by the same
reasons as in Remark 1 we may expect that there exists γ > 0 such that

∥∥∥P B2

[
xk, xk+1 − (1 − αk)x

k
]∥∥∥

≥ γ max
{
‖xk‖2‖ηk

2‖, ‖xk‖3, ‖xk‖2‖λk
1 − λ̂‖

}
. (45)

On the other hand, by the Assumption (A3), by (42), by the continuity of B2, and by
(44) we obtain

∥∥∥P B2

[
xk, xk+1 − (1 − αk)x

k
]∥∥∥

=
∥∥∥∥P B2

[
χk,

xk+1 − (1 − αk)xk

‖xk+1 − (1 − αk)xk‖
]∥∥∥∥ ‖xk‖‖xk+1 − (1 − αk)x

k‖

= o
(

max
{
‖xk‖2‖ηk

2‖, ‖xk‖3, ‖xk‖2‖λk
1 − λ̂‖

})
,

which contradicts (45).
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Summarizing, under the Assumptions (A1)–(A3), the multiplier λ̄may be expected
to be noncritical only if (42) holds and the linear operator P B2[χ ](Ĥ(λ̄))−1
(B2[χ ])T

is singular on ker B
T

1 , which is quite a special situation. In particular, by the definitions

of 
, P and Ĥ(λ̄), for each η ∈ ker B
T

1 it holds that

〈
P B2[χ ](Ĥ(λ̄))−1
(B2[χ ])T

η, η
〉

=
〈
P B2[χ ]
(Ĥ(λ̄))−1
(B2[χ ])T

Pη, η
〉

=
〈
(Ĥ(λ̄))−1
(P B2[χ ])T

η, 
(P B2[χ ])T
η
〉
,

and the matrix in question cannot be singular if Ĥ(λ̄) is positive or negative definite
and

ker B
T

1 ∩ ker
(P B2[χ ])T = {0}. (46)

Recall that SOSC (4) means that Ĥ(λ̄) is positive definite. Furthermore, (46) can be
expressed in the form

im P B2[χ ]|ker B1 = ker B
T

1 ,

which means that the mapping ξ → B1ξ + 1
2 B2[ξ, ξ ] : Rn → Rl is 2-regular at 0

in the direction χ ([19, Remark 1.3.2]), which is a generic property. Hence, if SOSC
holds, then the linear operator P B2[χ ](Ĥ(λ̄))−1
(B2[χ ])T

is generically nonsingular
on ker B

T

1 . As a consequence, convergence to noncritical multipliers is an extremely
unlikely event.

We finish with the following statement, which highlights one of the two possible
reasons for lack of superlinear convergence of the Newton or SQP method in the dege-
nerate case. The first reason is fairly obvious: the dual sequence may not converge at
all. However, if the dual sequence converges, the reason becomes indeed convergence
to critical multipliers. If the dual sequence were to converge to noncritical multipliers,
the rate of primal convergence would have been superlinear. But, as demonstrated
above, convergence to noncritical multipliers is extremely atypical.

Proposition 2 Suppose that the iterative process given by (5)–(7), with αk = 1 for all
k sufficiently large, correctly generates a sequence {(xk, λk)} converging to (x̄, λ̄).
Suppose that λ̄ ∈ �(x̄) is noncritical.

Then {xk} converges to x̄ superlinearly.

Proof Under the current assumptions, (A1) and (A2) hold trivially. Summing up (36)
and (40), we obtain that

ξ k = −xk + M̃kξ
k
2 − Ĥ−1

k 
(B2[xk])T
ηk

2 + O
(
‖xk‖‖λk

1 − λ̂‖
)

+ O
(
‖xk‖2

)
.
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Now taking into account that αk = 1, {λk
1} → λ̂, {ηk

2} → 0, ‖M̃k‖ = O(‖xk‖),
ξ k

2 = O(‖xk‖) (for the latter, see (41)), and that the tail of {Ĥ−1
k } is bounded, we

obtain that

xk+1 = o(‖xk‖),

i.e., primal convergence is superlinear. ��

4 An auxiliary procedure for estimating multipliers (dual stabilization)

The effect exposed above shows that even when λ0 is close to some noncritical multi-
plier (or even when it is a noncritical multiplier but x0 �= x̄), the sequence {λk} tends to
move almost parallel to the set �(x̄) towards a multiplier which is critical. Typically,
the set of critical multipliers is thin within the set of all multipliers (is of Lebesgue
measure zero), while the set of noncritical ones is thick. We can therefore expect that
the projection of some (say, random) λ0 onto�(x̄) should produce a multiplier which
is not critical and, thus, has a much better chance of satisfying SOSC than the limit of
{λk}. The purpose of dual stabilization suggested below is to compute an estimate of
some multiplier which is not too far from the projection of λ0 onto�(x̄) and is expec-
ted to be noncritical. It is proposed having in mind mainly globalization issues (outer
strategies) for special local methods designed for tackling degeneracy, e.g., [18,32].
This procedure generates an auxiliary dual sequence {λ̃k} but, by itself, does not
interfere with the original algorithm generating the sequence {(xk, λk)}. Therefore,
the (outer) algorithm’s primal behavior (convergence and rate of convergence to x̄) is
unchanged. The auxiliary sequence {λ̃k} is expected to approach�(x̄) not too far from
the projection of its starting point onto �(x̄). We can therefore expect that applying
a regularization/stabilization method for degenerate problems from (xk, λ̃k), with k
large enough, should be successful in forcing fast convergence of the local phase, e.g.,
[18,32].

Of course, the set �(x̄) is not known and we cannot compute the projection of λ0

onto it. However, the following observations appear useful.
As is easy to see, the squared residual 	(x̄, λ) (given by (8)) of the Lagrange

system (2), for fixed x = x̄ , is a convex quadratic function with respect to λ, whose
set of unconstrained minimizers is �(x̄). The steepest descent method for a convex
quadratic function generates iterates which move orthogonally to its set of minimizers.
For completeness, we show this below.

Considerψ(λ) = 1
2 〈Qλ, λ〉+〈q, λ〉, where Q is a symmetric positive semidefinite

l × l matrix and q ∈ Rl . Let λ̄ belong to the (nonempty) set � of unconstrained
minimizers of ψ . Then Qλ̄ + q = 0 and � = λ̄ + ker Q. Let λ̃0 be arbitrary and
consider the steepest descent step λ̃1 = λ̃0 − γ0(Qλ̃0 + q), γ0 > 0. Evidently,
λ̃1 − λ̃0 = −γ0(Qλ̃0 + q) = −γ0 Q(λ̃0 − λ̄) ∈ im Q = (ker Q)⊥. Applying this
reasoning inductively, we obtain that λ̃k ∈ λ̃0 + (ker Q)⊥ for all k. It easily follows
that {λ̃k} converges (if the stepsizes {γk} are chosen appropriately) to the orthogonal
projection of λ̃0 onto �.
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Of course, we also cannot implement steepest descent steps for 	(x̄, ·), since x̄ is
unknown. The idea is that when xk becomes close to x̄ , the steepest descent step for
	(xk, ·) is a small perturbation of the steepest descent step for 	(x̄, ·). Therefore, if
we use 	(xk, ·) instead, we should be moving almost orthogonally to �(x̄), the set
of minimizers of 	(x̄, ·). This gives rise to the following strategy.

As before, suppose that the damped Newton scheme considered above generates a
sequence {(xk, λk)} such that {xk} → x̄ . The idea is, starting from some iteration k,
to produce (in a cheap way) an auxiliary sequence {λ̃k}, which approaches �(x̄) and
is expected to move almost orthogonally to this set (instead of along this set, as is the
case for the Newton iterates).

Let k be an arbitrary iteration index (perhaps, large enough). Set λ̃k = λk . On
subsequent iterations, proceed as follows. Having computed (xk+1, λk+1), compute
some λ̃k+1 satisfying

λ̃k+1 = λ̃k − γk
∂	

∂λ

(
xk+1, λ̃k

)
, (47)

0 < c1 ≤ γk < min
{

c2 ; ‖(F ′(xk))
T‖−2

}
, c2 > 0. (48)

The above conditions include various possibilities for computing the stepsize. For
example, we can perform the standard steepest descent step with linesearch for
	(xk+1, ·) from the point λ̃k . Another possibility is the primal-dual steepest des-
cent step with linesearch for	(·, ·) from the point (xk+1, λ̃k). In this second scheme,
an additional auxiliary sequence {x̃ k} would be generated, which can be discarded for
our purposes (we are only interested in the dual sequence here).

In practical implementations, in addition to (47)–(48), one should also ensure des-
cent for 	(xk+1, ·), of course. We do not impose this condition explicitly, because
doing so does not seem to strengthen what can be formally claimed concerning the
convergence of {λ̃k}. We show below that this sequence has an accumulation point
which belongs to �(x̄). Moreover, if the primal sequence converges at a linear rate
(which is a frequent situation for Newton and SQP methods in the degenerate case),
then all accumulation points of {λ̃k} belong to�(x̄). Also, it is absolutely clear that {λ̃k}
does not have any attraction preference for critical multipliers. All this is confirmed
by our numerical experiments, see Sect. 5. In particular, when there is convergence of
the primal sequence, the auxiliary dual sequence generated by the outlined procedure
with linesearch for	(xk+1, ·) never failed to converge to a valid multiplier. Moreover,
in the vast majority of cases this limit is a noncritical multiplier, as expected.

We start with the following characterization of the multiplier set �(x̄).

Lemma 1 If �(x̄) �= ∅ then for each λ ∈ Rl satisfying

F ′(x̄)∂L

∂x
(x̄, λ) = 0, (49)

it holds that λ ∈ �(x̄).
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Proof Since �(x̄) �= ∅, we have that

f ′(x̄) ∈ im
(
F ′(x̄)

)T
.

Consequently, for any λ ∈ Rl , we obtain that

∂L

∂x
(x̄, λ) = f ′(x̄)+ (

F ′(x̄)
)T
λ ∈ im

(
F ′(x̄)

)T = (
ker F ′(x̄)

)⊥
.

Combining the latter relation with (49), we conclude that ∂L
∂x (x̄, λ) = 0, i.e., that

λ ∈ �(x̄). ��
Observe that ∂	

∂λ
(x̄, λ) = F ′(x̄) ∂L

∂x (x̄, λ), so that we can write

�(x̄) =
{
λ ∈ Rl

∣∣∣∣ ∂	∂λ (x̄, λ) = 0

}
. (50)

We proceed to analyze the sequence {λ̃k}.
Proposition 3 Suppose {xk} → x̄ and {λ̃k} satisfying conditions (47)–(48) is
bounded.

Then the sequence {λ̃k} has an accumulation point which belongs to �(x̄).
If it holds that

∑∞
k=0 ‖xk+1 − x̄‖ < +∞ (for example, if {xk} → x̄ at a linear

rate), then all accumulations points of {λ̃k} belong to �(x̄).

Proof Observe that

λ̃k+1 = λ̃k − γk
∂	

∂λ

(
x̄, λ̃k

)
+ δk,

where

δk = γk

(
∂	

∂λ

(
x̄, λ̃k

)
− ∂	

∂λ

(
xk+1, λ̃k

))
→ 0 as k → ∞, (51)

by {xk} → x̄ , the boundedness of {λ̃k} and (48). We obtain that

	(x̄, λ̃k)−	(x̄, λ̃k+1)

= 1

2

∥∥∥∥∂L

∂x
(x̄, λ̃k)

∥∥∥∥
2

− 1

2

∥∥∥∥∂L

∂x
(x̄, λ̃k+1)

∥∥∥∥
2

= −
〈
∂	

∂λ
(x̄, λ̃k), λ̃k+1 − λ̃k

〉
− 1

2
‖(F ′(x̄))T

(λ̃k+1 − λ̃k)‖2

≥ γk

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

− ‖δk‖
∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
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−1

2
‖(F ′(x̄))T‖2

(
γ 2

k

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

+ ‖δk‖2 + 2γk

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥ ‖δk‖
)

= γk

(
1 − γk

2
‖(F ′(x̄))T‖2

) ∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

− εk

≥ c1

(
1 − ‖(F ′(x̄))T‖2

2‖(F ′(xk))
T‖2

)∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

− εk

≥ c1

4

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

− εk, (52)

where

εk = ‖δk‖
((

1 + γk‖(F ′(x̄))T‖2
) ∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥ + 1

2
‖δk‖‖(F ′(x̄))T‖2

)
→ 0,

as k → ∞, by (51). For any j > k, we then obtain that

	(x̄, λ̃k) ≥ 	(x̄, λ̃k)−	(x̄, λ̃ j ) =
j−1∑
i=k

(
	(x̄, λ̃i )−	(x̄, λ̃i+1)

)

≥
j−1∑
i=k

(
c1

4

∥∥∥∥∂	∂λ (x̄, λ̃i )

∥∥∥∥
2

− εi

)
. (53)

Suppose that there exists ν > 0 such that
∥∥∥ ∂	∂λ (x̄, λ̃k)

∥∥∥ ≥ ν ∀ k. Fix any iteration

index k such that εi ≤ c1ν
2/8 for all i > k. By (53), for j > k we have that

	(x̄, λ̃k) ≥
j−1∑
i=k

(
c1ν

2/4 − c1ν
2/8

)
= ( j − k)c1ν

2/8,

which results in a contradiction when j → ∞. Hence,

lim inf
k→∞

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥ = 0.

Recalling (50), we conclude that {λ̃k} has an accumulation point in �(x̄).
Suppose finally that

∑∞
k=0 ‖xk+1 − x̄‖ < +∞. Taking into account (48), the

boundedness of {λ̃k}, and the Lipschitz-continuity of ∂	
∂λ
(·, λ), it follows that ‖δk‖ ≤

M‖xk+1 − x̄‖ for some M > 0. Consequently,
∑∞

k=0 εk < +∞. By (53), we then
obtain that for any j = 0, 1, . . . , it holds that

	(x̄, λ̃0)+
j∑

k=0

εk ≥ c1

4

j∑
k=0

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

.
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Letting j → ∞ gives

+∞ >

∞∑
k=0

∥∥∥∥∂	∂λ (x̄, λ̃k)

∥∥∥∥
2

,

implying that

∂	

∂λ

(
x̄, λ̃k

)
→ 0 as k → ∞.

Hence, all accumulation points of {λ̃k} are in �(x̄). ��
As already mentioned, dual stabilization suggested above is proposed having in

mind mainly globalization issues (outer strategies) for special local methods designed
for tackling degeneracy, e.g., [18,32]. In particular, by itself, this procedure does
not interfere with the sequence {xk}. One can also think of different (local) dual
stabilization procedures, which do interfere with local primal behavior in order to
improve it. Actually, stabilized SQP method which was suggested in [29] and further
investigated in [8,11,21,30,31], as well as the approaches developed in [7,18,32], can
be regarded as this second kind of dual stabilization.

5 Numerical experiments

In this section, we report on some numerical experiments, which complement and
confirm our theoretical analysis. Our experiments deal with randomly generated qua-
dratically constrained quadratic problems. The stationary point of interest is always
x̄ = 0. Note that for randomly generated problems of the type we consider here, this
stationary point is not always a solution (even local), and moreover, is not necessa-
rily the unique stationary point. Thus, naturally, convergence to other points happens
sometimes, as well as failure of convergence. For analysis, we select the runs for which
convergence to 0 occurs and base our statistics regarding critical multipliers on these
runs only. As convergence to 0 happens often enough, the analysis of those runs is
sufficient to draw conclusions.

Our experiments are performed in Matlab environment. For each given triple
(n, l, r), where r < l stands for rank of F ′(x̄), we generate 100 problems of the
form

minimize 〈a, x〉 + 1

2
〈Ax, x〉 subject to B1x + 1

2
B2[x, x] = 0.

Each problem is constructed as follows. First, we generate an l × n-matrix B1 such
that rank B1 = r . The first r rows of this matrix are generated as random vectors
in Rn with components in [−10, 10]. Each of the rest l − r rows is defined as a
linear combination of the first r rows with random coefficients taken from [−1, 1].
We further define a ∈ Rn as the linear combination of the rows of B1 with random
coefficients in [−1, 1]. Finally, we generate random symmetric n × n-matrices A and
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Bi
2, i = 1, . . . , l, with entries taken from [−10, 10]. Matrices Bi

2, i = 1, . . . , l, define
the symmetric bilinear mapping B2 by B2[x1, x2] = (〈B1

2 x1, x2〉, . . . , 〈Bl
2x1, x2〉),

x1, x2 ∈ Rn .
For each of the problems, we run the damped Newton method starting from 10

random points (x0, λ0) whose components are in [−100, 100] (thus, we perform
1,000 runs for each triple (n, l, r)). In the process, we also generate an auxiliary dual
sequence by the stabilization procedure suggested in Sect. 4.

The damped Newton method is defined by (5), (6) with βk = 1 ∀ k and αk computed
by the standard SQP linesearch procedure. Specifically, at each iteration k the initial
trial value αk = 1 is halved until

ψk

(
xk + αkξ

k
)

≤ ψk(x
k)+ εαk

(
〈 f ′(xk), ξ k〉 − ck‖F(xk)‖1

)
,

where ε = 0.1 and

ψk : Rn → R, ψk(x) = f (x)+ ck‖F(x)‖1,

is the l1-penalty function with the penalty parameter ck > 0. We use the following
simple update rule for penalty parameters: c0 = ‖λ1‖∞ + 1, and then for each k =
1, 2, . . . , we set ck = ck−1 if ck−1 ≥ ‖λk+1‖∞, and ck = ‖λk+1‖∞+1 otherwise. We
note that even though the multiplier set is unbounded, we did not have any trouble with
bounding the penalty parameter ck (i.e., the generated dual sequence stays bounded).

The additional dual sequence {λ̃k} is generated starting from λ̃0 = λ0 according to
(47), with γk computed as follows. At each iteration k the initial trial value γk = 1 is
halved until the Armijo inequality

	

(
xk+1, λ̃k − γk

∂	

∂λ

(
xk+1, λ̃k

))
≤ 	

(
xk+1, λ̃k

)
− εγk

∥∥∥∥∂	∂λ
(

xk+1, λ̃k
)∥∥∥∥

2

is satisfied (with the same ε = 0.1).
When {(xk, λk)} achieves the stopping condition ‖�(xk, λk)‖ < 10−10, we com-

pute some information about xk and λk described below. In the table of numerical
results, this information is reported in the columns labeled “Without DS” (“DS” stands
for “dual stabilization”). Similarly, when {(xk, λ̃k)} achieves the stopping condition
‖�(xk, λ̃k)‖ < 10−10, we report about this point in the group of columns labeled
“With DS”.

For each sequence, failures have been declared when the corresponding criterion
was not satisfied after 1,000 iterations (we put a high limit on the number of iterations
to maximize the number of cases for analysis). We also declare failure (for a sequence
which did not yet satisfy the corresponding condition for collecting information) when
at some iteration the Matlab linear solver did not manage to compute the Newton step
(because the matrix of the system was close to degenerate), or when αk became less
than 10−15 in the process of backtracking.

Note that for our randomly generated problems, by no means Hk is positive defi-
nite for all (or even some) steps k. Hence, global convergence of the damped Newton
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Table Damped Newton method

n l r Without DS With DS

CT0 C CR CT0 C CR

5 2 0 474 300 469 474 0 7

5 2 1 146 56 139 110 0 0

5 3 0 698 415 694 719 0 6

5 3 1 279 109 277 294 0 0

5 3 2 106 25 99 101 0 0

10 5 0 738 430 710 744 0 2

10 5 1 369 181 356 366 0 0

10 5 2 191 72 176 192 0 0

10 5 3 72 20 70 66 0 0

10 5 4 29 5 24 13 0 0

10 6 0 843 484 813 826 0 0

10 6 2 250 98 239 225 0 0

10 6 3 131 43 124 114 0 0

10 6 4 63 13 58 58 0 0

10 8 0 943 587 929 942 0 0

10 8 3 272 58 241 253 0 0

10 8 4 139 24 119 156 0 0

10 8 6 48 8 42 48 0 0

10 8 7 16 1 14 14 0 0

25 12 0 904 259 559 909 0 0

25 13 0 926 206 525 906 0 2

25 13 6 88 20 70 72 0 0

25 13 7 32 4 27 29 0 0

25 14 0 933 231 536 930 0 0

25 17 0 964 245 605 962 0 0

25 20 0 982 337 783 984 0 0

25 20 10 58 6 40 54 0 0

25 20 11 40 3 17 32 0 0

25 23 0 999 563 960 999 0 0

25 23 12 53 0 12 64 0 0

25 23 13 42 0 14 33 0 0

CT0 number of problems selected for analysis (convergence to x̄ = 0 was obtained), C and CR number
of times (out of CT0) convergence to a critical multiplier was detected by absolute and relative criteria,
respectively

method is not a given: failures may occur, and they do occur indeed. Robustness,
however, is not a concern in our experiments at all. We are merely interested in obtai-
ning convergence to 0 in a statistically meaningful number of cases, so that conclusions
can be drawn about convergence to critical multipliers.
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If failure did not occur, we check whether ‖xk‖ < 10−5. If this is the case, we say
that primal convergence to 0 is detected (reported as “CT0”).

In the case of the sequence without stabilization, we then compute the smallest
absolute value σk of the eigenvalues of the reduced Hessian Ĥ(λk). For the sequence
with dual stabilization, σk is the smallest absolute value of the eigenvalues of the
reduced Hessian Ĥ(λ̃k). If σk < 10−5, then λk (respectively, λ̃k) is declared to be
close to a critical multiplier (reported as “C”). If σk/σ0 < 10−5, then λk (respectively,
λ̃k) is also declared close to a critical multiplier but by the weaker relative ratio criterion
(reported as “CR”). Each of the columns “CT0”, “C” and “CR” reports the number of
runs (out of total 1,000) which fall into each of these categories, as defined above.

We believe that the overall picture is very conclusive. Method without dual stabiliza-
tion evidently has preference for critical multipliers. Results do not look as impressive
for some runs with n = 25, but as far as we can tell, this is explained by instability of
the process in our simple implementation, especially with respect to the dual trajectory
(of course, instability increases as the dimensions get higher).

By contrast, and as expected, the stabilized scheme has no preference for criti-
cal multipliers whatsoever, as convergence to the latter is observed in a statistically
negligible number of cases.

6 The general case of mixed equality and inequality constraints

We now turn our attention to the problem with mixed constraints

minimize f (x) subject to F(x) = 0, G(x) ≤ 0, (54)

where f : Rn → R, F : Rn → Rl and G : Rn → Rm are sufficiently smooth. We
can report conclusions similar to the above, if the algorithm in question asymptoti-
cally behaves as a Newton-type method applied to some related equality-constrained
problem. This may happen for different reasons, as discussed next.

Let the primal–dual trajectory {(xk, λk, µk)} ⊂ Rn × Rl × Rm be generated by
the standard linesearch SQP algorithm, i.e., xk+1 = xk + αkξ

k , where αk ≥ 0 is the
stepsize parameter, ξ k is a stationary point of the SQP subproblem

minimize 〈 f ′(xk), ξ 〉 + 1
2

〈
∂2 L
∂x2 (x

k, λk, µk)ξ, ξ
〉

subject to F(xk)+ F ′(xk)ξ = 0, G(xk)+ G ′(xk)ξ ≤ 0,
(55)

(λk+1, µk+1) is a Lagrange multiplier associated to ξ k , and we denote by L(x, λ, µ) =
f (x)+〈λ, F(x)〉+ 〈µ, G(x)〉, x ∈ Rn , λ ∈ Rl , µ ∈ Rm , the Lagrangian of problem
(54).

Suppose that the primal trajectory {xk} converges to a solution x̄ of (54). In the
case of problem (54), LICQ has the form

rank

(
F ′(x̄)

G ′
I (x̄)(x̄)

)
= l + |I (x̄)|,
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where yI stands for the subvector of vector y with components yi , i ∈ I , and

I (x̄) = {i = 1, . . . , m | Gi (x̄) = 0}

is the set of indices of inequality constraints active at x̄ . The situation of interest is
when LICQ is violated at x̄ , but the set M(x̄) of Lagrange multipliers associated with
x̄ is, nevertheless, nonempty. Thus, the Lagrange multipliers exist but are not unique.

As before, we are interested in possible scenarios for the dual trajectory {(λk, µk)}.
The first question is: What is a critical multiplier in this setting? It seems quite natural
to assume that, for k large enough, the set

Ik =
{

i = 1, . . . , m | Gi (x
k)+ 〈G ′

i (x
k), ξ k〉 = 0

}

of indices of inequality constraints active at the computed stationary points ξ k of
SQP subproblems remains unchanged. According to the discussion below, this is
automatic when {(λk, µk)} tends to a multiplier (λ̄, µ̄) ∈ M(x̄) satisfying strict
complementarity, that is, such that µ̄I (x̄) > 0. In other cases, the assumption that the
set Ik is asymptotically unchanged may not hold, of course. Nevertheless, this seems
to be reasonable numerical behavior, which should not be unusual.

Assuming that Ik = I for all k large enough, we have thatµk
i = 0 ∀ i ∈ {1, . . . , m}\

I , for each such k. Then, as is readily seen from (55), (ξ k, λk+1, µk+1) satisfies the
equations

f ′(xk)+ ∂2L I

∂x2

(
xk, λk, µk

I

)
ξ k +

(
F ′(xk)

)T
λk+1 +

(
G ′

I (x
k)

)T

µk+1
I = 0,

F(xk)+ F ′(xk)ξ k = 0, G I (x
k)+ G ′

I (x
k)ξ k = 0, (56)

where we defined L I (x, λ, µI ) = f (x) + 〈λ, F(x)〉 + 〈µI , G I (x)〉, x ∈ Rn , λ ∈
Rl and µI ∈ R|I |. Note that the latter is the Lagrangian of the following equality-
constrained optimization problem:

minimize f (x) subject to F(x) = 0, G I (x) = 0. (57)

Assuming that {ξ k} converges to 0 (which is an immediate consequence of the
convergence of {xk} if the stepsize αk stays bounded away from zero), and assuming
that (λk, µk) is bounded, by passing onto the limit in (56) (along an appropriate subse-
quence) we conclude that x̄ is a stationary point of (57). And, in particular, I ⊂ I (x̄).
Moreover, any (λ̄, µ̄) ∈ M(x̄) satisfying µ̄i = 0 ∀ i ∈ {1, . . . , m}\I corresponds to
the multiplier (λ̄, µ̄I ) of (57) associated with x̄ , and we call such multiplier (λ̄, µ̄) cri-
tical if (λ̄, µ̄I ) is critical for (57) according to the Definition 1 for equality-constrained
problems. According to (56), the primal-dual trajectory {(xk, λk, µk

I )} can be thought
of as generated by the Newton–Lagrange method for (57). In fact, this is the motivation
for the notion of critical multipliers that we currently suggest for the case of mixed
constraints.

According to our theoretical and numerical results for equality-constrained pro-
blems, we conclude the following. If {(λk, µk)} converges to a noncritical multiplier
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then the primal convergence rate is superlinear. This situation is quite possible when
the constraints of (57) are regular at x̄ (which of course may happen when I is strictly
smaller than I (x̄)). In this case, the multiplier (λ̄, µ̄I ) of (57) associated with x̄ is
unique. Note that in this case, dual convergence is also superlinear. However, if the
constraints of (57) are degenerate at x̄ (for example, when I = I (x̄)), this situa-
tion is highly unlikely to occur. The expected behavior in this case is the following:
either {(λk, µk)} does not converge or it converges to a critical multiplier, and primal
convergence is slow. Example 6 below shows convergence to a critical multiplier, and
slow rate of convergence, even when I is strictly smaller than I (x̄).

We next give some further details and examples. Let {(λk, µk)} converge to some
(λ̄, µ̄) ∈ M(x̄). Define

I+(x̄, µ̄) = {i ∈ I (x̄) | µ̄i > 0},

which is the set of strongly active constraints. As is easy to see,

I+(x̄, µ̄) ⊂ I ⊂ I (x̄). (58)

Note that if strong second-order sufficient condition (SSOSC)

〈
∂2L

∂x2 (x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈

(
ker F ′(x̄) ∩ ker G ′

I+(x̄, µ̄)(x̄)
)
\{0} (59)

for problem (54) holds, then SOSC holds for problem (57) at x̄ with multiplier (λ̄, µ̄I ).
Therefore, in this case (λ̄, µ̄) cannot be a critical multiplier.

Consider first the case when dual trajectory converges to a strictly complementary
multiplier. The specificity of this case is that I = I (x̄), by (58). Hence, the constraints
of (57) are degenerate at x̄ , and we expect dual convergence to a critical multiplier
and low rate of convergence. Moreover, µ̄i = 0 ∀ i ∈ {1, . . . ,m}\ I and ∀ (λ̄, µ̄) ∈
M(x̄), which means that any multiplier in M(x̄) can be classified as being critical
or noncritical according to the notion introduced above. Furthermore, in this case, if
SOSC for problem (54) holds, i.e., if

〈
∂2L

∂x2 (x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄)\{0}, (60)

where C(x̄) =
{
ξ ∈ ker F ′(x̄)

∣∣∣ G ′
I (x̄)(x̄)ξ ≤ 0, 〈 f ′(x̄), ξ 〉 ≤ 0

}
is the critical cone

of (54) at x̄ , then SOSC holds for problem (57) at x̄ with the multiplier (λ̄, µ̄I ). In
particular, such (λ̄, µ̄) cannot be critical.

The following example, coming from [6, Example 4.23], demonstrates that
convergence to a strictly complementary critical multiplier is possible even if the
Mangasarian–Fromovitz constraint qualification (MFCQ) holds at x̄ . Recall that
MFCQ means that

rank F ′(x̄) = l and ∃ ξ̄ ∈ ker F ′(x̄) such that G ′
I (x̄)(x̄)ξ̄ < 0,
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and it is equivalent to the multiplier set M(x̄) being nonempty and bounded.

Example 4 Consider the problem

minimize − x1 subject to x1 − x2
2 ≤ 0, x1 + x2

2 ≤ 0.

Its solution is x̄ = 0. It satisfies MFCQ and M(x̄) = {µ̄ ∈ R2+ | µ̄1 + µ̄2 = 1}.
Furthermore, SOSC (60) holds for any µ̄ ∈ M(x̄) such that µ̄1 < µ̄2, and does not
hold for other µ̄ ∈ M(x̄). SQP subproblem (55) takes the form

minimize −ξ1 − (µk
1 − µk

2)ξ
2
2

subject to xk
1 − (xk

2 )
2 + ξ1 − 2xk

2ξ2 ≤ 0, xk
1 + (xk

2 )
2 + ξ1 + 2xk

2ξ2 ≤ 0.

For simplicity, let xk
1 = 0, xk

2 �= 0. Suppose that µk is close enough to M(x̄). Then
the point ξ k+1 = (0, −xk

2/2) is stationary in this subproblem, with both constraints
being active. Hence, the primal SQP step (with αk = 1) is given by xk+1 = xk/2 =
(0, xk

2/2). In particular, both QP constraints remain active along the primal trajectory,
and hence, I = I (x̄) = {1, 2}.

The multiplier of SQP subproblem is given byµk+1 = (1/2+ (µk
1 −µk

2)/4, 1/2−
(µk

1 −µk
2)/4). It follows that µk+1

1 −µk+1
2 = 1

2 (µ
k
1 −µk

2), and hence, (µk
1 −µk

2) →
0. The latter implies that {µk} → (1/2, 1/2), which is a strictly complementary
multiplier, and the unique critical multiplier.

As expected, the rate of convergence is only linear.

Consider now the case when dual trajectory converges to a multiplier violating
strict complementarity. Note that in this case, multiplier satisfying SOSC (60) but not
SSOSC (59) can be critical (see Example 6 further below).

There exist examples of this scenario both with convergence to critical multipliers
and to noncritical ones. Thus, by itself, this scenario is not a reason for slow conver-
gence. However, when convergence is slow, attraction to critical multipliers can be
observed yet again. The following example is taken from [31, Sect. 6].

Example 5 Consider the problem

minimize x1 subject to − x1 ≤ 0, (x1 − 2)2 + x2
2 ≤ 4.

The solution is x̄ = 0, and it satisfies MFCQ. We have that M(x̄) = {µ̄ ∈ R2 | µ̄1 =
1 − 4µ̄2, 0 ≤ µ̄2 ≤ 1/4}, and SOSC (60) (and even SSOSC (59)) holds with all
µ̄ ∈ M(x̄), except for µ̄ = (1, 0).

According to numerical experience in [31], in this example SQP (with αk = 1)
converges linearly, and the dual trajectory is attracted by the “troublesome” multiplier
µ̄ = (1, 0). Let us examine this convergence in more detail.

SQP subproblem (55) takes the form

minimize ξ1 + µk
2(ξ

2
1 + ξ2

2 )

subject to −xk
1 − ξ1 ≤ 0, (xk

1 − 2)2 + (xk
2 )

2 − 4 + 2(xk
1 − 2)ξ1 + 2xk

2ξ2 ≤ 0.
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For simplicity, let xk
1 = 0, xk

2 �= 0. Suppose that µk is close enough to M(x̄). Then
the point ξ k+1 = (0, −xk

2/2) is stationary in this subproblem, with both constraints
being active. Hence, the primal SQP step (with αk = 1) is given by xk+1 = xk/2 =
(0, xk

2/2). In particular, both QP constraints remain active along the primal trajectory,
and hence, I = I (x̄) = {1, 2}.

Since we expect the dual convergence to µ̄ = (1, 0), we should consider the case
when the first constraint of SQP subproblem is active: ξ k

1 = −xk
1 , and hence, xk+1

1 = 0.
Now we can deal solely with the case when xk

1 = 0. In this case, the point
ξ k = (0, −xk

2/2) is stationary in SQP subproblem, with both constraints being active.
Hence, the primal SQP step is given by xk+1 = xk/2 = (0, xk

2/2). In particular, both
QP constraints remain active, and hence, I = I (x̄) = {1, 2}.

The multiplier of SQP subproblem is given byµk+1 = (1+2µk
2, µ

k
2/2). It follows

that {µk} → µ̄ = (1, 0). The constraints of (57) are degenerate at x̄ , and µ̄ = (1, 0) is
the unique associated critical multiplier. Hence, this µ̄ is a non-strictly complementary
critical (with respect to the chosen set I ) multiplier of (54).

In Examples 4 and 5, we had I = I (x̄). We finish this discussion with the case
when I is strictly smaller than I (x̄). The following example is ralph2 in MacMPEC
[20].

Example 6 Consider the problem with complementarity constraints (MPCC)

minimize x2
1 + x2

2 − 4x1x2 subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0.

Its solution is x̄ = 0. As any MPCC feasible point, it violates MFCQ. However, the
multiplier set is nonempty (hence, unbounded), and it is given by M(x̄) = {µ̄ ∈ R3 |
µ̄1 = µ̄2 = 0, µ̄3 ≥ 0}. Moreover, SOSC (60) (but not SSOSC (59)) holds with all
µ̄ ∈ M(x̄) such that µ̄3 > 2.

SQP subproblem (55) takes the form

minimize 2xk
1ξ1 + 2xk

2ξ2 − 4xk
2ξ1 − 4xk

1ξ2 + ξ2
1 + ξ2

2 − (4 − µk
3)ξ1ξ2

subject to xk
1 + ξ1 ≥ 0, xk

2 + ξ2 ≥ 0, xk
1 xk

2 + xk
2ξ1 + xk

1ξ2 ≤ 0.

Suppose that 0 ≤ µk
3 < 6, and let xk

1 = xk
2 �= 0. It can be easily seen that the first two

constraints cannot be active in this case, and that ξ k = −xk/2 is the unique stationary
point of SQP subproblem, with the last constraint being active. Hence, the primal SQP
step (with αk = 1) is given by xk+1 = xk/2. In particular, only the last QP constraint
remains active along the primal trajectory. Hence, I = {3}, while I (x̄) = {1, 2, 3}. The
multiplier of SQP subproblem is given by µk+1 = (0, 0, 1 + µk

3/2). It follows that
{µk} → µ̄ = (0, 0, 2). The unique constraint of (57) is degenerate at x̄ , and µ̄3 = 2 is
an associated critical multiplier. Hence, this µ̄ is a non-strictly complementary critical
(with respect to the chosen set I ) multiplier of (54), and I �= I (x̄).

Note that in this example, (57) has another critical multiplier µ̄3 = 6, despite of
SOSC (60) (but not SSOSC (59)!) for (54) being valid with µ̄ = (0, 0, 6).
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7 Concluding remarks

The purpose of this work was to raise the question of convergence properties of the
dual part of the sequence in primal–dual optimization methods in the case where some
multipliers associated to the solution satisfy the second-order sufficient condition for
optimality (SOSC), while others do not. Whether one may expect (or not) the dual
part of the sequence to approach those multipliers which satisfy SOSC is interesting
theoretically, but also relevant numerically (for example, for applicability of methods
which have been proposed to handle constraints degeneracy, as well as for speed of
convergence of standard algorithms).

The overall picture (different methods, different classes of problems) requires fur-
ther investigation. We have presented some evidence (both theoretical and numerical)
for the damped Newton scheme, including SQP, applied to the problem with equality
constraints. Our findings show that there is a real and persistent phenomenon of the
iterates being attracted to multipliers violating SOSC. More than that, the iterates are
attracted to a rather special subset of multipliers violating SOSC, which we call critical
multipliers.

Our conclusions remain relevant also for the general case of mixed equality and
inequality constraints, if the method in question asymptotically behaves as a Newton
method for some associated equality-constrained problem.

Other type of methods to which our conclusions readily apply are those based on
active-set strategies, i.e., methods that are supposed to switch to equality-constrained
phase asymptotically, by the construction of the algorithm.

Generally speaking, in all examples violating LICQ but satisfying SOSC that we
have examined so far (analytically or numerically), slow convergence of SQP is ob-
served for one of the following two reasons: either the dual sequence converges to
a multiplier which is critical for some related equality-constrained problem, or the
dual sequence does not converge at all. Out of the two, the first scenario seems more
common, at least when critical multipliers exist.
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riments. We are also grateful to the two anonymous referees for helpful comments and for pointing out a
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