Skip to main content
Log in

An affine-scaling interior-point CBB method for box-constrained optimization

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We develop an affine-scaling algorithm for box-constrained optimization which has the property that each iterate is a scaled cyclic Barzilai–Borwein (CBB) gradient iterate that lies in the interior of the feasible set. Global convergence is established for a nonmonotone line search, while there is local R-linear convergence at a nondegenerate local minimizer where the second-order sufficient optimality conditions are satisfied. Numerical experiments show that the convergence speed is insensitive to problem conditioning. The algorithm is particularly well suited for image restoration problems which arise in positron emission tomography where the cost function can be infinite on the boundary of the feasible set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike H. (1959). On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. Tokyo 11: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  2. Barzilai J. and Borwein J.M. (1988). Two point step size gradient methods. IMA J. Numer. Anal. 8: 141–148

    Article  MATH  MathSciNet  Google Scholar 

  3. Birgin E.G., Biloti R., Tygel M. and Santos L.T. (1999). Restricted optimization: a clue to a fast and accurate implementation of the common reflection surface stack method. J. Appl. Geophys. 42: 143–155

    Article  Google Scholar 

  4. Birgin E.G., Chambouleyron I. and Martínez J.M. (1999). Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 151: 862–880

    Article  MATH  Google Scholar 

  5. Birgin E.G., Martínez J.M. and Raydan M. (2000). Nonmonotone spectral projected gradient methods for convex sets. SIAM J. Optim. 10: 1196–1211

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang, J.-H., Anderson, J.M.M., Mair, B.A.: An accelerated penalized maximum likelihood algorithm for positron emission tomography. IEEE Trans. Nucl. Sci. 54(5): 1648–1659

  7. Chang J.-H., Anderson J.M.M. and Votaw J.R. (2004). Regularized image reconstruction algorithms for positron emission tomography. IEEE Trans. Med. Imag. 23: 1165–1195

    Article  Google Scholar 

  8. Coleman T.F. and Li Y. (1994). On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Prog. 67: 189–224

    Article  MathSciNet  Google Scholar 

  9. Coleman T.F. and Li Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6: 418–445

    Article  MATH  MathSciNet  Google Scholar 

  10. Coleman T.F. and Li Y. (2000). A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints. Math. Program. 88: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  11. Dai Y.H. (2003). Alternate stepsize gradient method. Optimization 52: 395–415

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai Y.H. and Fletcher R. (2005). Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100: 21–47

    Article  MATH  MathSciNet  Google Scholar 

  13. Dai Y.H., Hager W.W., Schittkowski K. and Zhang H. (2006). The cyclic Barzilai–Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26: 604–627

    Article  MATH  MathSciNet  Google Scholar 

  14. Dai Y.H. and Zhang H. (2001). An adaptive two-point stepsize gradient algorithm. Numer. Algorithms 27: 377–385

    Article  MATH  MathSciNet  Google Scholar 

  15. Dikin I.I. (1967). Iterative solution of problems of linear and quadratic programming. Sov. Math. Dokl. 8: 674–675

    MATH  Google Scholar 

  16. Dostál Z. (1997). Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7: 871–887

    Article  MATH  MathSciNet  Google Scholar 

  17. Fletcher, R.: On the Barzilai–Borwein method. Technical Report, Department of Mathematics, University of Dundee, Dundee (2001)

  18. Friedlander A., Martínez J.M., Molina B. and Raydan M. (1999). Gradient method with retards and generalizations. SIAM J. Numer. Anal. 36: 275–289

    Article  MathSciNet  Google Scholar 

  19. Glunt W., Hayden T.L. and Raydan M. (1993). Molecular conformations from distance matrices. J. Comput. Chem. 14: 114–120

    Article  Google Scholar 

  20. Hager W.W. and Zhang H. (2006). A new active set algorithm for box constrained optimization. SIAM J. Optim. 17: 526–557

    Article  MATH  MathSciNet  Google Scholar 

  21. Heinkenschloss M., Ulbrich M. and Ulbrich S. (1999). Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86: 615–635

    Article  MATH  MathSciNet  Google Scholar 

  22. Johnson C.A., Seidel J. and Sofer A. (2000). Interior-point methodology for 3-D PET reconstruction. IEEE Trans. Med. Imag. 19: 271–285

    Article  Google Scholar 

  23. Kanzow C. and Klug A. (2006). On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35: 177–197

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaufman L. (1987). Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans. Med. Imag. 6: 37–51

    Article  Google Scholar 

  25. Kaufman L. (1993). Maximum likelihood, least squares and penalized least squares for PET. IEEE Trans. Med. Imag. 12: 200–214

    Article  Google Scholar 

  26. Raydan M. (1997). The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7: 26–33

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang H. and Hager W.W. (2004). A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14: 1043–1056

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhang H. and Hager W.W.  (2005). PACBB: a projected adaptive cyclic Barzilai–Borwein method for box constrained optimization. In: Hager, W.W., Huang, S.-J., Pardalos, P.M. and Prokopyev, O.A. (eds) Multiscale Optimization Methods and Applications, pp 387–392. Springer, New York

    Google Scholar 

  29. Zhang, Y.: Interior-point gradient methods with diagonal-scalings for simple-bound constrained optimization. Technical Report, TR04-06, Department of Computational and Applied Mathematics. Rice University, Houston (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hager.

Additional information

This material is based upon work supported by the National Science Foundation under Grants 0203270, 0619080, and 0620286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, W.W., Mair, B.A. & Zhang, H. An affine-scaling interior-point CBB method for box-constrained optimization. Math. Program. 119, 1–32 (2009). https://doi.org/10.1007/s10107-007-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0199-0

Keywords

Mathematics Subject Classfication (2000)

Navigation