Skip to main content
Log in

A class of nonlinear nonseparable continuous knapsack and multiple-choice knapsack problems

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper considers a general class of continuous, nonlinear, and nonseparable knapsack problems, special cases of which arise in numerous operations and financial contexts. We develop important properties of optimal solutions for this problem class, based on the properties of a closely related class of linear programs. Using these properties, we provide a solution method that runs in polynomial time in the number of decision variables, while also depending on the time required to solve a particular one-dimensional optimization problem. Thus, for the many applications in which this one-dimensional function is reasonably well behaved (e.g., unimodal), the resulting algorithm runs in polynomial time. We next develop a related solution approach to a class of continuous, nonlinear, and nonseparable multiple-choice knapsack problems. This algorithm runs in polynomial time in both the number of variables and the number of variants per item, while again dependent on the complexity of the same one-dimensional optimization problem as for the knapsack problem. Computational testing demonstrates the power of the proposed algorithms over a commercial global optimization software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Balas E., Zemel E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1132–1154 (1980)

    Article  MathSciNet  Google Scholar 

  2. Bitran G.R., Hax A.C.: Dissagregation and resource allocation using convex knapsack problems with bounded variables. Manag. Sci. 27, 431–441 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bretthauer K.M., Shetty B.: The nonlinear resource allocation problem. Oper. Res. 43(4), 670–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bretthauer K.M., Shetty B.: The nonlinear knapsack problem—algorithms and applications. Eur. J. Oper. Res. 138, 459–472 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bretthauer K.M., Shetty B.: A pegging algorithm for the nonlinear resource allocation problem. Comput. Oper. Res. 29(5), 505–527 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brucker P.: An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3(3), 163–166 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caprara A., Pisinger D., Toth P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11(2), 125–137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ceselli A., Righini G.: An optimization algorithm for a penalized knapsack problem. Oper. Res. Lett. 34, 394–404 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dussault J.P., Ferland J.A., Lemair B.: Convex quadratic programming with one constraint and bounded variables. Math. Program. 36, 90–104 (1986)

    Article  MATH  Google Scholar 

  10. Dyer M.: An O(n) algorithm for the multiple-choice knapsack problem. Math. Program. 29, 57–63 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freling R., Romeijn H.E., Romero Morales D., Wagelmans A.P.M.: A branch-and-price algorithm for the multi-period single-sourcing problem. Oper. Res. 51(6), 922–939 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallo G., Hammer P.L., Simeone B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)

    MATH  MathSciNet  Google Scholar 

  13. Garey M.R., Johnson D.S.: Computers and Intractability. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Geunes J., Shen Z.-J., Romeijn H.E.: Economic ordering decisions with market selection flexibility. Nav. Res. Logist. 51(1), 117–136 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harris, F.W.: How many parts to make at once. Fact. Mag. Manag. 10, 135–136, 152 (1913)

    Google Scholar 

  16. Hawawini G.A.: A mean-standard deviation exposition of the theory of the firm under uncertainty: a pedagogical note. Am. Econ. Rev. 68(1), 194–202 (1978)

    Google Scholar 

  17. Hochbaum D.S., Hong S.P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69, 269–309 (1995)

    MathSciNet  Google Scholar 

  18. Horowitz E., Sahni S.: Computing partitions with applications to the knapsack problem. J. ACM 21, 277–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horst R., Tuy H.: Global Optimization. Springer, Berlin (1993)

    Google Scholar 

  20. Huang W., Romeijn H.E., Geunes J.: The continuous-time single-sourcing problem with capacity expansion opportunities. Nav. Res. Logist. 52(3), 193–211 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ibaraki, T., Katoh , N. (eds): Resource Allocation Problems. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  22. Kiwiel K.C.: Breakpoint searching algorithms for the continuous quadratic knapsack problem. Math. Program. 112, 473–491 (2007)

    Article  MathSciNet  Google Scholar 

  23. Klastorin T.D.: On a discrete nonlinear and nonseparable knapsack problem. Oper. Res. Lett. 9, 233–237 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martello S., Toth P.: An upper bound for the zero-one knapsack problem and a branch and bound algorithm. Eur. J. Oper. Res. 1, 169–175 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Martello S., Toth P.: Knapsack Problems, Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  26. Moré J.J., Vavasis S.A.: On the solution of concave knapsack problems. Math. Program. 49, 397–411 (1991)

    Article  MATH  Google Scholar 

  27. Nauss R.M.: An efficient algorithm for the 0-1 knapsack problem. Manag. Sci. 23, 27–31 (1976)

    Article  MATH  Google Scholar 

  28. Neumaier A., Shcherbina O., Huyer W., Vinko T.: A comparison of complete global optimization solvers. Math. Program. Ser. B 103, 335–356 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pang J.: A new and efficient algorithm for a class of portfolio optimization problems. Oper. Res. 28(3), 754–767 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pardalos P.M., Kovoor N.: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bound constraints. Math. Program. 46, 321–328 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pardalos P.M., Ye Y., Han C.: Algorithms for the solution of quadratic knapsack problems. Linear Algebra Appl. 152, 69–91 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Robinson A.G., Jiang N., Lerme C.S.: On the continuous quadratic knapsack problem. Math. Program. 55, 99–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Romeijn H.E., Geunes J., Taaffe K.: On a nonseparable convex maximization problem with continuous knapsack constraints. Oper. Res. Lett. 35(2), 172–180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saha A.: Risk preference esitmation in the nonlinear mean standard deviation appraoch. Econ. Inq. 35, 770–782 (1997)

    Article  Google Scholar 

  35. Sharkey T.C., Romeijn H.E.: Simplex-inspired algorithms for solving a class of convex programming problems. Optim. Lett. 2(4), 455–481 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shen Z.J., Coullard C., Daskin M.S.: A joint location-inventory model. Transp. Sci. 37(1), 40–55 (2003)

    Article  Google Scholar 

  37. Sinha P., Zoltners A.A.: The multiple-choice knapsack problem. Oper. Res. 27(3), 503–515 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  38. Taaffe K., Geunes J., Romeijn H.E.: Target market selection with demand uncertainty: the selective newsvendor problem. Eur. J. Oper. Res. 189, 987–1003 (2008)

    Article  MATH  Google Scholar 

  39. Teo C.-P., Shu J.: Warehouse-retailer network design problem. Oper. Res. 52(3), 396–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zemel E.: An O(n) algorithm for linear multiple choice knapsack problems and related problems. Inf. Process. Lett. 18, 123–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Sharkey.

Additional information

The work of T. C. Sharkey was supported by a National Science Foundation Graduate Research Fellowship. The work of H. E. Romeijn was supported by the National Science Foundation under grant no. DMI-0355533. The work of J. Geunes was supported by the National Science Foundation under grants no. DMI-0355533 and DMI-0322715.

Electronic Supplementary Material

Below is the Electronic Supplementary Material.

ESM 1 (PDF 102 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey, T.C., Romeijn, H.E. & Geunes, J. A class of nonlinear nonseparable continuous knapsack and multiple-choice knapsack problems. Math. Program. 126, 69–96 (2011). https://doi.org/10.1007/s10107-009-0274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0274-9

Mathematics Subject Classification (2000)

Navigation