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Abstract

The Steiner tree problem is a classical NP-hard optimingtimblem with a wide range of practical
applications. In an instance of this problem, we are giveruagdirected graptG = (V,E), a set of
terminals RC V, and non-negative costs for all edgese € E. Any tree that contains all terminals is
called aSteiner treethe goal is to find a minimum-cost Steiner tree. The nadeR are calledSteiner
nodes

The best approximation algorithm known for the Steiner fpegblem is due to Robins and Ze-
likovsky (SIAM J. Discrete Math, 2005); thegreedyalgorithm achieves a performance guarantee of
1+ '”73 ~ 1.55. The best knowlinear programmingLP)-based algorithm, on the other hand, is due to
Goemans and Bertsimas (Math. Programming, 1993) and ash@&vapproximation ratio of22/|R|.

In this paper we establish a link between greedy and LP-bagpbaches by showing that Robins and
Zelikovsky's algorithm has a natural primal-dual intefateon with respect to a nov@artition-based
linear programming relaxation. We also exhibit surprisingnections between the new formulation and
existing LPs and we show that the new LP is stronger than tiesied cut formulation.

An instance ishb-quasi-bipartiteif each connected component GiR has at mosb vertices. We
show that Robins’ and Zelikovsky’s algorithm has an appration ratio better than + '”73 for such
instances, and we prove that the integrality gap of our Ll%iwbeng and%.

1 Introduction

The Steiner tree problem is a classical problem in combiiatoptimization which owes its practical impor-
tance to a host of applications in areas as diverse as VL&rdaad computational biology. The problem is
NP-hard[[21], and Chlebik and Chlebikova show in [6] th& NP-hard even tapproximatethe minimum-
cost Steiner tree within any ratio better tt@] They also show that it is NP-hard to obtain an approximation
ratio better tharv%? in guasi-bipartiteinstances of the Steiner tree problem. These are instamegs¢h no
two Steiner vertices are adjacent in the underlying gi@ph

1.1 Greedy algorithms andr-Steiner trees

One of the first approximation algorithms for the Steinee fpeoblem is the well-knowminimum-spanning
tree heuristicwhich is widely attributed to Moore [14]. Moore’s algorithinas a performance ratio of 2 for
the Steiner tree problem and this remained the best knowirthmt1990s, when Zelikovsky [41] suggested
computing Steiner trees with a special structure, so cal8teiner trees Nearly all of the Steiner tree
algorithms developed since then usBteiner trees. We now provide a formal definition.
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Figure 1: The figure shows a Steiner tree in (i) and its decaitipo into full components in (ii). Square
and round nodes correspond to Steiner and terminal vertieggectively. This particular tree is 5-restricted.

A full Steiner componer(or full componenfor short) is a tree whose internal vertices are Steiner ver-
tices, and whose leaves are terminals. The edge set of aimgiStieee can be partitioned into full compo-
nents, bysplitting the tree at terminals: see Figlide 1 for an exampler-fmastricted)-Steiner trees defined
to be a Steiner tree all of whose full components have at mtatminals. We remark that such a Steiner
tree may in general not exist; for exampledfis a star with a Steiner vertex at its center and more than
terminals at its tips. To avoid this problem, each Steinetexer is clonedsufficiently many times: introduce
copies ofv and connect these copies to allWg neighbors in the graph. Copies of an edge have the same
cost as the corresponding original edgé&sin

Letopt andopt, be the cost of an optimum Steiner tree and that of an optisainer tree, respectively,
for the given instance. Define theSteiner ratiop, as the supremum afpt, /opt over all instances of the
Steiner tree problem. In[5], Borchers and Du provided arceslaaracterization gb,. The authors showed
thatp, = 1+ ©(1/logr) and hence thah, tends to 1 as goes to infinity.

Computing minimum-cost-Steiner trees is NP-hard foe> 4 [13], even if the underlying graph is quasi-
bipartite. The complexity status for= 3 is unresolved, and the case- 2 reduces to the minimum-cost
spanning tree problem.

In [41], Zelikovsky used 3-restricted full components tdaib an 1¥6-approximation for the Steiner
tree problem. Subsequently, a series of papers (eld.,[222@0]) improved upon this result. These efforts
culminated in a recent paper by Robins and Zelikovsky [34)imch the authors presented(m '”73) ~
1.55-approximation (subsequently referred tRas for ther-Steiner tree problem. They hence obtain, for
each fixed > 2, a 155p, approximation algorithm for the (unrestricted) Steineetproblem. We refer the
reader to two surveys in [10, 31].

1.2 Approaches based on linear programs

There is a large body of work on linear programming (LP)-baapproximation algorithms for problems
in combinatorial optimization. First, one findsgaod LP relaxation for the problem. Then one designs
an algorithm that produces a feasible integral solutionsghwost is provably close to that of an optimum
fractional solution for this relaxation. Many aspects dfatent LP relaxations for the Steiner tree problem
have been investigated (e.q.,[[3/ 8, 9,[10,[12[ 17, 27, 38, 39]

Many of these LPs have been fruitfully usedieger programmingpased approaches to exactly solve
instances of up to ten thousand nodes [28]. Another commemiarwhich LPs are useful is the design of
polynomial time approximation algorithms via thgmal-dual methode.g., [18]). In this method, a feasible
solution of the relaxation’s LP dual is used to obtain a loln@und on the optimum cost.

The “classical” LP-based approximation algorithms foriigte trees|[16] and forests1[2] use thadi-
rected cut relaxationf3] and have a performance guarantee ef%. This relaxation has an integrality gap

of 2— ﬁ and the analysis of these algorithms is therefore tightghBlf improved algorithms have since



been designed [23, 26] but do not achieve any constant aippeiign factor better than 2.

In the special case of quasi-bipartite graphs, Rajagopmidrnvazirani([32] and Rizz[[33] obtained%a
approximation for the Steiner tree problem in quasi-biagraphs. The analysis of [32] applies the primal-
dual method to théidirected cut relaxatiorjl2,[39]. The bidirected cut relaxation is widely conjeeitir
to have a worst-case integrality gap that is close to 1: thestAkainown example shows a gap of or‘gy
(see Sectioh]5). Despite its conjectured strength, thisne&axation has not yet given rise to a Steiner tree
algorithm with performance guarantee better than 2 in gérggaphs.

1.3 Contribution of this paper

In this paper we provide algorithmic evidence that the pHdwal method is useful for the Steiner tree
problem. We first present a novel LP relaxation for the Steiree problem. It uses full components to
strengthen a formulation based 8teiner partitioninequalities [[8]. We then show that the algoritikad of
Robins and Zelikovsky can be analyzed as a primal-dual itfgorusing this relaxation. We can show (see
Sectior[b) that our relaxation is strictly stronger thangtendardSteiner partition formulation; so the use
of full components strengthens the partition inequalities

In [34], Robins and Zelikovsky showed thRZ has a performance ratio of2lr9 for quasi-bipartite
graphs, and a performance ratio 0b3 in general graphs. We prove a natural interpolation aéehevo
results. For a Steiner vertax define itsSteiner neighborhood, 30 be the collection of vertices that are in
the same connected componenvas G\R. A graph isb-quasi-bipartiteif all of its Steiner neighborhoods
have cardinality at modi. Note, “1-quasi-bipartite” is synonymous with “quasi-aifite.” We prove:

Theorem 1. Given an undirected, b-quasi-bipartite graph-5V, E), terminals RC V, and a fixed constant
r > 2, AlgorithmRzZ returns a feasible Steiner tree T s.t.

1.279- opt,  b=1
o(T)< ¢ (1+12)-opt, . be{2,3,4}
(1+3n(3-2))opt, : b>5

Unfortunately, Theoreril 1 does not imply that our new reliaxahas a small integrality gap. Nonethe-
less, we obtain the following bounds, whéris b-quasi-bipartite:

: : : 2b+1
Theorem 2. Our new relaxation has an integrality gap betwe%and -

2 Spanning trees and a new LP relaxation for Steiner trees

Our work is strongly motivated by, and uses, results on tlamsing tree polyhedron due to Chopgra [7]. In
this section, we first discuss Chopra’s characterizatioth@fspanning tree polyhedron; then we mention a
primal-dual interpretation of Kruskal's spanning treeaaithm [25] based on Chopra’s formulation. Finally
we extend ideas in [8] 9] to derive a new LP relaxation for tterter tree problem.

2.1 The spanning tree polyhedron

To formulate the minimum-cost spanning tree (MST) problsmamLP, we associate a varialslewvith every
edgee € E. Each spanning tre€ corresponds to iticidence vector %, which is defined byl = 1 if T
containse andx! = 0 otherwise. Lefl denote the set of all partitions of the vertex ¥etand suppose that
e . Therank r(m) of mis the number of parts aft. Let E; denote the set of edges whose ends lie in
different parts ofrt. Consider the following LP.



min CeXe (Psp)
2

s.t. erzr(n)—l Ve,
ecktn

x> 0.

Chopral[T] showed that the feasible region af@Hs the convex hull of all incidence vectors of spanning
trees, and hence each basic optimal solution corresporamtoimum-cost spanning tree. Its dual LP is

max Zﬁ(r(n) —1)-yn (Dsp)
s.t. ZE yr<C Ve€E, (D)
y-z 0. 2

2.2 A primal-dual interpretation of Kruskal’'s MST algorith m

Kruskal's algorithm can be viewed as a continuous processtoue we start with an empty tree at time
0 and add edges as time increases. The algorithm terminatiesear * with a spanning tree of the input
graphG. In this section we show that Kruskal's method can be inttgat as a primal-dual algorithm (see
also [18]). At any time < T < 1* we keep a pai(x;,Yr), wherex; is a partial (possibly infeasible) 0-1
primal solution for [[Bg) andy; is a feasible dual solution fof @g). Initially, we letxeo =0 for allec E
andyno=0forall e .

Let G; denote the forest corresponding to partial solutipmnd letE; denote its edges, i.eE; = {e €
E | Xer = 1}. We then denote by the partition induced by the connected components;ofAt time 1, the
algorithm then increases; until a constraint of type (1) for edgec E \ E;; becomes tight. Assume that
this happens at tim& > 1. The dual update is

/
yn:r"[/ =T —T.

We then includee in our solution, i.e., we sete;» = 1. If more than one edge becomes tight at time

we can process these events in any arbitrary order. Thus,that we can pick any such tight edge first
in our solution. We terminate whe@; is a spanning tree. Chopral [7] showed that the final primal and
dual solutions have the same objective value (and are hestoead), and we give a proof of this fact for
completeness.

Theorem 3. Attimert*, algorithmMST finishes with a paifx;+,y+) of primal and dual feasible solutions to
(Psp and (Dsp), respectively, such that

egEcexer* = n;(rm) —1) Yo

Proof. Notice that for all edges € E;- we must hav&e = 5 g, Yrr+ @and hence, we can express the cost
of the final tree as follows:

c(Gr:) = ele* rcegEnymT* = n; |Ez« NEq “Ymre.

By construction the séf;- N E; has cardinality exactly(r) — 1 for all 7t < I with y;~ > 0. We obtain that
S ecE CeXerr = 3 ren ((7) — 1) - Y+ and this finishes the proof of the lemma. O

Observe that the above primal-dual algorithm is indeed kals algorithm: if the algorithm adds an
edgee at timer, theneis the minimum-cost edge connecting two connected compsmé s, .
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2.3 A new LP relaxation for Steiner trees

In an instance of the Steiner tree problem, a partitioof V is defined to be &teiner partitionwhen each
part of 7T contains at least one terminal. Chopra and R&o [8] intraditics notion and proved that, when
is the incidence vector of a Steiner tree anis a Steiner partition, the inequality

% Kz r(m—1 €)

holds. Thesé&teiner partition inequalitiesnotivate our approach.
In the following we useéG[U] to denote the subgraph &finduced by vertex séd, i.e., the graph with
vertex set) and such thaE(G[U]) = {uve E(G) |[ue U,ve U}. We make the following assumptions:

Al. G[R]is a complete graph and, for any two terminalg € R, ¢,y is the cost of a minimum-cost v-path
in G.

A2. For every Steiner vertex and every vertexi € S,UR, uvis an edge of5, andcyy is the cost of a
minimum-costu, v-path inG.

It is a well-known fact that these assumptions are w.l.d.g., any given instance can be transformed into
an equivalent instance that satisfies these assumptians ¢eel[36]). Note thadb-quasi-bipartiteness is
preserved by these assumptions.

Recall from Sectioh 111 that a full component is a tree whagermal vertices are Steiner vertices and
all of whose leaves are terminals. Also recall that a full pomentK is r-restricted if it contains at most
r terminals. Further, the edge-set of angestricted Steiner tre€ can be partitioned into-restricted full
components. From now on, let> 2 be an arbitrary fixed constant. Define

J :={K CR:2<|K| <r and there exists a full component whose terminal skt}is

We note that, for eacK € _#;, we can determine a minimum-cost full component with teahsetK in
polynomial time (e.g., by using the dynamic programmingpetgm of Dreyfus and Wagner [11]). Thus,
we can computer; in polynomial time as well.

For brevity we will abuse notation slightly and ulke= .%; interchangeably for a subset of the terminal
set and for a particular min-cost full component spanrfngGiven anyr-restricted Steiner tree, we may
assume that all of its full components are frof, without increasing its cost.

For each full componeni, we useE(K) to denote its edged/(K) to denote its vertices (including
Steiner vertices), anck to denote its cost. For a sef of full components we definE(.¥) := Uke.~E(K)
and similarlyV (.#) := Uke.#V (K). By assumption A1 we may assume that the full component femmainal
pair is just the edge linking those terminals, and by assiompgt2 we may assume that any Steiner node has
degree at least 3. We will also assume that any two distincedmponentK;,K, € % are edge disjoint
and internally vertex disjoint. This assumption is withtags of generality as each Steiner vertexamcan
be cloned a sufficient number of times to ensure this propEmally, we redefinés to be (V (%), E(#));
as aresult, the Steiner trees of the new graph correspohdtte¢stricted Steiner trees of the original graph.

Let % (T) denote the set of all full components of a Steiner ¥e€or an arbitrary subfamily” of the
full components’;, our new LP uses the following canonical decomposition ofean®r tree into elements
of E(.) and.# \.#. The idea, as we will explain later, is to iteratively sela¢good” sets .

Definition 4. If T is an r-restricted Steiner tree, itg’-decompositions the pair

(E(T)NE(S), 4(T)\5).



Observe that afte”-decomposing a Steiner trédewe have

Ce+ Z ck =¢(T).
cE(TIFE(Y)  KeA T\

We hence obtain a new higher-dimensional view of the Stefeerpolyhedron. Define

STE g := conv{x € {0,1}E(") x {0,1}\ : 3T € sTgrs.t.xis the incidence
vector of the-decomposition of }.

The following definitions are used to generalize Steinetiti@m inequalities to use full components. We
usel~ to denote the family of all partitions &f(.) UR.

Definition 5. Let m= {V4,...,Vp} € ¥ be a partition of the set RV (.#). Therank contributionof full
component ke % \.7 is defined as

rcg = |{i : K contains a terminal in | — 1.
TheSteiner rank (1) of rris defined as
r(m) := {the number of parts aff that contain terminals.

We describe below a new LP relaxati@of STg r- The relaxation has a variablg for eache €

E(.%) and a variable for eachK € .#;\.#. For a partitionrt € M, we defineEn(.%) to be the edges of
. whose endpoints lie in different parts @fi.e.,Ex(.%) = E(.¥) NEn.

min Y CGeXet Y kX (P&Y)
ecEw) Ke\o
st Y X+ ref x> P(m —1 vren” (4)
ecEqr() KeJi\
Xe, Xk > 0 Vee E(¥),K € 4\ (5)

Its LP dual has a variablg, for each partitiorrte M- :

max Y (Fm)—1)-yn e
nen
s.t > Y < Ce vecE (6)
e :ecEx(%)
> rek-ym< ok VK € 4\ (7)
nen”
yTT 2 07 VT[G ny (8)

We conclude this section with a proof that the (primal) LPndeed a relaxation of the convex hull of
.-decompositions for-restricted Steiner trees. Obviously, constraints (5) idhenever is the incidence
vector of the’-decomposition of a Steiner tree.

Lemma 6. The inequality@) is valid for STZ .



Proof. Suppose, for the sake of contradiction, that (4) is not v&i'rdSTg g for this . Then there must
exist a feasible Steiner trée with .-decompositionE(T) NE(.¥), % (T)\.#) whose incidence vector
x € ST¢ g violates [@) for some partitiorr € M~ Choose such a partitiomwith smallest rank.

Observe first thatt must be a Steiner partition. Otherwise, there is a Wardf 1 that contains no
terminals. Lel, be a part inrt that contains terminals and obtain a new partitidrirom 1T by mergingVy
andV,. AsV; contains no terminals, we clearly have = rcg for all full componentK € #;. Also, the
Steiner rank oftand is the same. Asg € E () implies thate € Ex(.¥), it follows that [3) is violated
for ' as well andr’ has smaller rank tharr which contradicts our choice.

Suppose tha¥ (T) C RUV(.¥). This would mean that# (T)\.# = 0 and in this case, Equation] (3)
implies that

Xe >r(m) — 1.
ecEn()
Thus, inequality[(4) holds forr andx which is a contradiction. _

We may therefore assume that (T)\.” contains some full compone#t. We obtain a new partition
" from 1T by merging those parts af that contain terminals spanned Ky The rank of this new patrtition is
r(m) —rcy. It follows from our choice ofr that

Xe+ S refx>r(n)—1=r(m—rcf-1
ecEy () Kep\s

Now note tha€ () C En(.#) andrcZ =0, and thatcf < rcf forallK € %\.7. The above inequality
therefore implies

Xe+ z TCRXK > z Xe+ Z rcElXK—FrcI’(lZr(l‘[)—rc|7<l—1—|—rc}7<I
ecEn(7)  KeA\S By (#)  Ket\F\(K}

which in turn proves that{4) holds farandx. This contradiction completes the proof of the lemma. O

3 An iterated primal-dual algorithm for Steiner trees

As described in Sectidn 2.2ST(G, ¢) denotes a call to Kruskal’s minimum-spanning tree algoritn graph
G with cost-functionc. It returns a minimum-cost spanning tréeand an optimal feasible dual solutign
for (Dsp. Letmst(G,c) denote the cost AfST(G,c). Sincec is fixed, in the rest of the paper we orgit
where possible for brevity. Let us also abuse notation aewitify each set” c 7 of full components with
the graph(V (.%),E(.¥)).

The main idea of the greedy algorithms|in|[34] 40, 41] is to ekt C % of full components such
thatMST(.’) has small cost relative topt,. Let (§) denote the collection of all pairs of terminals. The
algorithms all start with = (5) and then grow?, so for the rest of the paper we assume @tg B
henceE(G|R]) C E(.) andRC V().

The reason thatST is useful in our primal-dual framework is that we can rel&e dual prograni (BY)
on graph# to the dual prograrﬂ@. Lety be the feasible dual returned by a calM&T(.). We treaty
as a dual solution o by setting eaclyk to zero; note that constrain{s| (1) aid (2)[oEfpimply thaty
also meets constrain(s] (6) afdl (8)[o&fp If K is a full component such thdfl(7) does not holdyowe say
thatK is violatedbyy.

The primal-dual algorithm finds such a stin an iterative fashion. Initially,” is equal to(5). In each
iteration, we compute a minimum-cost spanning Te# the graph’. The dual solutiory corresponding to
this tree is converted to a dual lmz , and ify is feasible for, we stop. Otherwise, we add a violated
full component ta¥ and continue. The algorithm clearly terminates .¢ésis finite) and at termination, it
returns the final tre@ as an approximately-optimal Steiner tree.
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Algorithm[1 summarizes the above description. The greeglgrdhms in [34| 40, 41] differ only in how
K is selected in each iteration, i.e., in how the selectioretion f; : 27, — R is defined (see also [191.4]
for a well-written comparison of these algorithms).

Algorithm 1 A general iterative primal-dual framework for Steiner gee
1: Given: Undirected grapt® = (V,E), non-negative cosis for all edgese € E, constant > 2.
22 7%= (§),i==0
3: repeat

4 (Thy) :=MsST(S) '

5. if yl is not feasible fo(DZ;) then

6: Choose a violated full componeiit € % \.' such thatf;(K') is minimized
7: = UK}

8: endif

9 i=i+1

10: until y—1is feasible fo(DZ; ')
11: Letp=i—1and return(TP yP).

The following lemma is at the heart of our proof, and explairts/ our LP can be used to find cheap
Steiner trees.

Lemma 7. Let (T,y) = MST(.) and suppose that K is violated by y. Then adding K#oproduces a
cheaper spanning tree, i.e.,
mst (. U{K}) <c(T).

Proof. Assume thaMST(.¥) finishes at timer* and, once again, lefr; be the partition maintained by
Kruskal's algorithm at time & 1 < 1*.

Defineq = rc to be the rank-contribution ¢f with respect to the initial partition. Clearlyp{zf* =0as
all terminals are contained in the same connected compaé¢iner*. Then there are edges,...,eq €T
such that, for 1< i < g, the rank-contribution oK with respect to the partition maintained by Kruskal’s
algorithm drops frongq—i+ 1 toq—i when edges is added. Formally, for ¥ i < q, let 7§ and 77 be the
partition maintained by Kruskal’s algorithm before andeafidding edge;, then

rcg = rcﬁ + 1.

We denote the time of addition of edgeby T; for all i.
From the description of Kruskal's algorithm it follows that

q q T* -
i;ca :i;n :/0 redr

and the right-hand side of this equality is equapte.r.» rcfys. The fact that constrainfl(7) is violated for
K therefore implies that
Ce, + -+ Cey > Ck-

Finally observe that UE(K)\ {ey,...,eq} is a spanning tree of” U {K} and its cost is smaller than that of
T. O



Figure 2: The figure shows the Steiner tree instance fromr€ifjwith costs on the edges. The loss of the
Steiner tree in this figure is shown in thick edges. Its co8t is

3.1 Cutting losses: therZ selection function

A potential weak point in Algorithra]l is that once a full conmagmt is added to”, it is never removed. On
the other hand, if some cheap subgra&pleonnects all Steiner vertices of to terminals, then adding to
any Steiner tree gives us a tree that spdng’), i.e., we have so fdost at mostc(H) in the final answer.
This leads to the concept of thessof a Steiner tree which was first introduced by Karpinski aetikovsky
in [22].

Definition 8. Let G = (V/,E’) be a subgraph of G. THessL(G') is a minimum-cost set’EC E’ such that
every connected component(df,E”) contains a terminal. Let(G’) denote the cost daf(G').

See Figurd12 for an example of the loss of a graph. The aboeeisdi®n amounts to saying that
min{mst(.*") | ' 2 .} < opt, +1(¥). Consequently, our selection functidnin step 6 of the algo-
rithm should try to keep the loss small. The following factdsbecause full components.i#; meet only
at terminals.

Fact 9. If .7 C %, thenL(.”) = Uke»L(K) and sol(.¥’) = Ske.o 1(K).

For a set¥ of full components, whergis the dual solution returned IMgT(.¥), define

mst(#) = Y (M- Dyn ©)

e

If yis feasible for then by weak LP dualitypst (%) provides a lower bound ospt,. If yis infeasible
for 1; then which full component should we add? Robins and Zetikg propose minimizing the ratio
of the change in upper bound to the change in potential lomenth [9). Their selection functiofi is defined
by _ ,

_ 1(K) __USUK)) () (10)
~ mst() —mst(SU{K})  mst(S) —mst(STU{K})’

where the equality uses Fadt 9.

fi(K):

4  Analysis

Fix an optimumr-Steiner tre€l *. There are several steps in proving the performance gusaifitRobins
and Zelikovsky's algorithm, and they are encapsulatedarfaliowing result, whose complete proof appears
in Sectior( 6.

Lemma 10. The cost of the tree Areturned by Algorithni]1 is at most

mst(G[R],c) —optr>
1(T*) '

opt, +1(T*)-In <1+



The main observation in the proof of the above lemma can besuined as follows: from the discussion
in Sectior 2, we know that the tr@€ returned by Algorithni Il has cost

mst(#P) = ¥ (r(m)—1yh

menP

and the corresponding lower-bound @, returned by the algorithm is

mESP) = Y () k.

nen?

We know thatst(.#P) < opt, but how large is the difference betweest(.#P) andmst(7P)? We show
that the difference
(r(m) — ()Y
men”?
is exactly equal to the losTP) of treeTP. We then bound the loss of each selected full compoKkérand
putting everything together finally yields Lemind 10.
The following lemma states the performance guarantee ofr&®minimum-spanning tree heuristic as
a function of the optimum loss and the maximum cardinditf any Steiner neighborhood (&.

Lemma 11. Fix an arbitrary optimum r-restricted Steiner tree* TGiven an undirected, b-quasi-bipartite
graph G= (V,E), a set of terminals K V, and non-negative costs for all e € E, we have

nst(G[R], ) < Zopt, — gl(T*)

forany b> 1.

Proof. Recall that’# (T*) is the set of full components of trée*. Now consider a full componer
4 (T*). We will now show that there is a minimum-cost spanning trée&K] whose cost is at most
2cK — %1(K). By repeating this argument for all full compone#tss 7 (T*), adding the resulting bounds,
and applying Fadil9, we obtain the lemma.

For terminals, s € K, let Bs denote the unique s-path inK. Picku,v € K such that(R,,) is maximal.
Define thediameterA(K) := c(R,y). Do a depth-first search traversalloftarting inu and ending irv. The
resulting walk inK traverses each edge not By, twice while each edge oR,, is traversed once. Hence
the walk has cost& — A(K). Using standard short-cutting arguments it follows tha&t mhinimum-cost
spanning tree 06[K] has cost at most

2ck — A(K) (11)
as well.
Each Steiner vertese V (K)\R can connect to some terminag K at cost at mosf@. Hence, the cost
1(K) of the loss oK is at mosb#. In other words we havA(K) > %1(K). Plugging this into[(11) yields
the lemma. O

For small values ob we can obtain additional improvements via case analysis.

Lemma 12. Suppose k {3,4}. Fix an arbitrary optimum r-restricted Steiner tre€ TGiven an undirected,
b-quasi-bipartite graph G= (V,E), a set of terminals R V, and non-negative costsg for all e € E, we
have

mst(G[R],c) < 2opt, — 1(T").

10



(i) (ii)

Figure 3: The figure shows the two types of full componentsmihel 4. On the left is a full component
where the Steiner nodes form a path, and on the right is adalbonent where the Steiner nodes form a star
with 3 tips.

Proof. As in the proof of Lemm&11 it suffices to prove that, for eadhdomponentk € % (T*), there is a
minimum-cost spanning tree &K] whose cost is at mostR — 1(K), for then we can add the bound over
all suchK to get the desired result. For terminals € K, let P again denote the uniques-path inK.

Notice that the Steiner nodes (there are at robagtthem) in the full componerK either form a path, or
else there are 4 of them and they form a star.

Case 1: the Steiner nodes i form a path. Lek andy be the Steiner nodes on the ends of this path.uLet
(resp.v) be any terminal neighbour af(resp.y); see Figur€l3(i) for an example. Perform a depth-first
search irK starting fromu and ending a¥; the cost of this search iR — c(P,y). By standard short-
cutting arguments it follows thatcg — c(R,y) is an upper bound onst(G|K]). On the other hand,
sinceR,\{ux} is a candidate for the loss &f, we know thatl(K) < c(P,/\{ux}) < c(P,y). Therefore
we obtain

mst(G[K]) < 2ck — ¢(Pyy) < 2ck — 1(K). (12)

Case 2: the Steiner nodes iK form a star. Let the tips of the star Bgy,z and lett,u,v be any terminal
neighbours ok, y, z respectively; see Figufe 3(ii) for an example. Without lobgenerality, we may
assume thaty < ¢y, < C,. As before, a depth-first search knstarting fromu and ending av has
cost Zx — ¢(Ry) and this is an upper bound at(G[K]). On the other hand?,,\{yu} U {xt} is a
candidate for the loss &f and sol(K) < c(Py) — ¢yu+ ¢ < c(P.). We hence obtain Equation (12)
as in the previous case. O

We are ready to prove our main theorem. We restate it usinguaketion introduced in the last two
sections.

Theorem 1. Given an undirected, b-quasi-bipartite graph=5(V, E), terminals RC V, and a fixed constant
r > 2, Algorithm[] returns a feasible Steiner tre@ With

1.279- opt, : b=1
c(TP) << (1+1/e)-opt, . be{2,34}
(1+3In(3—2))opt, : b>5.

11



Proof. Using Lemma_I0 we see that

T epnTn (“ mSt(G[lR(]’T%_ optr) ' (13)
The second equality above holds becaBe| has no Steiner vertices. Applying the boundmen (G[R], ¢)
from Lemmd 1l yields
1(T*) 2 opt
P) < : , 2 2
ST om [H opt, (1 b " 1(T*)>] (14)

Karpinski and Zelikovsky [22] show that(T*) < %optr. We can therefore obtain an upper-bound on the
right-hand side of (14) by bounding the maximum value of fioxexIn(1—2/b+1/x) for x € [0,1/2]. We
branch into cases:

b=1: The maximum okIn(1/x—1) forx < [0,1/2] is attained fox ~ 0.2178. HencexIn(1/x—1) <0.279
forx e [0,1/2].
b=2: The maximum okIn(1/x) is attained fox = 1/e and henceIn(1/x) < 1/efor x € [0,1/2].

b e {3,4}: We use Equatior_(13) together with Lemma 12 in place of LemfaHe subsequent analysis
and result are the same as in the previous case.

b>5: The functionxin(1—2/b+ 1/x) is increasing irx and its maximum is attained for=1/2. Thus,
xIn(1—2/b+1/x) < 3In(3—2/b) for x € [0,1/2].
The three cases above conclude the proof of the theorem. O

5 Properties of (P7)

In this section, we first prove that the linear progra?g(/T) is gradually weakened as the algorithm progresses
(i.e., as more full components are added£9. Then we describe bounds on the integrality gap of the new
LP, and its strength compared to other LPs for the Steinerdreblem.

Lemma 13. If .¥7 C ./, then the integrality gap 0@ is at most the integrality gap cQPgT').
Proof. We consider only the case whet€ = . U {J} for some full componend; the general case then
follows by induction on."\.7|.

Letx be any feasible primal point fq@ and define thextension of x to be a primal point o(Pgr/),
with x;, = x; for allec E(J) andx, = xz forall Z € (% \.") UE(.¥). We claim thai' is feasible for(PgT/).
Sincex andx’ have the same objective value, this will prove Lenimia 13.

Itis clear thatX' satisfies constraintgl(5), so now let us show ihattisfies the partition inequalitlyl(4) in
(PSVT/). Fix an arbitrary partitiorr? of V (.#), and letrt be the restriction of? toV(.%). We get

> Xe + > rcf X = ( > Xt rcEXK> +|Ex NE(J)|X3 — rcixy. (15)
ecE () Ke .7 ecEn(.7) Ke\.s
Now J spans at leastc]'+ 1 parts ofr, and it follows thatE;; NE(J)| > rc]. Hence, using Equatiof (IL5),
the fact thaix satisfies constraintl4) far, and the fact that(7r) = r(m'), we have

X + ref % > Z Xe + Z repxg >r(m—1=r(m)—1
ecER()  Keo cErd?)  Ker\o

Sox satisfies[(#) font. O
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Figure 4: Skutella’s example, which shows that the bidedatut formulation and our new formulation both
have a gap of at Iea§t The shaded edges denote one of the quasi-bipartite fulbonents on 5 terminals.

In 1997, Warmel[37] introduced a new linear program for treirtetr tree problem. He observed (as did
the authors of [30] in the same year) that full componentsiali reduction from the Steiner tree problem to
the spanning-tree-in-hypergrapproblem. He also gave an LP relaxation for spanning treegpefgraphs.
That LP turns out to be exactly as strong as our own LP;[seed@rmllary 3.19] for a proof. Now, Polzin
et al. [29] proved that Warme's relaxation is stronger tHamHidirected cut relaxation, and Goemalns [15]
proved that the (graph) Steiner partition inequalitiesveied for the bidirected cut formulation. Hence, as
stated previously, using full components ag igPstrengthens the Steiner partition inequalities.

5.1 Alower bound on the integrality gap of(PgT)

Note that when? = (g) (PgT) and (B are equivalent LPs: for each terminal-terminal edggthe full
component variable,, , of the former corresponds to the edge variagleof the latter. Hence although we

consider the simpler LIEPgT) in this section, the results apply also to the LP used in tiseitaration ofRZ.
Goemans [i1] gave a family of graphs upon which, in the linfig integrality gap of the bidirected cut
relaxation is%. Interestingly, it can be shown that once you preprocessetheaphs as described in Section
2.3, the gap completely disappears. Here we describe anexaenple, due to Skutella [35]. It shows
not only that the gap of the bidirected cut relaxation is aslé, but that the gap of our new formulation
(including preprocessing) is at Ie#tThe example is quasi-bipartite.
The Fano design is a well-known finite geometry consisting pdintsand 7lines, such that every point
is on 3 lines, every line contains 3 points, any two lines nrea@tunique point, and any two points lie on a
unique common line. We construct Skutella’s example bytorga bipartite graph, with one side consisting
of one noden,, for each pointp of the Fano design, and the other side consisting of one nolde each line
¢ of the Fano design. Defing, andn, to be adjacent in our graph if and onlypfdoesnotlie on/. Then it
is easy to see this graph is 4-regular, and that given any twlesms, n, from one side, there is a node from
the other side that is adjacent to neithgmnor n,. Let one side be terminals, the other side be Steiner nodes,
and then attach one additional terminal to all the SteindeaoWe illustrate the resulting graph in Figlre 4.
Each Steiner node is in a unique 5-terminal quasi-bipduiteomponent. There are 7 such full compo-
nents. Denote the family of these 7 full componentsshy

Claim 14. Let %, = % for each Ke ¢, and % = 0 otherwise. Thenis feasible for(P2,).

Proof. It is immediate thak* satisfies constraint§](5). It remains only to show ttiaineets constrainf{4).
Let rTbe an arbitrary partition, with parts, . . ., T, such thatg contains the extra “top” terminal. If we can
show thaty ¢ xircf > mthen we will be done, sinca was arbitrary. For each=1,...,m, letr; be any

terminal in7g. Note that each lies in exactly 4 full components frofif. Furthermore, every full component
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K € ¢ satisfiesccg > [KN{r1,...,rm}|, since that full component meeig as well as each part; such that
ri € K. Hence

1 1 1
Zx’,‘(ch:ZZrcﬁzzz reK}_4Z#{Ke%reK}_—m4 m. O
Ke® Ke&

The objective value of* is 32, but the optimal integral solution to the LP is 10, since aste3 Steiner
nodes need to be included. Hence the gap of our new LP is mﬂttMn%/4 8

5.2 A gap upper bound forb-quasi-bipartite instances

In [32] Rajagopalan and Vazirani show that the bidirectetdrelaxation has a gap of at mc%t if the graph
is quasi-bipartite. SincePgT) is stronger than the bidirected cut relaxation its gap is atsmost% for such
graphs. We are able to generalize this result as follows.

Theorem 2. On b-quasi-bipartite graphs{PgT has an integrality gap betwe&and ztf’jll in the worst case.

Proof. The lower bound comes from Sectionl5.1. We ass@eb-quasi-bipartite, we I€T* be an optimal
Steiner tree, and we le?* be its set of full components. Sind€ is a minimum spanning tree fo#*,

there is a corresponding feasible dydbr (Dsg). When we convery to a dual for(DéﬁT*), we claim thaty

is feasible: indeed, by Lemnia 7 a violated full componentidde used to improve the solution, bt is

already optimal. The next lemma is the cornerstone of ousfpro

Lemma 15. Let T be a partition of (.*) with y; > 0. Then(r(m) — 1) > zbb%rll(r(n) —1).

Proof. For each partg of m, let us identify all of the nodes af into a single pseudonode We may assume
by Theoreni B that each*[75] is connected, hence this identification process yieldsedltrel et us say that

v; is Steinerif and only if all nodes ofrf are Steiner. Note that’ hasr(m) pseudonodes andm) — r() of
these pseudonodes are Steiner. The full componeritsare defined analogously to the full components of
a Steiner tree.

Consider any full componer€’ of T’ and letK’ contain exactlys Steiner pseudonodes. It is straight-
forward to see thas < b. Each Steiner pseudonode Kl has degree at least 3 by Assumptions Al and
A2, and at moss— 1 edges ofK’ join Steiner vertices to other Steiner vertices. HeKéehas at least
3s—(s—1) =2s+1 edges, and so
2s+1 2b+1

. 52 .S,
s b
Now summing over all full component§’, we obtain
2b+1
b

[E(K')| =

E(T")| > -#{Steiner pseudonodes of}.

But [E(T')| =r(m) — 1 andT’ hasr () —r(m) Steiner pseudonodes, therefore

2 (-1 -m-1) = 21> 2 e -a)

This proves what we wanted to show. O

r(m—1>

It follows that the objective value ofin (DZ; )is

Y (-1 3 ST g elT)

men
and sincel * is an optimum integer solution cQPSyfF) it follows that the integrality gap ofP<; )is at most

22;;11 Then, finally, by applying Lemnia 113 ((PgT) and(P<; ) we obtain Theorer 2. O
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6 Proof of Lemmall0

In this section we present a proof of Lemima 10. The methogdioiipws that proposed by Gropl et al. [19].
In fact, many of the proofs below essentially correspondtse presented in [19] with two exceptions: we
correct a small error near the end, and we present a new pirtieé abiquitouscontraction lemma

We remind the reader of our standing assumption tHap (5) We first relate the cost of a minimum-
cost spanning tree o’ for some set” of full components to the (potential) lower-bounst(.#) on opt,
that it provides. For ease of presentation in the analysessywll assume from now on that the costs of all
edges inE are pairwise different. This assumption is easily seen tavhe.g. (e.g., one could define an
order on the edges B and use it to break ties). We omit the proof of the followingyetact.

Fact 16. If T is a minimum-cost spanning tree.gf then1(T) = 1(.¥).

Lemma 17. For any set¥ C .%; of full components,
mst(.) =mst(Y) + 1(¥).

Proof. We use the notation from Sectibh 2 is the finishing time of Kruskal’s algorithnG; = (V,E;)
is the forest maintained at time and 1 is the partition induced by the connected componeniS.ofLet
(T,y) denote the tree-dual pair returnedNMsT.

From TheoremI3 we know that there exists a feasible dualisalytto (Dsg) for graph. such that

om) = ¥ (m-1ya= [ (r(m) -1t

mens

In the following letZ; be the set of those connected components;dhat contain terminal vertices.

Claim 18. For all 0 < 1 < 1%, each connected component of lEL(T) contains exactly one connected
component of7;.

Proof. Letu andv be terminals in distinct connected component&pfind letR,, be the uniquel, v-path in
T. Assume for the sake of contradiction tiag is contained irE; UL(T).

Let e be the unique edge of maximum cost on path Recall from Sectiofl2 that Kruskal’s algorithm
adds edges to the partial spanning tree in order of non-asiag cost. Thus, edgeis added last among all
edges orP,,. Asu andyv are in different connected components@y, it therefore follows thae ¢ E;. The
loss of T is a minimum-cost forest il that connects all Steiner vertices to terminals. Thus, theue edge
of maximum cost o, cannot be irL(T).

It follows thate ¢ E; UL(T) and this contradicts our assumption tRatC E; UL(T). O

For each time & 1 < 1%, definerr as the Steiner partition corresponding to the connecteghonamts
of Gt UL(T). From TheoreriI3 we know that

%

M= 5 &= 3 5 ye= [ EnOLDr

ecL(T) ecL(T) recky

where, as befor&g, is the set of edges i that have endpoints in different partsmf.
The number of edges e, NL(T)| is exactly the rank-difference betweapandr;, and hence

1(T):/OT (r(%) —r(7%))dt.
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Claim[18 implies that (%) = r () for all 0 < T < 7* and hence

m(y)ﬂ(T):/o dr+/ )~ Flmm) )dr:/or*(r(rr)—l)drzc(T).

Applying Fac{16 and the equalit(T) = mst(.”), we are done. O
We obtain the following immediate corollary:

Corollary 19. Initeration i of Algorithn1, adding full component&.#; to . reduces the cost afst(.¥)
if and only if §{(K) <1

Proof. By applying Lemm& 17 we see that
nst() —mst(S U{K}) =mst(S) + 1(S") —mst (S U{K}) —1(S U{K}).

Whereas the left-hand side is positive iff addikgo .#' causes a reduction imst, the right-hand side is
positive iff f;(K) < 1, due to the definition of;. O

Using Lemmal7 and Corollafy 19, we obtain the following.
Corollary 20. Forall 1<i < p, fi(K') < 1.

Fix an optimumr-Steiner treeT*. The next two lemmas give bounds that are needed to anafy/ze
greedy strategy. Informally, the first says thatt is non-increasing, while the second says that is
submodular.

Lemma21. If ¥ C .’ C %, thenmst(”’) < mst(.¥).
Proof. Using Lemma1]7 and Fdck 9 we see
mst(.) —mst(S’) =mst(Y) + 1(S'\.) —mst(.S).

However, the right hand side of the above equation is notheg asMST(.) UL(’\.) is a spanning
tree of.”’. Lemmé 21 then follows. O

Lemma 22 (Contraction Lemma)Let %°,%*, %% C .#; be disjoint collections of full components with
(§) € %°. Then
5) C %#°.

mst(#°) —mst(#°U%?) > mst(#°UR*) —mst(#° U # U%?).
Proof. The statement to be proved is equivalent to
mst(#°) —mst(Z°U%?) > mst(#°URY) —nst(Z° U7t U%?), (16)

due to Lemm&17 and Fddt 9. For a graphdefine therank r(H) of H as the number of edges in a maximal
forest ofH:
r(H) =|V(H)| —# connected components ldf

ForagrapiH, letH-, denote the subgraph Bif consisting of those edges of weight at modBy considering
Kruskal's algorithm, for any grapH having nonnegative edge costs, we see that

mst(H Zmln{x|r (Hey) > i} = / ) —r(H<x)) dx. (17)
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Note that the integral is proper since the integrand is &farger than magc.: ec E(H)}.

Here is the crux:r is the rank function for a (graphic) matroid and is therefsubmodular over the
addition of disjoint edge sets. Since th& , are pairwise disjoint, for every, this submodularity implies
that

— 1 (BY) +1 (BLU2,) > —1 (BUURE,) +1 (B U R UR,). (18)
Notice also that
r(%#°) —r(#°UR%?) =r(F°URY) — v (%#° U R UR?) (19)
since both sides are equal to the number of Steiner vertic#® j times—1.

Finally, we add Equatiori{18) to Equatidn{19) and integedtmgx. Since(#°U%?)<x = %% U %2,

etc. we get

/Om (F°) 1 (%%) dx—/

0

2/(JDO(r(%OU,%l)—r((ﬁouﬂl)gx)>dx—/

0

) (M0 ) 1 (#°0 7)) ) dx
) (HAP VA7) 1 (B VR UF?)<) ) dx

But using Equation((17), this gives precisely Equatfod (16) O

We note that the proof of Lemnial21 easily generalizes to ottaroids. This is a departure from the
existing proofs in[[19] and [4, Lemma 3.9], and Rizzi’s mopesgific result[[33, Lemma 2], although a strong
exchange propertgf matroids is used in the proof ofl[4].

We are finally near the end of the analysis, where the Comiracemma comes into play. We can now
bound the valusd; (K‘) forall 0 <i < p—1interms of the cost of *’s loss. In the remainder of the section,
let the full components of * be K*2,... K*9, let 1* denotel(T*), letmst' denotemst(.#') and letmst"
denotenst(T™).

Lemma 23. Forall 0<i < p—1, if mst' —mst” > 0, then f(K') < 1*/(mst' —mst").
Proof. By the choice oK' in Algorithm [, we havef; (K') < min; fi(K*}). A standard fraction averaging
argument implies that

< Z.?:ll(K*.j). :

T Y (msE(S) —mst (ST U{KHIY))

< v

Ty (msE(ATULKSL, L KT —msE(TU{KSL, L KRTY))

fi (K"

(20)

where the last inequality uses Fatt 9 and Lerima 22. (Additicare is needed wher* and.&”P overlap
in some full components, but the above inequalities stildho The denominator of the right-hand side
of Equation [(2D) is a telescoping sum. Canceling like teram using Lemm@a 21 to repla@st (.7 U
{K*1 . .. K*9})with mst”, we are done. O

We can now bound the cost .

Proof of Lemma-I0We first bound the loss(TP) of treeTP. Using Fackb,

p-1 _ p-1 _ . .
TP = 5 1K) = 3 H(K)- (mst' —mst ) (21)
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where the last equality uses the definitionfofrom (10). Using Corollary_ 20 and Lemrhal23, the right hand
side of Equation{21) is bounded as follows:

p-1 . . . p-1 1* . .
fi(KY - (mst —mst ) < : . (mst —mst ). 22
i; i(K' - ( )_i; max(1-.meT 55T ( ) (22)

The right hand side of Equatioh (22) can in turn be boundeah fabove by the following integral:

p—1 1*(ml _ﬁi-‘rl) _ mst’ 1* dx_/.ﬁo_mst* 1* dx (23)
i; max{1*,mst —mst'} ~ Jmst? Max{l*,x—mst'} = JmstP-mse max{1l*,x}
Notice thafnst’ = mst(G[R],c) > opt, = 1* +mst". The termination condition in Algorithii 1 and Lemma

imply thatmst® < opt,. Hence the result of evaluating the integral in the rightehaide of Equatior(23)
is

mst0—mst’ 1 mst’ —mst”
1*—(mp—m*)+1*./* ~dx=opt, —mst"+1"-In (17 (24)

where the equality uses Lemina 17. Applying Lenimh 17 two mores, and combining Equatiorls {21)—
(24), we obtain

— 0 ——
- t  —mst
o(TP) =mstP+1(TP) < optr—l-l*-ln(%)

= opt,+1":In <1+ T

—0
t” —opt
= optr+1*-|n<1+u>

ﬁo—(m*ﬂ*))

1*
as wanted. O

Remark. Gropl et al. essentially prove Lemral 10 in[19, Lemma 418 & minor error lies in their
equation “(18).” Namely, they assumey‘— m* > 0” which ismst' —mst" > 0 in our notation.
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