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Abstract 
 

An explicit description of the convex hull of solutions to the uncapacitated lot-
sizing problem with backlogging, in its natural space of production, setup, 
inventory and backlogging variables, has been an open question for many 
years. In this paper, we identify valid inequalities that subsume all previously 
known valid inequalities for this problem. We show that these inequalities are 
enough to describe the convex hull of solutions. We give polynomial 
separation algorithms for some special cases. Finally, we report a summary of 
computational experiments with our inequalities that illustrates their 
effectiveness. 
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1 Introduction

The uncapacitated lot-sizing problem with backlogging (ULSB) is to deter-
mine the production, inventory and backlog quantities in each period so
that demand for a single product in each time period is met over a finite
horizon and the sum of production, holding and backlogging costs over the
horizon is minimized. It is assumed that production, inventory and backlog
quantities have no upper bounds. There are polynomial-time algorithms for
ULSB [4],[16],[17].

Pochet and Wolsey [8] provide the first polyhedral study of ULSB. The
authors give extended formulations for ULSB. In addition, the authors give
a class of inequalities for ULSB valid for the natural space of production,
inventory, backlogging and setup variables. They give a separation heuristic
for this class of inequalities. Later, Pochet and Wolsey [10] give another
class of inequalities for ULSB and show that the proposed inequalities are
enough to solve the problem as a linear program if there are no speculative
motives for holding inventory or backlogging demand . In this paper, we
give a class of facets for ULSB that subsumes previously known classes of
inequalities. We show that adding the proposed inequalities to the natural
formulation is enough to give the convex of solutions to ULSB. In addition,
we give the first combinatorial exact separation algorithm for the special
case of our inequalities that is equivalent to those proposed by Pochet and
Wolsey [8].

For a finite planning horizon n, let the nonnegative demand dt, variable
production cost ct, and fixed production (setup) cost ft, variable inven-
tory holding cost ht, and variable backlogging cost gt for time periods t ∈
{1, . . . , n} be given. Let variable yt denote the production quantity in time
period t, and variables st and rt denote the inventory and backlog quantity
at the end of period t, respectively. Also let xt be the fixed-charge variable
for production in period t. Throughout, we let [i, j] := {t ∈ Z : i ≤ t ≤ j},
and let R+ and Z+ represent the nonnegative reals and integers, respectively.
Finally, let dt` =

∑`
j=t dj for t ∈ [1, `] and dt` = 0 for t > `. (See Figure

1 for the fixed-charge network representation of ULSB with n = 6.) ULSB
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can be formulated as

ZBL := min
n∑

t=1
(ftxt + ctyt + gtrt + htst)

st−1 + yt − rt−1 = dt + st − rt, t ∈ [1, n] (1)
yt ≤ d1nxt, t ∈ [1, n] (2)

r0 = s0 = rn = sn = 0, (3)
y ∈ Rn

+, s ∈ Rn+1
+ , r ∈ Rn+1

+ (4)
x ∈ {0, 1}n. (5)

61 2 3 4

d1 d2 d3 d4 d5

5

d6

s1

r1

y1

Figure 1: Fixed-charge network for lot-sizing with backlogging.

We let S denote the convex hull of the feasible solutions to ULSB and
P denote the set of feasible solutions to the linear programming relaxation
of (1)−(5). Observe that, dim(S) = 3n − 2. In addition, if gt + ht < 0 for
some t ∈ [1, n− 1], then the problem is unbounded.

Pochet and Wolsey [8] show that inequalities
∑

j∈S

yj ≤
∑

j∈S

d(k(j,1)+1)k′(j,1)xj +
∑

j∈L

rj +
∑

j∈R

sj , (6)

where S ⊆ [1, n] and L,R ⊆ [1, n − 1] and k(j, 1) = max{t ∈ L : t < j} (if
t ≥ j for all t ∈ L, then let k(j, 1) = 0) and k′(j, 1) = min{t ∈ R : t ≥ j}
(if t < j for all t ∈ R, then let k′(j, 1) = n) are valid for (1)–(5). To
see the validity of inequalities (6), let ȳj be the portion of production in
period j that is used to satisfy the demands in [k(j, 1) + 1, k′(j, 1)] and ỹj

be the portion of production in period j that goes through rk(j,1) and ŷj

be the portion of production in period j that goes through sk′(j,1). Clearly,
yj = ȳj + ỹj + ŷj . Furthermore, ȳj ≤ d(k(j,1)+1)k′(j,1)xj , rt ≥

∑
j∈S:k(j,1)=t ỹj
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and st ≥
∑

j∈S:k′(j,1)=t ŷj . Thus,

∑

j∈S

yj =
∑

j∈S

(ȳj + ỹj + ŷj)

≤
∑

j∈S

d(k(j,1)+1)k′(j,1)xj +
∑

t∈L

∑

j∈S:k(j,1)=t

ỹj +
∑

t∈R

∑

j∈S:k′(j,1)=t

ŷj ,

which implies inequality (6). The authors show that inequalities (6) are not
enough to describe S.

Example 1. Inequality (6) with S = {3, 4, 5}, L = {2}, R = {4, 5} given by

y3 + y4 + y5 ≤ d34x3 + d34x4 + d35x5 + r2 + s4 + s5, (7)

is valid and facet-defining for S. Note that k(3, 1) = k(4, 1) = k(5, 1) = 2 ,
k′(3, 1) = k′(4, 1) = 4 and k′(5, 1) = 5. (See Figure 2.) However, the facet

y3 + 2y4 + y5 ≤ d34x3 + (d34 + d25)x4 + d35x5 + r1 + r2 + s4 + s5 (8)

cannot be obtained from inequalities (6).

4

d4

3

d3 d5

5

s5

2

d2

s4

r2

Figure 2: Coefficients of xj , j ∈ S in inequality (7).

Pochet and Wolsey [10] give another class of inequalities that is sufficient
to solve ULSB as a linear program if the holding and backlogging costs satisfy
the Wagner-Whitin property (i.e., when ht + pt ≥ pt+1 and pt+1 + gt ≥ pt,
for t ∈ [1, n − 1]). However, these inequalities are not enough to describe
S for general costs. We discuss the inequalities proposed in [10] in more
detail in Section 2. Agra and Constantino [1] extend these inequalities for
ULSB with start-up costs in addition to the setup costs. Constantino [3]
gives inequalities for constant capacity lot-sizing with backlogging and start-
up costs in the natural space of production, setup, start-up, inventory and
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backlogging variables. Finally, van Vyve [12] gives extended formulations
for the constant capacity lot-sizing problem with backlogging.

Pochet and Wolsey [9], Wolsey [15] and Guan et al. [5] demonstrate
that a good understanding of the polyhedral structure of single item lot-
sizing problems can be very useful in solving more complicated problems,
involving multiple products and stages, and uncertain demand. Single item
lot-sizing polyhedra have been of interest to researchers also because they
are special cases of fixed-charge network flow problems. For uncapacitated
fixed-charge network flows, van Roy and Wolsey [11] give network inequali-
ties that are based on path substructures. Ortega and Wolsey [7] present a
computational study on the performance of network inequalities in solving
the uncapacitated fixed-charge network flow problem. The network inequal-
ities have 0-1 coefficients for the continuous flow variables. In this paper,
we give inequalities for ULSB that have general integer coefficients for the
continuous variables. These valid inequalities for ULSB can be generalized
to valid inequalities for path substructures in general fixed-charge network
flow problems, thereby generalizing earlier work [7], [11].

Outline. In Section 2, we give valid inequalities for ULSB and show that
they subsume all previously known inequalities. In Section 3 we explore the
facility location reformulation given by Pochet and Wolsey [8] to derive a
relationship between this extended formulation and the facets of ULSB in
its natural space of production, setup, inventory and backlogging variables.
We show that adding the proposed inequalities to the natural formulation
is enough to give the convex of solutions to ULSB. In Section 4 we give
a polynomial-time separation algorithm for a special case of the proposed
inequalities and their separation. In Section 5 we summarize our compu-
tational experiments with the proposed inequalities. Finally, we conclude
with Section 6.

2 Valid Inequalities for ULSB

To illustrate the inequalities proposed in this section, we first give an exam-
ple.

Example 1 (cont.) Consider inequality (8). Let L = [1, 2], R = [4, 5]
and S = [3, 5]. Recall the definitions of ȳj , ỹj , ŷj , j ∈ S. Also let ȳ2

4 be
the portion of production in period 4 to satisfy demands in [2,5]; ỹ2

4 be the
portion of production in period 4 that goes through r1 (the backlog quantity
in the second largest period in L before period 4); and ŷ2

4 be the portion
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of production in period 4 that goes through s5 (the inventory quantity in
the second smallest period in R on or after period 4). Therefore, y4 =
ȳ4 + ỹ4 + ŷ4 = ȳ2

4 + ỹ2
4 + ŷ2

4. Observe that ȳ4 ≤ d34x4, ȳ2
4 ≤ d25x4, ȳ3 ≤ d34x3,

ȳ5 ≤ d35x5, r2 ≥ ỹ3 + ỹ4 + ỹ5, s4 ≥ ŷ3 + ŷ4, r1 ≥ ỹ2
4 and s5 ≥ ŷ2

4 + ŷ5. (See
Figure 3.) Therefore,

y3 + 2y4 + y5 =
5∑

j=3

(ȳj + ỹj + ŷj) + ȳ2
4 + ỹ2

4 + ŷ2
4

≤ d34x3 + (d34 + d25)x4 + d35x5 + r1 + r2 + s4 + s5,

is valid for S. Using similar arguments we can also show that the inequality

y2 + 2y3 + 3y4 + y5 + y7 ≤d25x2 + (d25 + d27)x3 + d45x5 + d47x7

+ (d45 + d27 + d28)x4 (9)
+ 2r1 + r3 + s5 + s7 + s8,

is valid for S. Here, a coefficient 2 for r1 (instead of 1) allows for a coefficient
(d25 + d27) for x3 (instead of (d25 + d17)) and a coefficient (d45 + d27 + d28)
for x4 (instead of (d45 + d27 + d18)).

1 4

d4

3

d3 d5

5

s5

2

d2d1

r2r1

s4

Figure 3: Coefficients of xj , j ∈ S in inequality (8).

Theorem 1. For S ⊆ [1, n], L,R ⊆ [0, n], the inequality

∑

t∈S

utyt ≤
∑

t∈S

(
ut∑

i=1

d(k(t,i)+1)k′(t,i))xt +
∑

t∈L

γtrt +
∑

t∈R

βtst, (10)

is valid for S, where

(i) γt ∈ Z+, t ∈ L, and βt ∈ Z+, t ∈ R,
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(ii) ut ∈ [1, qt], t ∈ S with qt = min{∑i∈L:i<t γi,
∑

i∈R:i≥t βi},
(iii) k(t, i) = max{ki ∈ L ∩ [0, t − 1] :

∑
j∈L∩[ki,t−1] γj ≥ i}, t ∈ S and

i ∈ [1, ut],

(iv) k′(t, i) = min{k′i ∈ R ∩ [t, n] :
∑

j∈R∩[t,k′i]
βj ≥ i}, t ∈ S and i ∈ [1, ut]

.

Proof. Let ỹtp be the production in period t ∈ [1, n] to satisfy demand in
period p ∈ [0, n + 1], where for ease of notation d0 = dn+1 = 0. Then
∑

t∈S

utyt =
∑

t∈S

ut(
∑

p∈[0,n+1]

ỹtp)

=
∑

t∈S

∑

i∈[1,ut]

(
∑

p∈[0,k(t,i)]

ỹtp +
∑

p∈[k(t,i)+1,k′(t,i)]

ỹtp +
∑

p∈[k′(t,i)+1,n+1]

ỹtp)

≤
∑

t∈S

∑

i∈[1,ut]

d(k(t,i)+1)k′(t,i)xt +
∑

t∈S

∑

i∈[1,ut]

∑

p∈[0,k(t,i)]

ỹtp

+
∑

t∈S

∑

i∈[1,ut]

∑

p∈[k′(t,i)+1,n+1]

ỹtp

≤
∑

t∈S

∑

i∈[1,ut]

d(k(t,i)+1)k′(t,i)xt +
∑

t∈L

γtrt +
∑

t∈R

βtst,

where the second to last inequality follows because for t ∈ S and i ∈ [1, ut],
we have

∑
p∈[k(t,i)+1,k′(t,i)] ỹtp ≤ d(k(t,i)+1)k′(t,i)xt. The last inequality follows,

because

γtrt ≥ γt

∑

j∈[t+1,n]

∑

p∈[0,t]

ỹjp ≥
∑

j∈S∩[t+1,n]

γt


 ∑

p∈[0,t]

ỹjp




≥
∑

j∈S


 ∑

i∈[1,uj ]:t=k(j,i)

1





 ∑

p∈[0,t]

ỹjp




=
∑

j∈S


 ∑

i∈[1,uj ]:t=k(j,i)


 ∑

p∈[0,t]

ỹjp







where the last inequality holds because γt ≥ |{i ∈ [1, uj ] : t = k(j, i)}| for
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j > t, and |{i ∈ [1, uj ] : t = k(j, i)}| = 0 for j ≤ t.Similarly,

βtst ≥ βt

∑

j∈[1,t]

∑

p∈[t+1,n+1]

ỹjp ≥
∑

j∈S∩[1,t]

βt


 ∑

p∈[t+1,n+1]

ỹjp




≥
∑

j∈S


 ∑

i∈[1,uj ]:t=k′(j,i)


 ∑

p∈[t+1,n+1]

ỹjp





 .

where the last inequality holds because βt ≥ |{i ∈ [1, uj ] : t = k′(j, i)}| for
j ≤ t, and |{i ∈ [1, uj ] : t = k′(j, i)}| = 0 for j > t.
Therefore,

∑

t∈L

γtrt ≥
∑

t∈L

∑

j∈S


 ∑

i∈[1,uj ]:t=k(j,i)


 ∑

p∈[0,t]

ỹjp







=
∑

j∈S

∑

i∈[1,uj ]

∑

p∈[0,k(j,i)]

ỹjp, and,

∑

t∈R

βtst ≥
∑

t∈R

∑

j∈S


 ∑

i∈[1,uj ]:t=k′(j,i)


 ∑

p∈[t+1,n+1]

ỹjp







=
∑

j∈S

∑

i∈[1,uj ]

∑

p∈[k′(j,i)+1,n+1]

ỹjp.

where the above equalities hold because for each j ∈ S and each i ∈ [1, uj ],
there exists exactly one t ∈ L with t = k(j, i), and one t ∈ R with t =
k′(j, i).

Remark 1. Note that inequalities (6) are special cases of inequalities (10)
where ut = 1 for all t ∈ S, γt = 1 for all t ∈ L and βt = 1 for all t ∈ R.

Pochet and Wolsey [10] propose a class of valid inequalities for ULSB,
and prove that they suffice to solve ULSB as a linear program if there are
no speculative motives for inventory holding or backlogging. We prove here
that these inequalities are a special case of inequalities (10).

Proposition 1. (Pochet and Wolsey [10]) The inequalities

k̄′1∑

`=k̄1+1

∑

i∈[1,u`]

d`(1−
k̄′(`,i)∑

t=k̄(`,i)+1

xt) ≤
∑

t∈L′
st +

∑

t∈R′
rt (11)

are valid for ULSB, where for an elementary directed cycle, C, on a complete
digraph D = (V, A) with V = {0, . . . , n}:
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(i) k̄1 < k̄2 < · · · < k̄p are the tail nodes of the forward arcs (i, j) in C ,
i < j,

(ii) k̄′1 > k̄′2 > · · · > k̄′b are the tail nodes of backwards arcs (i, j) in C ,
i > j,

(iii) L′ = {k̄i : i ∈ [1, p]}, R′ = {k̄′i : i ∈ [1, b]}, L′ ∩R′ = ∅,
(iv) for each node ` ∈ V , u` is the cardinality of the cut across (` − 1, `),

taking only the forward arcs into account (uk̄1
= uk̄′1+1 = 0),

(v) k̄(`, i) is the ith largest k̄i, i ∈ [1, p] with k̄i < ` and k̄′(`, i) is the ith
smallest k̄′i, i ∈ [1, b] with k̄′i ≥ `.

Example 1 (cont.) See Figure 4 for an illustration of a subgraph of D
with k̄1 = 1, k̄2 = 2, k̄3 = 3, k̄′1 = 5, k̄′2 = 4, and an elementary directed
cycle given by the solid arcs for which L′ = [1, 3] and R′ = [4, 5]. The
corresponding inequality (11) is

s1 + s2 + s3 + r4 + r5 ≥d2(1−
4∑

t=2

xt) + d3(1−
4∑

t=3

xt)

+ d3(1−
5∑

t=2

xt) + d4(1− x4) (12)

+ d4(1−
5∑

t=3

xt) + d5(1−
5∑

t=4

xt).

Proposition 2. Inequalities (11) are special cases of inequalities (10) with
S = [k̄1 + 1, k̄′1], ut = qt = min{|{i ∈ L : i < t}|, |{i ∈ R : i ≥ t}|} for
all t ∈ S, γt = 1 for all t ∈ L and βt = 1 for all t ∈ R , and for some
appropriate choice of L and R (given in the proof).

Proof. Let U = max`∈[k̄1+1,k̄′1]{u`} and Sj = {` ∈ [k̄1 + 1, k̄′1] : u` ≥ j} for
j ∈ [1, U ]. Adding the aggregated flow balance equality

∑

j∈[1,U ]

∑

`∈Sj

(s`−1 + y` − r`−1) =
∑

j∈[1,U ]

∑

`∈Sj

(s` + d` − r`)

and inequality (11), we obtain
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1 2 3 4 5

Figure 4: Subgraph of D and the directed cycle that generates inequality
(12).

∑

j∈[1,U ]

∑

`∈Sj

y` ≤
∑

j∈[1,U ]

∑

`∈Sj

d` −
k̄′1∑

`=k̄1+1

∑

i∈[1,u`]

d`

+
∑

j∈L′
sj +

∑

j∈[1,U ]

∑

`∈Sj

(s` − s`−1)

+
∑

j∈R′
rj +

∑

j∈[1,U ]

∑

`∈Sj

(r`−1 − r`)

+
k̄′1∑

`=k̄1+1

d`

∑

i∈[1,u`]

∑

j∈[k̄(`,i)+1,k̄′(`,i)]

xj .

Observe that for the elementary directed cycle, C, we must have uj −
uj+1 ∈ {−1, 0, 1} for all j ∈ [k̄1, k̄

′
1]. Let L+ = R+ = {j ∈ [k̄1, k̄

′
1] :

uj+1 − uj = 1} and L− = R− = {j ∈ [k̄1, k̄
′
1] : uj − uj+1 = 1}, Note that

L+ ⊆ L′, L−∩L′ = ∅, R− ⊆ R′ and R+∩R′ = ∅. Cancelling common terms
and rearranging, we get

∑

t∈[k̄1+1,k̄′1]

utyt ≤
∑

t∈[k̄1+1,k̄′1]

(
ut∑

i=1

d(k(t,i)+1)k′(t,i))xt

+
∑

t∈(L′\L+)∪L−
st +

∑

t∈(R′\R−)∪R+

rt, (13)
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where k(t, i) and k′(t, i) are as defined in Theorem 1, with S = [k̄1 + 1, k̄′1],
L = (R′ \ R−) ∪ R+ and R = (L′ \ L+) ∪ L−. We get an inequality of the
form (10) in which ut = qt for all t ∈ S, γt = 1 for all t ∈ L and βt = 1 for
all t ∈ R. To see why ut = qt for all t ∈ S, observe that the head nodes of
the forward arcs in the directed cycle C give the set R and the head nodes
of the backward arcs in C give the set L. Hence, the cardinality of the cut
across (t− 1, t) is given by ut = qt = min{|{i ∈ L : i < t}|, |{i ∈ R : i ≥ t}|}.
We use this observation in Section 4 to propose separation algorithms for
inequalities (10) with S ⊆ [k1 + 1, k′1] and ut = qt for all t ∈ S, γt = 1 for
all t ∈ L and βt = 1 for all t ∈ R. Finally, note that the proof of Theorem
1 provides a new proof of validity for inequalities (11).

Example 1 (cont.) Adding inventory balance equalities for periods in
[2, 5] and for periods in [3, 4] to inequality (12), we get inequality (10) with
S = [2, 5], L = [1, 2], R = [3, 5] and ut = qt for t ∈ S:

y2 + 2y3 + 2y4 + y5 ≤d23x2 + (d3 + d24)x3 + (d34 + d25)x4

+ d35x5 + r1 + r2 + s3 + s4 + s5. (14)

However, inequalities (8) and (9) cannot be obtained from inequalities (11).
Similarly, inequality (10) with S = [2, 5], L = [1, 2], R = [3, 5] and 1 = u3 <
q3 = 2:

y2+y3+2y4+y5 ≤ d23x2+d3x3+(d34+d25)x4+d35x5+r1+r2+s3+s4+s5,

cannot be obtained from inequalities (11).

We study the strength of inequalities (10) in Section 3.

3 Linear Description of the Convex Hull

Pochet and Wolsey [8] give shortest path and facility location linear pro-
gramming reformulations of ULSB. In particular, the facility location refor-
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mulation is given by (FL):

ZFL := min
n∑

t=1
(ftxt + ctyt + gtrt + htst)

∑n
k=1 ỹkt = dt for t ∈ [1, n] (15)∑n
k=1 ỹtk = yt for t ∈ [1, n] (16)
ỹkt ≤ dtxk for k, t ∈ [1, n] (17)

xt ≤ 1 for t ∈ [1, n] (18)
st −

∑t
k=1

∑n
j=t+1 ỹkj − λt = 0 for t ∈ [1, n− 1] (19)

rt −
∑n

k=t+1

∑t
j=1 ỹkj − λt = 0 for t ∈ [1, n− 1] (20)

ỹ, y, s, r, x, λ ≥ 0, (21)

where ỹkt for k, t ∈ [1, n] represents the amount produced in period k to
satisfy the demand in period t. Note that λt has to be added to the definition
of st and rt to represent an additional amount of flow between periods t and
t + 1. Such a flow λt does not satisfy any demand, but is required to obtain
a correct reformulation of ULSB (i.e., ULSB is unbounded if gt + ht < 0).
Let Q be the set of feasible solutions to (15)–(21).

Proposition 3. (Pochet and Wolsey [8]) S = projy,s,r,x(Q) = {(y, s, r, x) ∈
R4n−2 : (y, s, r, x) ∈ P and T ′(y, s, r, x) 6= ∅}, with
T ′(y, s, r, x) = {(ỹ, y, s, r, x) ∈ Rn2+4n−2 : (22)− (27)}, where

−∑n
k=1 ỹkt = −dt for t ∈ [1, n] (22)

−∑n
k=1 ỹtk = −yt for t ∈ [1, n] (23)∑t

k=1

∑n
j=t+1 ỹkj ≤ st for t ∈ [1, n− 1] (24)

∑n
k=t+1

∑t
j=1 ỹkj ≤ rt for t ∈ [1, n− 1] (25)

ỹkt ≤ dtxk for k, t ∈ [1, n] (26)
ỹkt ≥ 0 for k, t ∈ [1, n]. (27)

By Proposition 3 and Farkas’ Lemma, we obtain directly the following
complete implicit linear description of S.

Proposition 4. (Pochet and Wolsey [8]) S = {(y, s, r, x) ∈ P :
∑n

t=1 εi
tdt +∑n

t=1 αi
tyt ≤

∑n
t=1 σi

tst +
∑n

t=1 ρi
trt +

∑n
k=1

∑n
t=1 δi

ktdtxk, i ∈ I}, where
(εi, αi, σi, ρi, δi), i ∈ I are the extreme rays of the dual cone of (22)−(27)
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given by

−εt − αj +
∑t−1

k=j σk + δjt ≥ 0 for 1 ≤ j ≤ t ≤ n (28)

−εt − αj +
∑j−1

k=t ρk + δjt ≥ 0 for 1 ≤ t < j ≤ n (29)
σj , ρj ≥ 0 for j ∈ [1, n− 1] (30)
δjt ≥ 0 for j, t ∈ [1, n] (31)

We use Proposition 4 to prove the following result, which is a strength-
ening of Proposition 12 in [8].

Proposition 5. If inequality

n∑

t=1

εtdt +
n∑

t=1

αtyt ≤
n−1∑

t=1

σtst +
n−1∑

t=1

ρtrt +
n∑

k=1

n∑

t=1

δktdtxk (32)

is a facet of S such that (ε, α, σ, ρ, δ) satisfy (28)−(31) with εt = 0 for all
t ∈ [1, n], then the facet is of the form (10), with u = λα, β = λσ, γ = λρ
for some λ ∈ R+.

Proof. If inequality (32) is a facet, then from Proposition 4, (ε, α, σ, ρ, δ)
with εt = 0 for all t ∈ [1, n] is an extreme ray of (28)−(31). Note that for
εt = 0 for all t ∈ [1, n], we must have αt ≥ 0 for all t ∈ [1, n] for (ε, α, σ, ρ, δ)
to be an extreme ray of (28)−(31). For fixed α ∈ Zn

+, (σ, δkt for k ≤ t) must
be an extreme point of

∑t−1
k=j σk + δjt ≥ αj for 1 ≤ j ≤ t ≤ n (33)

δjt ≥ 0 for 1 ≤ j ≤ t ≤ n (34)
σj ≥ 0 for 1 ≤ j ≤ n− 1. (35)

The constraint matrix given by (33)–(35) is totally unimodular. Therefore,
for integral α, (σ, δkt for k ≤ t) is integral. Similarly (ρ, δkt for k > t) is
integral. (Therefore, condition (i) of Theorem 1 is satisfied.) Let a+ =
max{0, a}. Extreme points of (33)–(35) are of the form

δjt = (αj −
t−1∑

k=j

σk)+. (36)

Similarly for j > t,

δjt = (αj −
j−1∑

k=t

ρk)+. (37)

12



Let ρ0 = maxt∈[1,n]{(αt−
∑t−1

k=1 ρk)+} and σn = maxt∈[1,n]{(αt−
∑n−1

k=t σk)+}.
(Condition (ii) of Theorem 1 is satisfied with this choice of ρ0 and σn.) Ob-
serve that for each j ∈ [1, n] we have

∑n
t=1 δjtdt =

∑αj

i=1 d(k(j,i)+1)k′(j,i),
where k(j, i) = max{t ∈ [0, j − 1] :

∑
k∈[t,j−1] ρk ≥ i}, and k′(j, i) = min{t ∈

[j, n] :
∑

k∈[j,t] σk ≥ i}. (Therefore, conditions (iii) and (iv) of Theorem 1
are satisfied.) As a result, the facet (32) with integral α is of the form (10)
where β = σ, γ = ρ and u = α.

Finally, we need to argue that considering integral α in inequality (32)
with εt = 0 for all t is sufficient. Note that the constraint matrix (28)−(31)
is not necessarily totally unimodular. Therefore, we could have fractional
αt for some t. For instance, the determinant of the following submatrix
corresponding to the variables (α2, α3, α4, σ4, σ5, ρ1, ρ2, ρ3) is −2:




−1 0 0 1 0 0 0 0
−1 0 0 1 1 0 0 0

0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0

−1 0 0 0 0 1 0 0
0 −1 0 0 0 0 1 0
0 0 −1 0 0 0 0 1
0 0 −1 0 0 1 1 1




.

However, note that given a fractional extreme ray of (28)−(31) with εt =
0 and αt ≥ 0 for all t, there exists a scaling such that the extreme ray
(ε, α, σ, ρ, δ) is integral, because the associated cone is pointed at the origin.
In other words, inequalities (10) are positive multiples of inequalities (32)
with εt = 0 for all t ∈ [1, n].

The following theorem states that to generate S it suffices to consider
inequalities (32) given by the rays of the dual cone (28)–(31), where εt = 0
for all t, which, from Proposition 5, are positive multiples of inequalities
(10). Therefore, we have an explicit description of S.

Theorem 2. S = {(x, s, r, y) ∈ P : (x, s, r, y) satisfies (10)} = {(x, s, r, y) ∈
R4n+2

+ : (x, s, r, y) ∈ X} where X is described by the linear constraints

yt + (st−1 − rt−1) = dt + (st − rt) for t ∈ [1, n] (38)
yt ≤ 1 for t ∈ [1, n] (39)

n∑
k=1

((
n∑

t=1
δktdt)xk − αkyk + βksk + γkrk) ≥ 0 for (α, β, γ, δ) ∈ Γ (40)

s0 = r0 = sn = rn = 0
x, s, r, y ≥ 0,

13



where Γ is described by the linear constraints

δjt = (αj −
∑t−1

`=j β`)+ for 1 ≤ j ≤ t ≤ n (41)

δjt = (αj −
∑j−1

`=t γ`)+ for 1 ≤ t < j ≤ n (42)
α, β, γ, δ ≥ 0.

We give a primal-dual proof of this theorem. The primal formulation
corresponding to the feasible set X, denoted by (P) is:

Z = min{
n∑

t=1

(ctyt + htst + gtrt + ftxt) : (x, s, r, y) ∈ X} (43)

Letting vt, −zt and u(αβγ) be the dual variables associated with each con-
straint (38), (39) and (40), respectively, we obtain the corresponding dual
formulation, (D):

W = max{
n∑

i=1

divi −
n∑

i=1

zi : (u, v, z) satisfies (44)− (48)},

where

−zi +
∑

α,β,γ

(∑n
j=1 δαβγ

ij dj

)
u(αβγ) ≤ fi for i ∈ [1, n] (44)

vi −
∑

α,β,γ ααβγ
i u(αβγ) ≤ ci for i ∈ [1, n] (45)

vi+1 − vi +
∑

α,β,γ βαβγ
i u(αβγ) ≤ hi for i ∈ [1, n− 1] (46)

vi − vi+1 +
∑

α,β,γ γαβγ
i u(αβγ) ≤ gi for i ∈ [1, n− 1] (47)

z, u ≥ 0, (48)

where ααβγ
i represents the ith element of the α vector for given (α, β, γ)

(βαβγ
i and γαβγ

i are defined similarly, and δαβγ
ij is given by (41)–(42)). We

have to prove that for any primal objective coefficients (c, h, g, f)

Z = W = ZBL.

If ht+gt < 0 for some t we know that P is unbounded, and it is easy to check
that (P) is unbounded as well. Hence it remains to show that Z = W = ZBL

for any coefficients (c, h, g, f) with ht + gt ≥ 0 for all t.
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The following proposition is needed in the proof of Theorem 2. Let (P∗)
be the formulation

Z∗ = min
n∑

k=1

n∑

t=1

qktỹkt +
n∑

t=1

ftxt +
n−1∑

t=1

htηt +
n−1∑

t=1

gtνt

n∑

k=1

ỹkt − (ηt − ηt−1) + (νt − νt−1) = dt for t ∈ [1, n] (49)

ỹkt ≤ dtxk for k, t ∈ [1, n]
(50)

xt ≤ 1 for t ∈ [1, n] (51)
x, ỹ, η, ν ≥ 0,

where η0 = ν0 = ηn = νn = 0, qkk = ck, qkt = (ck + hk + · · ·+ ht−1) if k < t
and qkt = (ck +gk−1+ · · ·+gt) if k > t. Letting vt, −wkt and −zt be the dual
variables associated with each constraint (49), (50) and (51), respectively,
we obtain the corresponding dual formulation, (D∗):

W ∗ = max
∑n

i=1 divi −
∑n

i=1 zi

−zi +
∑n

j=1 djwij ≤ fi for i ∈ [1, n]
vj − wij ≤ qij for i, j ∈ [1, n]
vi+1 − vi ≤ hi for i ∈ [1, n− 1]
vi − vi+1 ≤ gi for i ∈ [1, n− 1]

w, z ≥ 0.

Proposition 6. If ht + gt ≥ 0 for all t, then (P ∗) has an optimal solution
with ηt = νt = 0 for all t ∈ [1, n− 1].

The consequence of this proposition that will be used in the proof of
Theorem 2 is given in the following corollary.

Corollary 1. If ht + gt ≥ 0 for all t there exist numbers v1, . . . , vn and
z1, . . . , zn ≥ 0 such that

ZBL =
∑n

i=1 divi −
∑n

i=1 zi

−gi ≤ vi+1 − vi ≤ hi for i ∈ [1, n− 1]∑n
j=1 dj(vj − qij)+ − zi ≤ fi for i ∈ [1, n].

Proof. If ht + gt ≥ 0 for all t, then we know that there exists an optimal
solution to (FL) with λt = 0 for all t and that ZFL = ZBL [8]. Proposition
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6 shows that Z∗ = ZFL under the assumption that ht + gt ≥ 0 for all t,
because there always exists an optimal solution to (P∗) that is optimal in
(FL). Hence, W ∗ = Z∗ = ZFL = ZBL. Finally, note that there exists an
optimal solution to (D∗) with wij = (vj − qij)+ for all i, j ∈ [1, n].

Proof. [Proof of Proposition 6.] Consider an optimal solution (x∗, ỹ∗, η∗, ν∗)
to problem (P∗) with

∑n−1
t=1 (η∗t + ν∗t ) being minimal. In this solution we

must have η∗t · ν∗t = 0 for all t (otherwise it is possible to decrease strictly∑n−1
t=1 (η∗t + ν∗t )). We build a graph G′ = (V ′, A′) with vertices V ′ =

{1, . . . , n} and oriented arc set A′ such that (i, i + 1) ∈ A′ if η∗i > 0
and (i + 1, i) ∈ A′ if ν∗i > 0. Define K(i) = {k ∈ V ′ | ỹ∗ki > 0}.
(In particular k ∈ K(i) implies xk > 0.) We must have

∑
k∈K(i) ỹ∗ki =

di +(η∗i −η∗i−1)−(ν∗i −ν∗i−1). Hence without changing the values η∗, ν∗ there
always exists an optimal solution (x∗, ỹ∗, η∗, ν∗) to (P ∗) with ỹ∗ki = dix

∗
k for

all k ∈ K(i) except at most one.
Now consider one arc (i, i + 1) ∈ A′ (so η∗i > 0) and k ∈ K(i) (so x∗k > 0

and ỹ∗ki > 0). We claim that k ∈ K(i + 1) and ỹ∗k(i+1) = di+1x
∗
k.

Case 1. (k ≤ i.) Suppose that ỹ∗k(i+1) < di+1x
∗
k. Then a new solution is

ỹki = ỹ∗ki − ε, ỹk(i+1) = ỹ∗k(i+1) + ε and ηi = η∗i − ε, for some ε > 0. This
new solution is feasible and also optimal because the change of the objective
value is −εqki + εqk(i+1) − εhi = 0. Furthermore,

∑n−1
t=1 (ηt + νt) strictly

decreases and this is a contradiction.
Case 2. (k ≥ i + 1.) Suppose that ỹ∗k(i+1) < di+1x

∗
k. Then a new solution

is ỹki = ỹ∗ki − ε, ỹk(i+1) = ỹ∗k(i+1) + ε and ηi = η∗i − ε. This new solution
is feasible and also optimal because the change of the objective value is
−εqki + εqk(i+1)− εhi ≤ −εqki + εqk(i+1) + εgi = 0 (where the last inequality
holds because hi + gi ≥ 0). Again, the contradiction follows from a strict
decrease in

∑n−1
t=1 (ηt + νt).

By the same argument, if (i + 1, i) ∈ A′ and k ∈ K(i + 1), then we must
have k ∈ K(i) with ỹ∗ki = dix

∗
k.

Now suppose that a path exists in G′ (i.e., A′ 6= ∅). Consider a longest
directed path i1, . . . , ir in G′ and define

Y (is) =
∑

k∈K(is):
ỹ∗kis

=disx∗k>0

x∗k +
ỹ∗

k̃is

dis

for s ∈ [1, r],

where k̃ ∈ K(is) and 0 < ỹ∗
k̃is

< disx
∗
k̃
. (This term disappears if no such k̃

exists.) Note that a longest path always exists since η∗i · ν∗i = 0 for all i. We
claim that 0 ≤ Y (i1) ≤ Y (i2) ≤ · · · ≤ Y (ir) < 1.
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As (is, is+1) ∈ A′, we know that k ∈ K(is) implies that k ∈ K(is+1) and
ỹ∗kis+1

= dis+1x
∗
k. Hence,

Y (is) ≤
∑

k∈K(is)

x∗k ≤ Y (is+1)

where the first inequality holds because
ỹ∗

k̃,is
dis

< x∗
k̃

if k̃ exists. In addition,

∑

k∈V ′
ỹ∗kir = dir + (η∗ir − η∗ir−1)− (ν∗ir − ν∗ir−1)

= dir − η∗ir−1 − ν∗ir
< dir ,

where the second equality is because η∗ir = ν∗ir−1 = 0 as ir is the last node
of the longest path and the last inequality is because if a path exists in G′

we must have η∗ir−1 + ν∗ir > 0.
On the other hand,

∑
k∈V ′ ỹ

∗
kir

=
∑

k∈K(ir) ỹ∗kir
= dirY (ir), where the

last equality holds by definition of Y (ir). We have then Y (ir) < 1, which
implies that Y (i1) < 1. But we also have

di1Y (i1) =
∑

k∈K(i1)

ỹ∗ki1 =
∑

k∈V ′
ỹ∗ki1 = di1 + (η∗i1 − η∗i1−1)− (ν∗i1 − ν∗i1−1) > di1 ,

where the last inequality holds because η∗i1−1 = ν∗i1 = 0 as node i1 is the first
node of a longest directed path and η∗i1 + ν∗i1−1 > 0 because a path starting
from node i1 exists.

The contradiction we have obtained (1 > Y (i1) > 1) implies that no
path exists in G′ (i.e., A′ = ∅). Therefore, η∗i = ν∗i = 0 for all i.

Proof. [Proof of Theorem 2.] Given that ht + gt ≥ 0 for all t, we must
find a solution of (D) with W = ZBL. We know by Corollary 1 that there
are numbers v1, . . . , vn and z1, . . . , zn ≥ 0 such that
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ZBL =
n∑

i=1

divi −
n∑

i=1

zi

vi+1 − vi ≤ hi i ∈ [1, n− 1]
vi − vi+1 ≤ gi i ∈ [1, n− 1]
wij = (vj − qij)+ i, j ∈ [1, n]

n∑

j=1

djwij − zi ≤ fi i ∈ [1, n].

We construct a feasible solution to (D) with one variable u(αβγ) = 1
corresponding to the following values of α, β, γ :

αi = wii ≥ 0 for i ∈ [1, n]
βi = hi + vi − vi+1 ≥ 0 for i ∈ [1, n− 1]
γi = gi + vi+1 − vi ≥ 0 for i ∈ [1, n− 1].

All other u(αβγ) variables are equal to zero. The values of the variables
v, z are the values used in Corollary 1. This implies that the objective value
corresponding to this solution is ZBL. It remains to show that this solution
is feasible in (D).

By definition
∑

α,β,γ

βαβγ
i u(αβγ) = hi + vi − vi+1, (46) is satisfied;

∑

α,β,γ

γαβγ
i u(αβγ) = gi + vi+1 − vi, (47) is satisfied;

∑

α,β,γ

ααβγ
i u(αβγ) = wii = (vi − qii)+ = (vi − ci)+ ≥ vi − ci, (45) is satisfied.

The δij values are defined in (41)–(42). It remains to show that −zi +∑
α,β,γ(

∑n
j=1 δαβγ

ij dj)u(αβγ) = −zi +
∑n

j=1 δijdj ≤ fi. We prove it by show-
ing that δij = wij for all i, j.
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For each i ∈ [1, n] we have δii = αi = wii. For j > i we have

δij = (αi −
j−1∑

`=i

β`)+

= ((vi − ci)− (hi + vi − vi+1)− · · · − (hj−1 + vj−1 − vj))+

= (vj − ci − hi − hi+1 − · · · − hj−1)+

= (vj − qij)+ = wij .

Finally, for j < i we have

δij = (αi −
i−1∑

`=j

γ`)+

= ((vi − ci)− (gi−1 + vi − vi−1)− · · · − (gj + vj+1 − vj))+

= (vj − ci − gi−1 − · · · − gj)+

= (vj − qij)+ = wij .

From Corollary 1 we know that
∑n

j=1 djwij ≤ fi + zi. This completes the
proof.

Inequalities (10) are enough to provide a complete linear description of S.
Although we do not give general conditions under which these inequalities
define facets of S, we conclude this Section by showing that the coefficients of
the variables can grow very large in facet-defining inequalities. In particular,
we give an example showing that the coefficients of a facet-defining inequality
for S with n time periods can be as large as the (n − 2)th number in the
Fibonacci series.

Example 2. Consider an instance of ULSB with n = 10 time periods, and
the inequality (10) defined by S = [2, 9], L = [1, 5], R = [6, 9], and:

γ1 = 21, γ2 = 8, γ3 = 3, γ4 = 1, γ5 = 1,

β6 = 1, β7 = 2, β8 = 5, β9 = 13,

u2 = 21, u3 = 8, u4 = 3, u5 = 1,

u6 = 1, u7 = 2, u8 = 5, u9 = 13,
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The corresponding facet-defining inequality (10) is:

21y2 + 8y3 + 3y4 + 1y5 + 1y6 + 2y7 + 5y8 + 13y9

≤ 21r1 + 8r2 + 3r3 + 1r4 + 1r5

+ 1s6 + 2s7 + 5s8 + 13s9

+ (d26 + 2d27 + 5d28 + 13d29) x2

+ (d36 + 2d37 + 5d38) x3

+ (d46 + 2d47) x4

+ (d56) x5

+ (d6) x6

+ (d67 + d57) x7

+ (d68 + d58 + 3d48) x8

+ (d69 + d59 + 3d49 + 8d39) x9.

In our computational experiments, summarized in Section 5, we observe
that the coefficients of the variables are not very large in the facets that are
generated for the test instances.

4 Separation

From Proposition 4, there is a linear programming based separation al-
gorithm for ULSB, which according to Proposition 5 and Theorem 2 will
generate inequalities of type (10).

Proposition 7. The separation problem for (a positive multiple of) inequal-
ities (10) can be solved as a linear program (LP) with the objective

max
n∑

t=1

αtyt − (
n−1∑

t=1

σtst +
n−1∑

t=1

ρtrt +
n∑

k=1

n∑

t=1

δktdtxk), (52)

subject to (28)−(31) and εt = 0 for all t ∈ [1, n]. If for a given point
(y, x, s, r) the objective function value of the separation LP is unbounded,
then the direction of unboundedness given by an extreme ray of the LP iden-
tifies a violated inequality (10).

In Section 5, we summarize our computational experiments on using
the linear program in Proposition 7 to solve the separation problem for in-
equalities (10). Although Proposition 7 gives a polynomial-time separation
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algorithm for inequalities (10), it is preferable to have a combinatorial al-
gorithm to solve the separation problem in practice. Pochet and Wolsey
[8] give a separation heuristic for the special case of inequalities (10) where
ut = 1 for t ∈ S. Here, we give an exact algorithm for this special case.

Theorem 3. Separation problem for inequalities (10) for ut = 1 for all
t ∈ S can be solved in O(n4).

Proof. The inequalities (10) with ut = 1 for all t ∈ S can be rewritten as
∑

t∈S

yt −
∑

t∈S

d(k(t,1)+1)k′(t,1)xt −
∑

t∈L

rt −
∑

t∈R

st ≤ 0, (53)

For a given point (y, x, s, r), we find sets S ⊆ [1, n] and L,R ⊆ [0, n] such
that the left-hand side of (53) is maximized. We formulate this problem as
a longest-path problem on a directed acyclic (layered) network.

Consider a directed graph G = (V, A) with a source vertex 0 ∈ V and a
sink vertex (n+1) ∈ V . Let (i, j, tS , tL), (i, j, tS̄ , tL), (i, j, tS , tL̄), (i, j, tS̄ , tL̄) ∈
V for 0 ≤ i < t ≤ j ≤ n, where we let i be the largest period smaller than
t that is included in L and j be the smallest period greater than or equal
to t that is included in R. We let 0 ∈ L and n ∈ R. Let S̄ = [1, n] \ S and
L̄ = [1, n] \ L.

There is an arc (0, (0, j, 1W , 1Z)) ∈ A for each j ∈ [1, n],W ∈ {S, S̄}, Z ∈
{L, L̄} so that if the path includes this arc, then j ∈ R, 1 ∈ W ∪Z. Also, let
((i, n, nW , nL̄), (n + 1)) ∈ A for i ∈ [0, n− 1] and W ∈ {S, S̄} so that if the
longest path includes this arc, then n ∈ W . For 0 ≤ i < t < p ≤ n, j ∈ {t, p},
U,W ∈ {S, S̄} and Z ∈ {L, L̄}, the arc ((i, j, tU , tL), (t, p, (t+1)W , (t+1)Z))
is in A and if the longest path includes this arc, then t ∈ L, p ∈ R and
(t + 1) ∈ W ∪ Z. Also, for 0 ≤ i < t < p ≤ n, j ∈ {t, p}, U,W ∈ {S, S̄}
and Z ∈ {L, L̄}, the arc ((i, j, tU , tL̄), (i, p, (t + 1)W , (t + 1)Z)) is in A; if the
longest path includes this arc, then t ∈ L̄, p ∈ R and (t+1) ∈ W ∪Z. Figure
5 depicts G for n = 3.

Next, we assign length to the arcs in A. For each j ∈ [1, n], let the length
of the arc (0, (0, j, 1W , 1Z)) ∈ A be

c0,(0,j,1W ,1Z)) =





y1 − d1jx1 − sj if j = 1,W = S,Z ∈ {L, L̄}
y1 − d1jx1 if j > 1,W = S,Z ∈ {L, L̄}
−sj if j = 1,W = S̄, Z ∈ {L, L̄}
0 if j > 1,W = S̄, Z ∈ {L, L̄}.

Also let the length of the arcs ((i, n, nW , nZ), (n + 1)) ∈ A for i ∈ [0, n− 1]
and W ∈ {S, S̄} and Z ∈ {L, L̄} be zero.
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4
0

(0, 1, 1S, 1L)

(0, 1, 1S̄, 1L)

(0, 1, 1S, 1L̄)

(0, 1, 1S̄, 1L̄)

(0, 2, 1S, 1L̄)
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(0, 2, 2S, 2L)
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(0, 3, 2S, 2L)

(1, 2, 2S̄, 2L̄)

(1, 3, 2S, 2L)

(1, 3, 2S̄, 2L̄)

(0, 3, 3S, 3L̄)

(1, 3, 3S, 3L̄)

(2, 3, 3S̄, 3L̄)

Figure 5: Graph G for separation for inequalities (53).

For 0 ≤ i < t < p ≤ n, j ∈ {t, p}, and U,W ∈ {S, S̄}, let the length of
the arc a = ((i, j, tU , tL), (t, p, (t + 1)W , (t + 1)Z)) for Z ∈ {L, L̄} be

ca =





−rt + yt+1 − d(t+1)pxt+1 − sp if p = t + 1, U ∈ {S, S̄},W = S

−rt + yt+1 − d(t+1)pxt+1 if p > t + 1, U ∈ {S, S̄},W = S

−rt − sp if p = t + 1, U ∈ {S, S̄},W = S̄
−rt if p > t + 1, U ∈ {S, S̄},W = S̄.

Finally, for 0 ≤ i < t < p ≤ n, j ∈ {t, p} and U,W ∈ {S, S̄}, the arc
a = ((i, j, tU , tL̄), (i, p, (t + 1)W , (t + 1)Z)) for Z ∈ {L, L̄} has length

ca =





yt+1 − d(i+1)pxt+1 − sp if p = t + 1, U ∈ {S, S̄},W = S

yt+1 − d(i+1)pxt+1 if p > t + 1, U ∈ {S, S̄},W = S

−sp if p = t + 1, U ∈ {S, S̄},W = S̄
0 if p > t + 1, U ∈ {S, S̄},W = S̄.

We solve the longest path problem on this directed acyclic graph using
Dijkstra’s algorithm. There exists a violated inequality (10) if and only if
the longest path is strictly positive. Observe that G has O(n3) vertices and
O(n4) arcs. Because we solve a longest path problem on a directed acyclic
graph, the overall running time of the separation algorithm for inequality
(53) is O(n4).

For example, in Figure 5, the dashed path corresponds to the inequality

y1 + y2 + y3 ≤ d12x1 + d12x2 + d13x3 + r0 + s2 + s3,
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and the dotted path corresponds to the inequality

y1 + y3 ≤ d13x1 + d23x3 + r0 + r1 + s3.

Furthermore, separation for inequalities (10) with γt, βt ∈ {0, 1}, t ∈
[0, n] is easy when (L,R) is known. For given (L,R) where L = {k1, k2, . . . , kp} ⊆
[0, n] and R = {k′1, k′2, . . . , k′b} ⊆ [0, n], the separation for inequalities (10)
can be done in O(n2). To see this, observe that if (L,R) is known, then
for each t ∈ [1, n] we know the values of qt = min{|{i ∈ L : i < t}|, |{i ∈
R : i ≥ t}|}, k(t, i) and k′(t, i), i ∈ [1, qt]. We let ut = argmax{jyt −
(
∑j

i=1 d(k(t,i)+1)k′(t,i))xt, j ∈ [1, qt]} and S = {t ∈ [k1 + 1, k′1] : utyt >∑ut
i=1 d(k(t,i)+1)k′(t,i)xt}.
Finally, for given S the separation problem for inequalities (10) with

γt, βt ∈ {0, 1}, t ∈ [0, n] in which ut = qt for all t ∈ S can be solved by
finding a minimum cost negative cycle in a digraph, which is polynomial [2].
Let H = (V,A) be a complete directed graph with V = {0, . . . , n}. The
arcs (k, t) ∈ A with k < t have cost st −

∑
j∈S∩[k+1,t](yj − djtxt) and the

arcs (k, t) ∈ A with k > t have cost rt +
∑

j∈S∩[t+2,k] d(t+1)(j−1)xj . If the
minimum cost negative elementary directed cycle, C, contains the arc (k, t)
for k < t, then let t ∈ R and if C contains the arc (k, t) for k > t, then
let t ∈ L. Finally, for each t ∈ S, ut is the cardinality of the cut across
(t − 1, t). This is a generalization of the separation algorithm in [10] given
for inequalities (13).

5 Computations

To test the effectiveness of the inequalities described in Section 2 in solving
ULSB in practice, we implement a branch-and-cut algorithm that incorpo-
rates inequalities (10). All computations are done on a 2 GHz Pentium
4/Linux workstation with 1 GB main memory.

The data used in the experiments has the following properties: Demands
are generated from discrete uniform distribution between 0 and 30. Pro-
duction costs are generated from discrete uniform distribution between 1
and 10. Let f be the ratio of production fixed cost to variable inventory
cost and c be the upper bound on the holding costs. To test the perfor-
mance of our branch-and-cut algorithm for varying cost parameters, we let
c ∈ {5, 10, 20, 50} and f ∈ {500, 1000, 2000, 5000} and generate five random
instances for each combination.

A summary of these experiments is reported in Tables 1 and 2. In the
third column of the tables we report the average integrality gap, which is
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100 × (zub − zinit)/zub, where zinit is the objective value of the initial
LP relaxation and zub is the objective value of the best integer solution.
In the fourth column we compare the average percentage improvement of
the integrality gap at the root node (% gapimp), which is 100 × (zroot −
zinit)/(zub− zinit), where zroot is the objective value of the LP at the
root node after the cuts are added. Columns cuts and nodes compare the
average number of cuts added, and the average number of branch-and-cut
nodes explored, respectively.

The first set of experiments summarized in Table 1 is on solving ULSB
with linear programming based exact separation for inequalities (10) given
in Proposition 7. Our goal in these experiments is to test the maximum coef-
ficients of the production, inventory and backlogging variables in inequalities
(10). For these instances, we let holding costs be discrete uniform random
variables between −c and c and the backorder costs to be discrete uniform
random variables between −2c and 2c with the restriction that gt + ht ≥ 0.
We use negative costs for this set of experiments because we would like to
test whether our inequalities are sufficient to solve ULSB as a linear program
under general costs. Note that without loss of generality, we can assume that
the production costs are nonnegative. The problem instances are solved with
the MIP solver of CPLEX1 Version 9.0. CPLEX cuts are disabled in the
experiments with the branch-and-cut algorithm using inequalities (10) (de-
noted by LSB) to underline the impact of the inequalities discussed in this
paper. However, in order to see how CPLEX cuts would perform we also
solve the same instances with the default settings of CPLEX (Def) without
adding any user cuts. We note that as the separation LP’s are large, the
exact separation is slow in practice. We are able to solve problem instances
with n = 50. Therefore, for these runs we do not report the solution times.

We note that our inequalities are enough to solve ULSB as a linear
program, so we do not report the percentage gap improvement of 100% and
the number of branch-and-bound nodes which is zero for all instances. Also,
in the last column of Table 1, denoted by umax, βmax and γmax, we report the
maximum coefficients of the production, inventory and backlogging variables
in inequalities (10), respectively. We observe that in all problems instances,
there exist violated facets where one or more of the continuous variables
have a coefficient that is greater than one.

In the second set of experiments, we test the effectiveness of our inequal-
ities in solving larger problem instances. We use similar data as before,
except, we let all holding costs be discrete uniform random variables be-

1CPLEX is a trademark of ILOG, Inc.
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Table 1: ULSB with inequalities (10) – exact separation.
% gapimp cuts nodes Coeff. in (10)

f c gap
Def Def LSB Def umax βmax γmax

5 50.7 67.1 68.4 309.4 82.4 3 3 2
10 60.3 69.6 71.6 312.2 73.8 2 2 2500
20 88.0 78.5 71.0 216.6 53.4 3 2 2
50 57.7 76.5 72.8 184.6 22.4 3 3 2

5 48.1 59.7 53.2 301.6 77.0 3 2 2
10 57.9 61.7 64.4 423.4 152.0 5 2 21000
20 77.8 64.4 68.6 344.4 111.8 5 2 2
50 193.4 74.6 72.2 276.8 77.0 3 3 2

5 46.4 54.7 50.4 253.0 62.0 3 3 2
10 52.9 57.9 53.6 358.0 58.2 3 2 22000
20 70.0 55.2 60.0 383.6 136.8 2 2 2
50 96.0 63.6 69.4 358.6 69.4 4 2 2

5 44.1 40.4 39.4 195.6 40.0 4 2 1
10 47.8 59.1 40.4 235.4 33.6 3 2 15000
20 60.2 53.3 45.6 340.0 75.2 4 2 2
50 73.2 50.4 62.4 482.6 173.6 5 2 2

Average 70.3 61.7 60.2 311.0 81.2 3.4 2.3 1.9

tween 1 and c and backlogging costs be discrete uniform random variables
between 1 and 2c. To solve larger problem instances, we propose a heuris-
tic based on the algorithm given in Theorem 3 for inequalities (10) with
ut, γt, βt ∈ {0, 1}. This heuristic relies on the observation that, in most
cases, the production in a period is not used to satisfy demands in much
earlier or much later periods. This observation is related to approximate
extended formulations [13], however, the inequalities proposed in our study
are in the original space of the variables. Instead of solving the separation
problem exactly — an O(n4) running time — we solve a truncated version
of the separation problem over intervals of length 10. In other words, for
all k ∈ [0, n − 10] we let k be the smallest period included in L, k + 10 be
the largest period included in R and we let S ⊆ [k + 1, k + 10]. Therefore,
the network depicted in Figure 5 has only 10 layers. We report our results
for n = 150 in Table 2. In the last column of Table 2 we report the average
CPU time elapsed (in seconds) if the problem is solved within one hour time
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Table 2: ULSB with inequalities (10) – heuristic separation.
% gapimp cuts nodes time (endgap)

f c gap
Def LSB Def LSB Def LSB Def LSB

5 67.6 63.7 97.5 447.2 2332.6 463533.4 16.0 585.2 83.1
10 73.5 75.3 96.4 448.4 2296.0 166849.6 20.4 216.7 80.7500
20 79.4 86.5 97.4 407.8 2053.4 18279.0 18.4 22.0 69.2
50 85.5 96.3 98.5 389.2 1754.2 471.2 2.2 1.1 45.0

5 68.9 51.3 95.0 423.0 2356.4 470315.0 35.2 572.3 91.7
10 75.2 62.1 95.6 458.4 2454.4 582288.0 58.4 766.6 104.21000
20 81.4 74.1 96.7 463.0 2347.8 296556.8 26.0 375.1 87.4
50 87.4 88.5 97.1 392.6 2087.6 48867.4 26.0 57.0 67.7

5 69.2 39.5 92.8 401.0 2506.8 305299.0 53.6 358.1 100.2
10 75.2 49.3 94.0 466.2 2585.8 722851.6 46.2 881.4 107.62000
20 81.4 60.5 95.8 481.2 2580.4 800190.0 37.2 1070.8 111.1
50 87.9 77.6 96.5 453.4 2322.8 245854.0 22.2 283.3 78.4

5 68.2 28.9 80.6 301.8 2150.2 145212.8 646.6 159.4 110.0
10 73.2 35.1 89.9 381.8 2596.6 405617.2 103.8 460.0 102.15000
20 79.6 43.2 92.6 449.0 2849.4 1535737.0 112.4 1844.2 (0.4) 142.1
50 86.6 59.8 95.0 442.4 2563.0 1120095.4 39.6 1207.1 (0.7) 100.7

Average 77.5 62.0 94.5 425.4 2364.8 458001.1 79.0 553.8 (0.1) 92.6

limit. Otherwise, we also report, in parenthesis, the average percentage gap
between the best lower bound and the best integer solution found in the
search tree (endgap).

All problem instances can be solved within a few minutes with our in-
equalities, whereas some problem instances cannot be solved within an hour
time limit with CPLEX. There are only three combinations of parameters
where CPLEX has a faster performance (by about half a minute). How-
ever, for example, for problem parameters f = 5000 and c = 20 for which
CPLEX takes on average about half an hour, the branch-and-cut algorithm
using our inequalities takes about two minutes. We note that the percentage
gap improvement using our inequalities and an efficient separation heuristic
is on average 95%. This reduces the number of branch-and-bound nodes
to be explored dramatically, from hundreds of thousands of nodes to 79 on
average.

In sum,
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(a) Inequalities with general integer coefficients on some of production,
inventory and backlogging variables are necessary. Earlier work con-
siders general integer coefficients only on a restricted choice of the
production variables.

(b) The incorporation of inequalities (10) with the proposed separation
heuristic improves the performance of the branch-and-cut algorithm
significantly, in most instances.

6 Concluding Remarks

In this paper, we give a class of facets for ULSB that subsumes previously
known classes of inequalities. We show that adding the proposed facets to
the formulation gives an explicit description of the convex hull of solutions
to ULSB in its natural space. In addition, we give the first polynomial-time
combinatorial separation algorithm for the special case of our inequalities
that are equivalent to those in [8].
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