Skip to main content
Log in

An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barahona F., Jünger M., Reinelt G.: Experiments in quadratic 0-1 programming. Math. Program. 44, 127–137 (1989)

    Article  MATH  Google Scholar 

  2. Barvinok A.: Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geometry 13, 189–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson S.J., Ye Y., Zhang X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benson S.J., Ye Y.: Algorithm 875: DSDP5—software for semidefinite programming. ACM Trans. Math. Softw. 34(3), 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  5. Ben-Tal A., Teboulle M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72, 51–63 (1996)

    MathSciNet  Google Scholar 

  6. Bertsekas D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  7. Burer S., Monteiro R.D.C., Zhang Y.: Rank-two relaxation heuristics for maxcut and other binary quadratic programs. SIAM J. Optim. 12(2), 503–521 (2002)

    Article  MathSciNet  Google Scholar 

  8. Burer S., Monteiro R.D.C.: A projected gradient algorithm for solving the maxcut SDP relaxation. Optim. Methods Softw. 15, 175–200 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burer S., Monteiro R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. Ser. B 95, 329–357 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burer S., Monteiro R.D.C.: Local minima and convergence in low-rank semidefinite programming. Math. Program. Ser. A 103, 427–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delorme C., Poljak S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(3), 557–574 (1993)

    Article  MathSciNet  Google Scholar 

  12. De Simone C.: The cut polytope and the Boolean quadric polytope. Discrete Appl. Math. 79, 71–75 (1989)

    MathSciNet  Google Scholar 

  13. Di Pillo G., Grippo L.: Exact penalty functions in constrained optimization problems. SIAM J. Control Optim. 27(6), 1333–1360 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dolan E.D., Morè J.J.: Benchmarking optimization software with performance profile. Math. Program. Ser. A 91, 201–213 (2002)

    Article  MATH  Google Scholar 

  15. Fletcher, R.: A class of methods for nonlinear programming with termination and convergence properties. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 157–173. North-Holland, Amsterdam (1970)

  16. Fujisawa K., Fukuda M., Kojima M., Nakata K.: Numerical evaluation of SDPA (Semidefinite Programming Algorithm). In: Frenk, H., Roos, K., Terlaky, T., Zhang, S.(eds) High Performance Optimization., pp. 267–301. Kluwer, Dordrecht (1999)

    Google Scholar 

  17. Goemans M.X.: Semidefinite programming in combinatorial optimization. Math. Program. 79, 143–161 (1997)

    MathSciNet  Google Scholar 

  18. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Grippo, L., Palagi, L., Piccialli, V.: An unconstrained minimization method for solving low rank SDP relaxations of the maxcut problem. DIS Tech. Rep. 07-07, La Sapienza Università di Roma (2007)

  20. Grippo, L., Palagi, L., Piccialli, V.: Necessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems. J. Glob. Optim. doi:10.1007/s10898-008-9328-4

  21. Grippo L., Sciandrone M.: Nonmonotone globalization techniques for the Barzilai-Borwein gradient method. Comput. Optim. Appl. 23, 143–169 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hestenes M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  23. Homer S., Peinado M.: Design and performance of parallel and distributed approximation algorithms for maxcut. J. Parallel Distrib. Comput. 46(1), 48–61 (1997)

    Article  Google Scholar 

  24. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  25. Horn R.A., Johnson C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1986)

    Google Scholar 

  26. Laurent M., Poljak S., Rendl F.: Connections between semidefinite relaxations of the maxcut and stable set problems. Math. Program. 77, 225–246 (1997)

    MathSciNet  Google Scholar 

  27. Monteiro R.D.C.: First- and second-order methods for semidefinite programming. Math. Program. 97, 209–244 (2003)

    MATH  MathSciNet  Google Scholar 

  28. Moré J.: Generalization of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  29. Nesterov, Yu., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

  30. Pataki G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Poljak S., Rendl F., Wolkowicz H.: A recipe for semidefinite relaxation for 0-1 quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs. In: Combinatorial Optimization. In: Cook, W., Lov’asz, L., Seymour, P. (eds.) DIMACS Series in Disc. Math. and Theor. Comp. Sci. AMS, Providence (1995)

  33. Powell M.J.D.: A method for nonlinear constraints in minimization problem. In: Fletcher, R.(eds) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  34. Rinaldi, G.: Rudy (1998). http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

  35. Stern R., Wolkowicz H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5(2), 286–313 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Piccialli.

Additional information

This work was partially supported by MIUR, Research program PRIN 2007-9PLLN7 Nonlinear Optimization, Variational Inequalities and Equilibrium Problems, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grippo, L., Palagi, L. & Piccialli, V. An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem. Math. Program. 126, 119–146 (2011). https://doi.org/10.1007/s10107-009-0275-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0275-8

Keywords

Mathematics Subject Classification (2000)

Navigation