Skip to main content

Advertisement

Log in

Non-Zenoness of a class of differential quasi-variational inequalities

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

The Zeno phenomenon of a switched dynamical system refers to the infinite number of mode switches in finite time. The absence of this phenomenon is crucial to the numerical simulation of such a system by time-stepping methods and to the understanding of the behavior of the system trajectory. Extending a previous result for a strongly regular differential variational inequality, this paper establishes that a certain class of non-strongly regular differential variational inequalities is devoid of the Zeno phenomenon. The proof involves many supplemental results that are of independent interest. Specialized to a frictional contact problem with local compliance and polygonal friction laws, this non-Zenoness result is of fundamental significance and the first of its kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anitescu M.: Optimization-based simulation of nonsmooth dynamics. Math. Program. Ser. A 105, 113–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anitescu M., Hart G.D.: A fixed-point iteration approach for multibody dynamics with contact and small friction. Math. Program. 101, 3–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anitescu M., Hart G.D.: Solving nonconvex problems of multibody dynamics with contact and small friction by sequential convex relaxation. Mech. Based Des. Mach. Struct. 31, 335–356 (2003)

    Article  Google Scholar 

  4. Anitescu M., Potra F.A.: Time-stepping schemes for stiff multi-rigid-body dynamics with contact and friction. Int. J. Numer. Methods Eng. 55, 753–784 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anitescu M., Potra F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–247 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Anitescu M., Potra F.A., Stewart D.: Time-stepping for three-dimensional rigid-body dynamics. Comput. Methods Appl. Mech. Eng. 177, 183–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brogliato B.: Nonsmooth Mechanics, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  8. Brogliato B., ten Dam A.A., Paoli L., Génot F., Abadie M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mech. Rev. 55, 107–150 (2002)

    Article  Google Scholar 

  9. Brunovsky P.: Regular synthesis for the linear-quadratic optimal control problem with linear control constraints. J. Diff. Eqs. 38, 344–360 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Çamlibel M.K., Heemels W.P.M.H., Schumacher J.M.: On linear passive complementarity systems. Eur. J. Control 8, 220–237 (2002)

    Article  Google Scholar 

  11. Çamlibel K., Pang J.S., Shen J.L.: Conewise linear systems: non-Zenoness and observability. SIAM J. Control Optim. 45, 1769–1800 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cottle R.W., Pang J.S., Stone R.E.: The Linear Complementarity Problem. Academic Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Facchinei F., Pang J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  14. Glocker Ch.: Spatial friction as standard NLCP. Z. Angew. Math. Mech. 81(Suppl. 3), S665–S666 (2001)

    Google Scholar 

  15. Johansson K.H., Egersted M., Lygeros J., Sastry S.: On the regularization of Zeno hybrid automata. Syst. Control Lett. 38, 141–150 (1999)

    Article  MATH  Google Scholar 

  16. Khalil H.: Nonlinear Systems, 2nd edn. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  17. Lu, S., Robinson, S.M.: Variational inequalities over perturbed polyhedral convex sets. Math. Oper. Res. (2008, in press)

  18. Pang, J.S.: Frictional contact models with local compliance: semismooth formulation. Z. Angew. Math. Mech. (under review)

  19. Pang J.S., Kumar V., Song P.: Convergence of time-stepping methods for initial and boundary value frictional compliant contact problems. SIAM J. Numer. Anal. 43, 2200–2226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pang, J.S., Kumar, V., Trinkle, J.C.: On a continuous-time quasistatic frictional contact model with local compliance. Int. J. Numer. Methods Eng. (under review)

  21. Pang J.S., Ralph D.: Piecewise smoothness, local invertibility, and parametric analysis of normal maps. Math. Oper. Res. 21, 401–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pang J.S., Shen J.: Strongly regular differential variational systems. IEEE Trans. Autom. Control 52, 242–255 (2007)

    Article  MathSciNet  Google Scholar 

  23. Pang, J.S., Stewart, D.: Differential variational inequalities. Math. Program. (2008) doi:10.1007/s10107-006-0052-x

  24. Pang J.S., Trinkle J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73, 199–226 (1996)

    Article  MathSciNet  Google Scholar 

  25. Pfeiffer F., Glocker Ch.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  26. Potra, F.A., Anitescu, M., Gavrea, B., Trinkle, J.: A linearly implicit trapezoidal method for stiff multibody dynamics with contact, joints and friction. Int. J. Numer. Methods Eng. (2008, in print)

  27. Robinson S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Scholtes, S.: Introduction to piecewise differentiable equations. Technical report, Universitat Karlsruhe, Institut für Statistik und Mathematische Wirtschaftstheorie, No. 53/1994 (1994)

  29. Simic S.N., Johansson K.H., Lygeros J., Sastry S.: Toward a geometric theory of hybrid systems. Dyn. Contin. Discrete. Impulsive Syst. Ser. B 12, 649–6873 (2005)

    MATH  MathSciNet  Google Scholar 

  30. Shen J., Pang J.S.: Linear Complementarity systems: Zeno states. SIAM J. Control Optim. 44, 1040–1066 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shen, J., Pang, J.S.: Linear complementarity systems with singleton properties: non-Zenoness. In: Proceedings of the 2007 American Control Conference, New York, July 2007

  32. Song, P.: Modeling, analysis and simulation of multibody systems with contact and friction. Ph.D. Thesis, Department of Mechancial Engineering, University of Pennsylvania, Philadelphia (2002)

  33. Song P., Kraus P., Kumar V., Dupont P.: Analysis of rigid body dynamic models for simulation of systems with frictional contacts. ASME J. Appl. Mech. 68, 118–128 (2001)

    Article  MATH  Google Scholar 

  34. Song, P., Kumar, V.: Distributed compliant model for efficient dynamic simulation of systems with frictional contacts. In: Proceedings of the 2003 ASME Design Engineering Technical Conferences and Information in Engineering Conference, Chicago, 2–6 September

  35. Song, P., Kumar, V., Trinkle, J.C., Pang, J.S.: A family of models for manipulation planning. In: Proceedings of the 6th IEEE International Symposium on Assembly and Task Planning. Montréal, Canada (2005)

  36. Song P., Pang J.S., Kumar V.: A semi-implicit time-stepping model for frictional compliant contact problems. Int. J. Numer. Methods Eng. 60, 2231–2261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stewart D.E.: Convergence of an implicit time-stepping scheme for rigid body dynamics. Arch. Ration. Mech. Anal. 145, 215–260 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stewart D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Stewart D.E., Trinkle J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sussmann H.J.: Bounds on the number of switchings for trajectories of piecewise analytic vector fields. J. Differ. Equ. 43, 399–418 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  41. Trinkle J.C., Pang J.S., Sudarsky S., Lo G.: On dynamic multi-rigid-body contact problems with Coulomb friction. Z. Angew. Math. Mech. 77, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Trinkle J.C., Tzitzoutis J., Pang J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts: theory and examples. Philos. Trans. Math. Phys. Eng. Sci. Ser. A 359, 2575–2593 (2001)

    Article  MATH  Google Scholar 

  43. Zhang J., Johansson K.H., Lygeros J., Sastry S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11, 435–451 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanshan Han.

Additional information

This work was based on research partially supported by the National Science Foundation under grants DMS-0508986 and IIS-0413227 awarded to Rensselaer Polytechnic Institute, where the original version of the paper was first written. The revision was based on research partially supported by the National Science Foundation under grant DMS awarded to the University of Illinois at Urbana-Champaign.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L., Pang, JS. Non-Zenoness of a class of differential quasi-variational inequalities. Math. Program. 121, 171–199 (2010). https://doi.org/10.1007/s10107-008-0230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0230-0

Mathematics Subject Classification (2000)

Navigation