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Abstract

The Steiner tree problem is a classical NP-hard optimization problem with a wide range of practical
applications. In an instance of this problem, we are given anundirected graphG = (V,E), a set of
terminals R⊆ V, and non-negative costsce for all edgese∈ E. Any tree that contains all terminals is
called aSteiner tree; the goal is to find a minimum-cost Steiner tree. The nodesV\R are calledSteiner
nodes.

The best approximation algorithm known for the Steiner treeproblem is due to Robins and Ze-
likovsky (SIAM J. Discrete Math, 2005); theirgreedyalgorithm achieves a performance guarantee of
1+ ln3

2 ≈ 1.55. The best knownlinear programming(LP)-based algorithm, on the other hand, is due to
Goemans and Bertsimas (Math. Programming, 1993) and achieves an approximation ratio of 2−2/|R|.
In this paper we establish a link between greedy and LP-basedapproaches by showing that Robins and
Zelikovsky’s algorithm has a natural primal-dual interpretation with respect to a novelpartition-based
linear programming relaxation. We also exhibit surprisingconnections between the new formulation and
existing LPs and we show that the new LP is stronger than the bidirected cut formulation.

An instance isb-quasi-bipartiteif each connected component ofG\R has at mostb vertices. We
show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than 1+ ln3

2 for such
instances, and we prove that the integrality gap of our LP is between8

7 and 2b+1
b+1 .

1 Introduction

The Steiner tree problem is a classical problem in combinatorial optimization which owes its practical impor-
tance to a host of applications in areas as diverse as VLSI design and computational biology. The problem is
NP-hard [21], and Chlebı́k and Chlebı́ková show in [6] thatit is NP-hard even toapproximatethe minimum-
cost Steiner tree within any ratio better than96

95. They also show that it is NP-hard to obtain an approximation
ratio better than128

127 in quasi-bipartiteinstances of the Steiner tree problem. These are instances in which no
two Steiner vertices are adjacent in the underlying graphG.

1.1 Greedy algorithms andr-Steiner trees

One of the first approximation algorithms for the Steiner tree problem is the well-knownminimum-spanning
tree heuristicwhich is widely attributed to Moore [14]. Moore’s algorithmhas a performance ratio of 2 for
the Steiner tree problem and this remained the best known until the 1990s, when Zelikovsky [41] suggested
computing Steiner trees with a special structure, so calledr-Steiner trees. Nearly all of the Steiner tree
algorithms developed since then user-Steiner trees. We now provide a formal definition.
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(i) (ii)

Figure 1: The figure shows a Steiner tree in (i) and its decomposition into full components in (ii). Square
and round nodes correspond to Steiner and terminal vertices, respectively. This particular tree is 5-restricted.

A full Steiner component(or full componentfor short) is a tree whose internal vertices are Steiner ver-
tices, and whose leaves are terminals. The edge set of any Steiner tree can be partitioned into full compo-
nents, bysplitting the tree at terminals: see Figure 1 for an example. Anr-(restricted)-Steiner treeis defined
to be a Steiner tree all of whose full components have at mostr terminals. We remark that such a Steiner
tree may in general not exist; for example, ifG is a star with a Steiner vertex at its center and more thanr
terminals at its tips. To avoid this problem, each Steiner vertexv is clonedsufficiently many times: introduce
copies ofv and connect these copies to all ofv’s neighbors in the graph. Copies of an edge have the same
cost as the corresponding original edge inG.

Letopt andoptr be the cost of an optimum Steiner tree and that of an optimalr-Steiner tree, respectively,
for the given instance. Define ther-Steiner ratioρr as the supremum ofoptr/opt over all instances of the
Steiner tree problem. In [5], Borchers and Du provided an exact characterization ofρr . The authors showed
thatρr = 1+Θ(1/ logr) and hence thatρr tends to 1 asr goes to infinity.

Computing minimum-costr-Steiner trees is NP-hard forr ≥ 4 [13], even if the underlying graph is quasi-
bipartite. The complexity status forr = 3 is unresolved, and the caser = 2 reduces to the minimum-cost
spanning tree problem.

In [41], Zelikovsky used 3-restricted full components to obtain an 11/6-approximation for the Steiner
tree problem. Subsequently, a series of papers (e.g., [4, 20, 22, 30]) improved upon this result. These efforts
culminated in a recent paper by Robins and Zelikovsky [34] inwhich the authors presented a

(

1+ ln3
2

)

≈
1.55-approximation (subsequently referred to asRZ) for the r-Steiner tree problem. They hence obtain, for
each fixedr ≥ 2, a 1.55ρr approximation algorithm for the (unrestricted) Steiner tree problem. We refer the
reader to two surveys in [19, 31].

1.2 Approaches based on linear programs

There is a large body of work on linear programming (LP)-based approximation algorithms for problems
in combinatorial optimization. First, one finds agood LP relaxation for the problem. Then one designs
an algorithm that produces a feasible integral solution whose cost is provably close to that of an optimum
fractional solution for this relaxation. Many aspects of different LP relaxations for the Steiner tree problem
have been investigated (e.g., [3, 8, 9, 10, 12, 17, 27, 38, 39]).

Many of these LPs have been fruitfully used ininteger programming-based approaches to exactly solve
instances of up to ten thousand nodes [28]. Another common area in which LPs are useful is the design of
polynomial time approximation algorithms via theprimal-dual method(e.g., [18]). In this method, a feasible
solution of the relaxation’s LP dual is used to obtain a lowerbound on the optimum cost.

The “classical” LP-based approximation algorithms for Steiner trees [16] and forests [2] use theundi-
rected cut relaxation[3] and have a performance guarantee of 2− 2

|R| . This relaxation has an integrality gap

of 2− 2
|R| and the analysis of these algorithms is therefore tight. Slightly improved algorithms have since
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been designed [23, 26] but do not achieve any constant approximation factor better than 2.
In the special case of quasi-bipartite graphs, Rajagopalanand Vazirani [32] and Rizzi [33] obtained a32

approximation for the Steiner tree problem in quasi-bipartite graphs. The analysis of [32] applies the primal-
dual method to thebidirected cut relaxation[12, 39]. The bidirected cut relaxation is widely conjectured
to have a worst-case integrality gap that is close to 1: the worst known example shows a gap of only8

7
(see Section 5). Despite its conjectured strength, this newrelaxation has not yet given rise to a Steiner tree
algorithm with performance guarantee better than 2 in general graphs.

1.3 Contribution of this paper

In this paper we provide algorithmic evidence that the primal-dual method is useful for the Steiner tree
problem. We first present a novel LP relaxation for the Steiner tree problem. It uses full components to
strengthen a formulation based onSteiner partitioninequalities [8]. We then show that the algorithmRZ of
Robins and Zelikovsky can be analyzed as a primal-dual algorithm using this relaxation. We can show (see
Section 5) that our relaxation is strictly stronger than thestandardSteiner partition formulation; so the use
of full components strengthens the partition inequalities.

In [34], Robins and Zelikovsky showed thatRZ has a performance ratio of 1.279 for quasi-bipartite
graphs, and a performance ratio of 1.55 in general graphs. We prove a natural interpolation of these two
results. For a Steiner vertexv, define itsSteiner neighborhood Sv to be the collection of vertices that are in
the same connected component asv in G\R. A graph isb-quasi-bipartiteif all of its Steiner neighborhoods
have cardinality at mostb. Note, “1-quasi-bipartite” is synonymous with “quasi-bipartite.” We prove:

Theorem 1. Given an undirected, b-quasi-bipartite graph G= (V,E), terminals R⊆V, and a fixed constant
r ≥ 2, AlgorithmRZ returns a feasible Steiner tree T s.t.

c(T)≤







1.279·optr : b= 1
(1+ 1

e) ·optr : b∈ {2,3,4}
(

1+ 1
2 ln
(

3− 2
b

))

optr : b≥ 5.

Unfortunately, Theorem 1 does not imply that our new relaxation has a small integrality gap. Nonethe-
less, we obtain the following bounds, whenG is b-quasi-bipartite:

Theorem 2. Our new relaxation has an integrality gap between8
7 and 2b+1

b+1 .

2 Spanning trees and a new LP relaxation for Steiner trees

Our work is strongly motivated by, and uses, results on the spanning tree polyhedron due to Chopra [7]. In
this section, we first discuss Chopra’s characterization ofthe spanning tree polyhedron; then we mention a
primal-dual interpretation of Kruskal’s spanning tree algorithm [25] based on Chopra’s formulation. Finally
we extend ideas in [8, 9] to derive a new LP relaxation for the Steiner tree problem.

2.1 The spanning tree polyhedron

To formulate the minimum-cost spanning tree (MST) problem as an LP, we associate a variablexe with every
edgee∈ E. Each spanning treeT corresponds to itsincidence vector xT , which is defined byxT

e = 1 if T
containse andxT

e = 0 otherwise. LetΠ denote the set of all partitions of the vertex setV, and suppose that
π ∈ Π. The rank r(π) of π is the number of parts ofπ. Let Eπ denote the set of edges whose ends lie in
different parts ofπ. Consider the following LP.

3



min ∑
e∈E

cexe (PSP)

s.t. ∑
e∈Eπ

xe ≥ r(π)−1 ∀π ∈ Π,

x≥ 0.

Chopra [7] showed that the feasible region of (PSP) is the convex hull of all incidence vectors of spanning
trees, and hence each basic optimal solution corresponds toa minimum-cost spanning tree. Its dual LP is

max ∑
π∈Π

(r(π)−1) ·yπ (DSP)

s.t. ∑
π:e∈Eπ

yπ ≤ ce ∀e∈ E, (1)

y≥ 0. (2)

2.2 A primal-dual interpretation of Kruskal’s MST algorith m

Kruskal’s algorithm can be viewed as a continuous process over time: we start with an empty tree at time
0 and add edges as time increases. The algorithm terminates at time τ∗ with a spanning tree of the input
graphG. In this section we show that Kruskal’s method can be interpreted as a primal-dual algorithm (see
also [18]). At any time 0≤ τ ≤ τ∗ we keep a pair(xτ ,yτ ), wherexτ is a partial (possibly infeasible) 0-1
primal solution for (PSP) andyτ is a feasible dual solution for (DSP). Initially, we let xe,0 = 0 for all e∈ E
andyπ,0 = 0 for all π ∈ Π.

Let Gτ denote the forest corresponding to partial solutionxτ and letEτ denote its edges, i.e.,Eτ = {e∈
E | xe,τ = 1}. We then denote byπτ the partition induced by the connected components ofGτ . At time τ , the
algorithm then increasesyπτ until a constraint of type (1) for edgee∈ E \Eπτ becomes tight. Assume that
this happens at timeτ ′ > τ . The dual update is

yπτ ,τ ′ = τ ′− τ .

We then includee in our solution, i.e., we setxe,τ ′ = 1. If more than one edge becomes tight at timeτ ′,
we can process these events in any arbitrary order. Thus, note that we can pick any such tight edge first
in our solution. We terminate whenGτ is a spanning tree. Chopra [7] showed that the final primal and
dual solutions have the same objective value (and are hence optimal), and we give a proof of this fact for
completeness.

Theorem 3. At timeτ∗, algorithmMST finishes with a pair(xτ∗ ,yτ∗) of primal and dual feasible solutions to
(PSP) and (DSP), respectively, such that

∑
e∈E

cexe,τ∗ = ∑
π∈Π

(r(π)−1) ·yπ,τ∗ .

Proof. Notice that for all edgese∈ Eτ∗ we must havece = ∑π:e∈Eπ yπ,τ∗ and hence, we can express the cost
of the final tree as follows:

c(Gτ∗) = ∑
e∈Eτ∗

∑
π:e∈Eπ

yπ,τ∗ = ∑
π∈Π

|Eτ∗ ∩Eπ| ·yπ,τ∗ .

By construction the setEτ∗ ∩Eπ has cardinality exactlyr(π)−1 for all π ∈ Π with yπ,τ∗ > 0. We obtain that
∑e∈E cexe,τ∗ = ∑π∈Π(r(π)−1) ·yπ,τ∗ and this finishes the proof of the lemma.

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: if the algorithm adds an
edgeeat timeτ , thene is the minimum-cost edge connecting two connected components ofGτ .
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2.3 A new LP relaxation for Steiner trees

In an instance of the Steiner tree problem, a partitionπ of V is defined to be aSteiner partitionwhen each
part ofπ contains at least one terminal. Chopra and Rao [8] introduced this notion and proved that, whenx
is the incidence vector of a Steiner tree andπ is a Steiner partition, the inequality

∑
e∈Eπ

xe ≥ r(π)−1. (3)

holds. TheseSteiner partition inequalitiesmotivate our approach.
In the following we useG[U ] to denote the subgraph ofG induced by vertex setU , i.e., the graph with

vertex setU and such thatE(G[U ]) = {uv∈ E(G) | u∈U,v∈U}. We make the following assumptions:

A1. G[R] is a complete graph and, for any two terminalsu,v∈R, cuv is the cost of a minimum-costu,v-path
in G.

A2. For every Steiner vertexv and every vertexu ∈ Sv∪R, uv is an edge ofG, andcuv is the cost of a
minimum-costu,v-path inG.

It is a well-known fact that these assumptions are w.l.o.g.,i.e., any given instance can be transformed into
an equivalent instance that satisfies these assumptions (e.g., see [36]). Note thatb-quasi-bipartiteness is
preserved by these assumptions.

Recall from Section 1.1 that a full component is a tree whose internal vertices are Steiner vertices and
all of whose leaves are terminals. Also recall that a full componentK is r-restricted if it contains at most
r terminals. Further, the edge-set of anyr-restricted Steiner treeT can be partitioned intor-restricted full
components. From now on, letr ≥ 2 be an arbitrary fixed constant. Define

Kr := {K ⊆ R : 2≤ |K| ≤ r and there exists a full component whose terminal set isK}.

We note that, for eachK ∈ Kr , we can determine a minimum-cost full component with terminal setK in
polynomial time (e.g., by using the dynamic programming algorithm of Dreyfus and Wagner [11]). Thus,
we can computeKr in polynomial time as well.

For brevity we will abuse notation slightly and useK ∈ Kr interchangeably for a subset of the terminal
set and for a particular min-cost full component spanningK. Given anyr-restricted Steiner tree, we may
assume that all of its full components are fromKr , without increasing its cost.

For each full componentK, we useE(K) to denote its edges,V(K) to denote its vertices (including
Steiner vertices), andcK to denote its cost. For a setS of full components we defineE(S ) := ∪K∈S E(K)
and similarlyV(S ) :=∪K∈S V(K). By assumption A1 we may assume that the full component for a terminal
pair is just the edge linking those terminals, and by assumption A2 we may assume that any Steiner node has
degree at least 3. We will also assume that any two distinct full componentsK1,K2 ∈ Kr are edge disjoint
and internally vertex disjoint. This assumption is withoutloss of generality as each Steiner vertex inG can
be cloned a sufficient number of times to ensure this property. Finally, we redefineG to be(V(Kr),E(Kr));
as a result, the Steiner trees of the new graph correspond to ther-restricted Steiner trees of the original graph.

Let Kr(T) denote the set of all full components of a Steiner treeT. For an arbitrary subfamilyS of the
full componentsKr , our new LP uses the following canonical decomposition of a Steiner tree into elements
of E(S ) andKr\S . The idea, as we will explain later, is to iteratively selecta “good” setS .

Definition 4. If T is an r-restricted Steiner tree, itsS -decompositionis the pair

(E(T)∩E(S ),Kr(T)\S ).

5



Observe that afterS -decomposing a Steiner treeT we have

∑
e∈E(T)∩E(S )

ce+ ∑
K∈Kr(T)\S

cK = c(T).

We hence obtain a new higher-dimensional view of the Steinertree polyhedron. Define

STS
G,R := conv{x∈ {0,1}E(S )×{0,1}Kr\S : ∃T ∈ STG,R s.t. x is the incidence

vector of theS -decomposition ofT}.

The following definitions are used to generalize Steiner partition inequalities to use full components. We
useΠS to denote the family of all partitions ofV(S )∪R.

Definition 5. Let π = {V1, . . . ,Vp} ∈ ΠS be a partition of the set R∪V(S ). Therank contributionof full
component K∈ Kr\S is defined as

rcπ
K := |{i : K contains a terminal in Vi}|−1.

TheSteiner rank ¯r(π) of π is defined as

r̄(π) := {the number of parts ofπ that contain terminals}.

We describe below a new LP relaxation (PS
ST) of STS

G,R. The relaxation has a variablexe for eache∈

E(S ) and a variablexK for eachK ∈ Kr\S . For a partitionπ ∈ ΠS , we defineEπ(S ) to be the edges of
S whose endpoints lie in different parts ofπ, i.e.,Eπ(S ) = E(S )∩Eπ .

min ∑
e∈E(S )

ce ·xe+ ∑
K∈Kr\S

cK ·xK (PS
ST)

s.t ∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
K ·xK ≥ r̄(π)−1 ∀π ∈ ΠS (4)

xe,xK ≥ 0 ∀e∈ E(S ),K ∈ Kr\S (5)

Its LP dual has a variableyπ for each partitionπ ∈ ΠS :

max ∑
π∈ΠS

(r̄(π)−1) ·yπ (DS
ST)

s.t ∑
π∈ΠS :e∈Eπ (S )

yπ ≤ ce ∀e∈ E (6)

∑
π∈ΠS

rcπ
K ·yπ ≤ cK ∀K ∈ Kr\S (7)

yπ ≥ 0, ∀π ∈ ΠS (8)

We conclude this section with a proof that the (primal) LP is indeed a relaxation of the convex hull of
S -decompositions forr-restricted Steiner trees. Obviously, constraints (5) hold wheneverx is the incidence
vector of theS -decomposition of a Steiner tree.

Lemma 6. The inequality(4) is valid forSTS
G,R.
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Proof. Suppose, for the sake of contradiction, that (4) is not validfor STS
G,R for this π. Then there must

exist a feasible Steiner treeT with S -decomposition(E(T)∩E(S ),Kr(T)\S ) whose incidence vector
x∈ STS

G,R violates (4) for some partitionπ ∈ ΠS . Choose such a partitionπ with smallest rank.
Observe first thatπ must be a Steiner partition. Otherwise, there is a partV1 of π that contains no

terminals. LetV2 be a part inπ that contains terminals and obtain a new partitionπ ′ from π by mergingV1

andV2. AsV1 contains no terminals, we clearly havercπ
K = rcπ ′

K for all full componentsK ∈ Kr . Also, the
Steiner rank ofπ andπ ′ is the same. Ase∈ Eπ ′(S ) implies thate∈ Eπ(S ), it follows that (4) is violated
for π ′ as well andπ ′ has smaller rank thanπ which contradicts our choice.

Suppose thatV(T) ⊆ R∪V(S ). This would mean thatKr(T)\S = /0 and in this case, Equation (3)
implies that

∑
e∈Eπ (S )

xe ≥ r(π)−1.

Thus, inequality (4) holds forπ andx which is a contradiction.
We may therefore assume thatKr(T)\S contains some full component̄K. We obtain a new partition

π ′ from π by merging those parts ofπ that contain terminals spanned bȳK. The rank of this new partition is
r(π)−rcπ

K̄ . It follows from our choice ofπ that

∑
e∈Eπ′ (S )

xe+ ∑
K∈Kr\S

rcπ ′

K xK ≥ r(π ′)−1= r(π)−rcπ
K̄ −1.

Now note thatEπ ′(S )⊆Eπ(S ) andrcπ ′

K̄ = 0, and thatrcπ ′

K ≤ rcπ
K for all K ∈Kr\S . The above inequality

therefore implies

∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
KxK ≥ ∑

e∈Eπ′ (S )

xe+ ∑
K∈Kr\S \{K̄}

rcπ ′

K xK +rcπ
K̄ ≥ r(π)−rcπ

K̄ −1+rcπ
K̄

which in turn proves that (4) holds forπ andx. This contradiction completes the proof of the lemma.

3 An iterated primal-dual algorithm for Steiner trees

As described in Section 2.2,MST(G,c) denotes a call to Kruskal’s minimum-spanning tree algorithm on graph
G with cost-functionc. It returns a minimum-cost spanning treeT and an optimal feasible dual solutiony
for (DSP). Let mst(G,c) denote the cost ofMST(G,c). Sincec is fixed, in the rest of the paper we omitc
where possible for brevity. Let us also abuse notation and identify each setS ⊂Kr of full components with
the graph(V(S ),E(S )).

The main idea of the greedy algorithms in [34, 40, 41] is to finda setS ⊂ Kr of full components such
that MST(S ) has small cost relative tooptr . Let

(R
2

)

denote the collection of all pairs of terminals. The
algorithms all start withS =

(R
2

)

and then growS , so for the rest of the paper we assume that
(R

2

)

⊆ S ;
henceE(G[R])⊆ E(S ) andR⊆V(S ).

The reason thatMST is useful in our primal-dual framework is that we can relate the dual program (DSP)
on graphS to the dual program (DSST). Let y be the feasible dual returned by a call toMST(S ). We treaty
as a dual solution of (DSST) by setting eachyK to zero; note that constraints (1) and (2) of (DSP) imply thaty
also meets constraints (6) and (8) of (DS

ST). If K is a full component such that (7) does not hold fory, we say
thatK is violatedby y.

The primal-dual algorithm finds such a setS in an iterative fashion. Initially,S is equal to
(R

2

)

. In each
iteration, we compute a minimum-cost spanning treeT of the graphS . The dual solutiony corresponding to
this tree is converted to a dual for (DS

ST), and ify is feasible for (DSST), we stop. Otherwise, we add a violated
full component toS and continue. The algorithm clearly terminates (asKr is finite) and at termination, it
returns the final treeT as an approximately-optimal Steiner tree.

7



Algorithm 1 summarizes the above description. The greedy algorithms in [34, 40, 41] differ only in how
K is selected in each iteration, i.e., in how the selection function fi : Kr → R is defined (see also [19,§1.4]
for a well-written comparison of these algorithms).

Algorithm 1 A general iterative primal-dual framework for Steiner trees.
1: Given: Undirected graphG= (V,E), non-negative costsce for all edgese∈ E, constantr ≥ 2.
2: S 0 :=

(R
2

)

, i := 0
3: repeat
4: (T i ,yi) := MST(S i)

5: if yi is not feasible for(DS i

ST) then
6: Choose a violated full componentK i ∈ Kr\S

i such thatfi(K i) is minimized
7: S i+1 := S i ∪{K i}
8: end if
9: i := i +1

10: until yi−1 is feasible for(DS i−1

ST )
11: Let p= i −1 and return(T p,yp).

The following lemma is at the heart of our proof, and explainswhy our LP can be used to find cheap
Steiner trees.

Lemma 7. Let (T,y) = MST(S ) and suppose that K is violated by y. Then adding K toS produces a
cheaper spanning tree, i.e.,

mst(S ∪{K})< c(T).

Proof. Assume thatMST(S ) finishes at timeτ∗ and, once again, letπτ be the partition maintained by
Kruskal’s algorithm at time 0≤ τ ≤ τ∗.

Defineq= rc
π0
K to be the rank-contribution ofK with respect to the initial partition. Clearly,rcπτ∗

K = 0 as
all terminals are contained in the same connected componentat timeτ∗. Then there are edgese1, . . . ,eq ∈ T
such that, for 1≤ i ≤ q, the rank-contribution ofK with respect to the partition maintained by Kruskal’s
algorithm drops fromq− i +1 to q− i when edgeei is added. Formally, for 1≤ i ≤ q, let πi andπ ′

i be the
partition maintained by Kruskal’s algorithm before and after adding edgeei , then

rc
πi
K = rc

π ′
i

K +1.

We denote the time of addition of edgeei by τi for all i.
From the description of Kruskal’s algorithm it follows that

q

∑
i=1

cei =
q

∑
i=1

τi =

∫ τ∗

0
rc

πτ
K dτ

and the right-hand side of this equality is equal to∑π∈ΠS rcπ
Kyπ . The fact that constraint (7) is violated for

K therefore implies that
ce1 + · · ·+ceq > cK .

Finally observe thatT ∪E(K)\{e1, . . . ,eq} is a spanning tree ofS ∪{K} and its cost is smaller than that of
T.

8
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Figure 2: The figure shows the Steiner tree instance from Figure 1 with costs on the edges. The loss of the
Steiner tree in this figure is shown in thick edges. Its cost is8.

3.1 Cutting losses: theRZ selection function

A potential weak point in Algorithm 1 is that once a full component is added toS , it is never removed. On
the other hand, if some cheap subgraphH connects all Steiner vertices ofS to terminals, then addingH to
any Steiner tree gives us a tree that spansV(S ), i.e., we have so farlost at mostc(H) in the final answer.
This leads to the concept of thelossof a Steiner tree which was first introduced by Karpinski and Zelikovsky
in [22].

Definition 8. Let G′ = (V ′,E′) be a subgraph of G. ThelossL(G′) is a minimum-cost set E′′ ⊆ E′ such that
every connected component of(V ′,E′′) contains a terminal. Letl(G′) denote the cost ofL(G′).

See Figure 2 for an example of the loss of a graph. The above discussion amounts to saying that
min{mst(S ′) | S ′ ⊇ S } ≤ optr + l(S ). Consequently, our selection functionfi in step 6 of the algo-
rithm should try to keep the loss small. The following fact holds because full components inKr meet only
at terminals.

Fact 9. If S ⊆ Kr , thenL(S ) = ∪K∈S L(K) and sol(S ) = ∑K∈S l(K).

For a setS of full components, wherey is the dual solution returned byMST(S ), define

mst(S ) := ∑
π∈ΠS

(r̄(π)−1)yπ . (9)

If y is feasible for (DSST) then by weak LP duality,mst(S ) provides a lower bound onoptr . If y is infeasible
for (DS

ST), then which full component should we add? Robins and Zelikovsky propose minimizing the ratio
of the change in upper bound to the change in potential lower bound (9). Their selection functionfi is defined
by

fi(K) :=
l(K)

mst(S i)−mst(S i ∪{K})
=

l(S i ∪{K})−l(S i)

mst(S i)−mst(S i ∪{K})
, (10)

where the equality uses Fact 9.

4 Analysis

Fix an optimumr-Steiner treeT∗. There are several steps in proving the performance guarantee of Robins
and Zelikovsky’s algorithm, and they are encapsulated in the following result, whose complete proof appears
in Section 6.

Lemma 10. The cost of the tree Tp returned by Algorithm 1 is at most

optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

.

9



The main observation in the proof of the above lemma can be summarized as follows: from the discussion
in Section 2, we know that the treeT p returned by Algorithm 1 has cost

mst(S p) = ∑
π∈ΠS p

(r(π)−1)yp
π

and the corresponding lower-bound onoptr returned by the algorithm is

mst(S p) = ∑
π∈ΠS p

(r̄(π)−1)yp
π .

We know thatmst(S p)≤ optr but how large is the difference betweenmst(S p) andmst(S p)? We show
that the difference

∑
π∈ΠS p

(r(π)− r̄(π))yp
π

is exactly equal to the lossl(T p) of treeT p. We then bound the loss of each selected full componentK i, and
putting everything together finally yields Lemma 10.

The following lemma states the performance guarantee of Moore’s minimum-spanning tree heuristic as
a function of the optimum loss and the maximum cardinalityb of any Steiner neighborhood inG.

Lemma 11. Fix an arbitrary optimum r-restricted Steiner tree T∗. Given an undirected, b-quasi-bipartite
graph G= (V,E), a set of terminals R⊆V, and non-negative costs ce for all e∈ E, we have

mst(G[R],c)≤ 2optr −
2
b
l(T∗)

for any b≥ 1.

Proof. Recall thatKr(T∗) is the set of full components of treeT∗. Now consider a full componentK ∈
Kr(T∗). We will now show that there is a minimum-cost spanning tree of G[K] whose cost is at most
2cK − 2

bl(K). By repeating this argument for all full componentsK ∈ Kr(T∗), adding the resulting bounds,
and applying Fact 9, we obtain the lemma.

For terminalsr,s∈ K, let Prs denote the uniquer,s-path inK. Picku,v∈ K such thatc(Puv) is maximal.
Define thediameter∆(K) := c(Puv). Do a depth-first search traversal ofK starting inu and ending inv. The
resulting walk inK traverses each edge not onPuv twice while each edge onPuv is traversed once. Hence
the walk has cost 2cK −∆(K). Using standard short-cutting arguments it follows that the minimum-cost
spanning tree ofG[K] has cost at most

2cK −∆(K) (11)

as well.
Each Steiner vertexs∈V(K)\Rcan connect to some terminalv∈ K at cost at most∆(K)

2 . Hence, the cost

l(K) of the loss ofK is at mostb∆(K)
2 . In other words we have∆(K)≥ 2

bl(K). Plugging this into (11) yields
the lemma.

For small values ofb we can obtain additional improvements via case analysis.

Lemma 12. Suppose b∈ {3,4}. Fix an arbitrary optimum r-restricted Steiner tree T∗. Given an undirected,
b-quasi-bipartite graph G= (V,E), a set of terminals R⊆ V, and non-negative costs ce for all e ∈ E, we
have

mst(G[R],c)≤ 2optr −l(T∗).

10
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Figure 3: The figure shows the two types of full components when b≤ 4. On the left is a full component
where the Steiner nodes form a path, and on the right is a full component where the Steiner nodes form a star
with 3 tips.

Proof. As in the proof of Lemma 11 it suffices to prove that, for each full componentK ∈Kr(T∗), there is a
minimum-cost spanning tree ofG[K] whose cost is at most 2cK −l(K), for then we can add the bound over
all suchK to get the desired result. For terminalsr,s∈ K, let Prs again denote the uniquer,s-path inK.

Notice that the Steiner nodes (there are at mostb of them) in the full componentK either form a path, or
else there are 4 of them and they form a star.

Case 1: the Steiner nodes inK form a path. Letx andy be the Steiner nodes on the ends of this path. Letu
(resp.v) be any terminal neighbour ofx (resp.y); see Figure 3(i) for an example. Perform a depth-first
search inK starting fromu and ending atv; the cost of this search is 2cK −c(Puv). By standard short-
cutting arguments it follows that 2cK − c(Puv) is an upper bound onmst(G[K]). On the other hand,
sincePuv\{ux} is a candidate for the loss ofK, we know thatl(K)≤ c(Puv\{ux}) ≤ c(Puv). Therefore
we obtain

mst(G[K])≤ 2cK −c(Puv)≤ 2cK −l(K). (12)

Case 2: the Steiner nodes inK form a star. Let the tips of the star bex,y,z and lett,u,v be any terminal
neighbours ofx,y,z respectively; see Figure 3(ii) for an example. Without lossof generality, we may
assume thatcxt ≤ cyu ≤ czv. As before, a depth-first search inK starting fromu and ending atv has
cost 2cK − c(Puv) and this is an upper bound onmst(G[K]). On the other hand,Puv\{yu}∪{xt} is a
candidate for the loss ofK and sol(K)≤ c(Puv)−cyu+cxt ≤ c(Puv). We hence obtain Equation (12)
as in the previous case.

We are ready to prove our main theorem. We restate it using thenotation introduced in the last two
sections.

Theorem 1. Given an undirected, b-quasi-bipartite graph G= (V,E), terminals R⊆V, and a fixed constant
r ≥ 2, Algorithm 1 returns a feasible Steiner tree Tp with

c(T p)≤







1.279·optr : b= 1
(1+1/e) ·optr : b∈ {2,3,4}
(

1+ 1
2 ln
(

3− 2
b

))

optr : b≥ 5.

11



Proof. Using Lemma 10 we see that

c(T p) ≤ optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

= optr +l(T∗) · ln

(

1+
mst(G[R],c)−optr

l(T∗)

)

. (13)

The second equality above holds becauseG[R] has no Steiner vertices. Applying the bound onmst(G[R],c)
from Lemma 11 yields

c(T p)≤ optr ·

[

1+
l(T∗)

optr
· ln

(

1−
2
b
+

optr

l(T∗)

)]

. (14)

Karpinski and Zelikovsky [22] show thatl(T∗) ≤ 1
2optr . We can therefore obtain an upper-bound on the

right-hand side of (14) by bounding the maximum value of function xln(1−2/b+1/x) for x∈ [0,1/2]. We
branch into cases:

b= 1: The maximum ofxln(1/x−1) for x∈ [0,1/2] is attained forx≈ 0.2178. Hence,xln(1/x−1)≤ 0.279
for x∈ [0,1/2].

b= 2: The maximum ofxln(1/x) is attained forx= 1/e and hencexln(1/x) ≤ 1/e for x∈ [0,1/2].

b∈ {3,4}: We use Equation (13) together with Lemma 12 in place of Lemma 11; the subsequent analysis
and result are the same as in the previous case.

b≥ 5: The functionxln(1−2/b+1/x) is increasing inx and its maximum is attained forx= 1/2. Thus,
xln(1−2/b+1/x) ≤ 1

2 ln(3−2/b) for x∈ [0,1/2].

The three cases above conclude the proof of the theorem.

5 Properties of(PS

ST)

In this section, we first prove that the linear program(PS

ST) is gradually weakened as the algorithm progresses
(i.e., as more full components are added toS ). Then we describe bounds on the integrality gap of the new
LP, and its strength compared to other LPs for the Steiner tree problem.

Lemma 13. If S ⊂ S ′, then the integrality gap of(PS
ST) is at most the integrality gap of(PS ′

ST).

Proof. We consider only the case whereS ′ = S ∪{J} for some full componentJ; the general case then
follows by induction on|S ′\S |.

Let x be any feasible primal point for (PSST) and define theextension x′ of x to be a primal point of(PS
′

ST),

with x′e= xJ for all e∈ E(J) andx′Z = xZ for all Z∈ (Kr\S
′)∪E(S ). We claim thatx′ is feasible for(PS ′

ST).
Sincex andx′ have the same objective value, this will prove Lemma 13.

It is clear thatx′ satisfies constraints (5), so now let us show thatx′ satisfies the partition inequality (4) in
(PS ′

ST). Fix an arbitrary partitionπ ′ of V(S ′), and letπ be the restriction ofπ ′ to V(S ). We get

∑
e∈Eπ′ (S

′)

x′e+ ∑
K∈Kr\S ′

rcπ ′

K x′K =

(

∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
KxK

)

+ |Eπ ′ ∩E(J)|xJ−rcπ
J xJ. (15)

Now J spans at leastrcπ
J +1 parts ofπ ′, and it follows that|Eπ ′ ∩E(J)| ≥ rcπ

J . Hence, using Equation (15),
the fact thatx satisfies constraint (4) forπ, and the fact that ¯r(π) = r̄(π ′), we have

∑
e∈Eπ′ (S

′)

x′e+ ∑
K∈Kr\S ′

rcπ ′

K x′K ≥ ∑
e∈Eπ (S )

xe+ ∑
K∈Kr\S

rcπ
KxK ≥ r̄(π)−1= r̄(π ′)−1.

Sox′ satisfies (4) forπ ′.

12



Figure 4: Skutella’s example, which shows that the bidirected cut formulation and our new formulation both
have a gap of at least8

7. The shaded edges denote one of the quasi-bipartite full components on 5 terminals.

In 1997, Warme [37] introduced a new linear program for the Steiner tree problem. He observed (as did
the authors of [30] in the same year) that full components allow a reduction from the Steiner tree problem to
thespanning-tree-in-hypergraphproblem. He also gave an LP relaxation for spanning trees in hypergraphs.
That LP turns out to be exactly as strong as our own LP; see [24,Corollary 3.19] for a proof. Now, Polzin
et al. [29] proved that Warme’s relaxation is stronger than the bidirected cut relaxation, and Goemans [15]
proved that the (graph) Steiner partition inequalities arevalid for the bidirected cut formulation. Hence, as
stated previously, using full components as in (PS

ST) strengthens the Steiner partition inequalities.

5.1 A lower bound on the integrality gap of(P/0
ST)

Note that whenS =
(R

2

)

, (P/0
ST)and (PSST) are equivalent LPs: for each terminal-terminal edgeuv, the full

component variablex{u,v} of the former corresponds to the edge variablexuv of the latter. Hence although we

consider the simpler LP(P/0
ST) in this section, the results apply also to the LP used in the first iteration ofRZ.

Goemans [1] gave a family of graphs upon which, in the limit, the integrality gap of the bidirected cut
relaxation is8

7. Interestingly, it can be shown that once you preprocess these graphs as described in Section
2.3, the gap completely disappears. Here we describe another example, due to Skutella [35]. It shows
not only that the gap of the bidirected cut relaxation is at least 8

7, but that the gap of our new formulation
(including preprocessing) is at least8

7. The example is quasi-bipartite.
The Fano design is a well-known finite geometry consisting of7 pointsand 7lines, such that every point

is on 3 lines, every line contains 3 points, any two lines meetin a unique point, and any two points lie on a
unique common line. We construct Skutella’s example by creating a bipartite graph, with one side consisting
of one nodenp for each pointp of the Fano design, and the other side consisting of one nodenℓ for each line
ℓ of the Fano design. Definenp andnℓ to be adjacent in our graph if and only ifp doesnot lie on ℓ. Then it
is easy to see this graph is 4-regular, and that given any two nodesn1,n2 from one side, there is a node from
the other side that is adjacent to neithern1 nor n2. Let one side be terminals, the other side be Steiner nodes,
and then attach one additional terminal to all the Steiner nodes. We illustrate the resulting graph in Figure 4.

Each Steiner node is in a unique 5-terminal quasi-bipartitefull component. There are 7 such full compo-
nents. Denote the family of these 7 full components byC .

Claim 14. Let x∗K = 1
4 for each K∈ C , and x∗K = 0 otherwise. Then x∗ is feasible for(P/0

ST).

Proof. It is immediate thatx∗ satisfies constraints (5). It remains only to show thatx∗ meets constraint (4).
Let π be an arbitrary partition, with partsπ0, . . . ,πm such thatπ0 contains the extra “top” terminal. If we can
show that∑K x∗Krc

π
K ≥ m then we will be done, sinceπ was arbitrary. For eachi = 1, . . . ,m, let r i be any

terminal inπi. Note that eachr i lies in exactly 4 full components fromC . Furthermore, every full component

13



K ∈ C satisfiesrcπ
K ≥ |K∩{r1, . . . , rm}|, since that full component meetsπ0 as well as each partπ j such that

r j ∈ K. Hence

∑
K

x∗Krc
π
K =

1
4 ∑

K∈C

rcπ
K ≥

1
4 ∑

K∈C

#{ j : r j ∈ K}=
1
4

m

∑
j=1

#{K ∈ C : r j ∈ K}=
1
4
·m·4= m.

The objective value ofx∗ is 35
4 , but the optimal integral solution to the LP is 10, since at least 3 Steiner

nodes need to be included. Hence, the gap of our new LP is no better than 10
35/4 = 8

7.

5.2 A gap upper bound forb-quasi-bipartite instances

In [32] Rajagopalan and Vazirani show that the bidirected cut relaxation has a gap of at most3
2, if the graph

is quasi-bipartite. Since(P/0
ST) is stronger than the bidirected cut relaxation its gap is also at most32 for such

graphs. We are able to generalize this result as follows.

Theorem 2. On b-quasi-bipartite graphs,(P/0
ST)has an integrality gap between87 and 2b+1

b+1 in the worst case.

Proof. The lower bound comes from Section 5.1. We assumeG is b-quasi-bipartite, we letT∗ be an optimal
Steiner tree, and we letS ∗ be its set of full components. SinceT∗ is a minimum spanning tree forS ∗,
there is a corresponding feasible dualy for (DSP). When we converty to a dual for(DS

∗

ST ), we claim thaty
is feasible: indeed, by Lemma 7 a violated full component could be used to improve the solution, butT∗ is
already optimal. The next lemma is the cornerstone of our proof.

Lemma 15. Let π be a partition of V(S ∗) with yπ > 0. Then(r̄(π)−1)≥ b+1
2b+1(r(π)−1).

Proof. For each partπi of π, let us identify all of the nodes ofπi into a single pseudonodevi . We may assume
by Theorem 3 that eachT∗[πi] is connected, hence this identification process yields a treeT ′. Let us say that
vi is Steinerif and only if all nodes ofπi are Steiner. Note thatT ′ hasr(π) pseudonodes andr(π)− r̄(π) of
these pseudonodes are Steiner. The full components ofT ′ are defined analogously to the full components of
a Steiner tree.

Consider any full componentK′ of T ′ and letK′ contain exactlys Steiner pseudonodes. It is straight-
forward to see thats≤ b. Each Steiner pseudonode inK′ has degree at least 3 by Assumptions A1 and
A2, and at mosts− 1 edges ofK′ join Steiner vertices to other Steiner vertices. HenceK′ has at least
3s− (s−1) = 2s+1 edges, and so

|E(K′)| ≥
2s+1

s
·s≥

2b+1
b

·s.

Now summing over all full componentsK′, we obtain

|E(T ′)| ≥
2b+1

b
·#{Steiner pseudonodes ofT ′}.

But |E(T′)|= r(π)−1 andT ′ hasr(π)− r̄(π) Steiner pseudonodes, therefore

r(π)−1≥
2b+1

b
((r(π)−1)− (r̄(π)−1)) ⇒

2b+1
b

(r̄(π)−1)≥
b+1

b
(r(π)−1).

This proves what we wanted to show.

It follows that the objective value ofy in (DS ∗

ST ) is

∑
π∈ΠS

(r̄(π)−1)yπ ≥ ∑
π∈ΠS

b+1
2b+1

(r̄(π)−1)yπ =
b+1
2b+1

c(T∗)

and sinceT∗ is an optimum integer solution of(PS ∗

ST ), it follows that the integrality gap of(PS ∗

ST ) is at most
b+1
2b+1. Then, finally, by applying Lemma 13 to(P/0

ST)and(PS ∗

ST )we obtain Theorem 2.
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6 Proof of Lemma 10

In this section we present a proof of Lemma 10. The methodology follows that proposed by Gröpl et al. [19].
In fact, many of the proofs below essentially correspond to those presented in [19] with two exceptions: we
correct a small error near the end, and we present a new proof of the ubiquitouscontraction lemma.

We remind the reader of our standing assumption thatS ⊇
(R

2

)

. We first relate the cost of a minimum-
cost spanning tree ofS for some setS of full components to the (potential) lower-boundmst(S ) onoptr
that it provides. For ease of presentation in the analysis, we will assume from now on that the costs of all
edges inE are pairwise different. This assumption is easily seen to bew.l.o.g. (e.g., one could define an
order on the edges inE and use it to break ties). We omit the proof of the following easy fact.

Fact 16. If T is a minimum-cost spanning tree ofS thenl(T) = l(S ).

Lemma 17. For any setS ⊆ Kr of full components,

mst(S ) = mst(S )+l(S ).

Proof. We use the notation from Section 2:τ∗ is the finishing time of Kruskal’s algorithm,Gτ = (V,Eτ )
is the forest maintained at timeτ , andπτ is the partition induced by the connected components ofGτ . Let
(T,y) denote the tree-dual pair returned byMST.

From Theorem 3 we know that there exists a feasible dual solution y to (DSP) for graphS such that

c(T) = ∑
π∈ΠS

(r(π)−1)yπ =
∫ τ∗

0
(r(πτ )−1)dτ .

In the following letRτ be the set of those connected components ofEτ that contain terminal vertices.

Claim 18. For all 0 ≤ τ ≤ τ∗, each connected component of Eτ ∪ L(T) contains exactly one connected
component ofRτ .

Proof. Let u andv be terminals in distinct connected components ofGτ and letPuv be the uniqueu,v-path in
T. Assume for the sake of contradiction thatPuv is contained inEτ ∪L(T).

Let ē be the unique edge of maximum cost on pathPuv. Recall from Section 2 that Kruskal’s algorithm
adds edges to the partial spanning tree in order of non-decreasing cost. Thus, edge ¯e is added last among all
edges onPuv. As u andv are in different connected components ofGτ , it therefore follows that ¯e 6∈ Eτ . The
loss ofT is a minimum-cost forest inT that connects all Steiner vertices to terminals. Thus, the unique edge
of maximum cost onPuv cannot be inL(T).

It follows that ē 6∈ Eτ ∪L(T) and this contradicts our assumption thatPuv ⊆ Eτ ∪L(T).

For each time 0≤ τ ≤ τ∗, defineπ̄τ as the Steiner partition corresponding to the connected components
of Gτ ∪L(T). From Theorem 3 we know that

l(T) = ∑
e∈L(T)

ce = ∑
e∈L(T)

∑
π:e∈Eπ

yπ =
∫ τ∗

0
|Eπτ ∩L(T)|dτ

where, as before,Eπτ is the set of edges inE that have endpoints in different parts ofπτ .
The number of edges in|Eπτ ∩L(T)| is exactly the rank-difference betweenπτ andπ̄τ and hence

l(T) =
∫ τ∗

0
(r(πτ )− r(π̄τ))dτ .
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Claim 18 implies thatr(π̄τ) = r̄(πτ) for all 0≤ τ ≤ τ∗ and hence

mst(S )+l(T) =
∫ τ∗

0
(r̄(π)−1)dτ +

∫ τ∗

0
(r(πτ )− r̄(πτ))dτ =

∫ τ∗

0
(r(π)−1)dτ = c(T).

Applying Fact 16 and the equalityc(T) = mst(S ), we are done.

We obtain the following immediate corollary:

Corollary 19. In iteration i of Algorithm 1, adding full component K∈Kr to S reduces the cost ofmst(S )
if and only if fi(K)< 1.

Proof. By applying Lemma 17 we see that

mst(S i)−mst(S i ∪{K}) = mst(S i)+l(S i)−mst(S i ∪{K})−l(S i ∪{K}).

Whereas the left-hand side is positive iff addingK to S i causes a reduction inmst, the right-hand side is
positive iff fi(K)< 1, due to the definition offi .

Using Lemma 7 and Corollary 19, we obtain the following.

Corollary 20. For all 1≤ i ≤ p, fi(K i)< 1.

Fix an optimumr-Steiner treeT∗. The next two lemmas give bounds that are needed to analyzeRZ’s
greedy strategy. Informally, the first says thatmst is non-increasing, while the second says thatmst is
submodular.

Lemma 21. If S ⊆ S ′ ⊆ Kr , thenmst(S ′)≤ mst(S ).

Proof. Using Lemma 17 and Fact 9 we see

mst(S )−mst(S ′) = mst(S )+l(S ′\S )−mst(S ′).

However, the right hand side of the above equation is non-negative, asMST(S )∪ L(S ′\S ) is a spanning
tree ofS ′. Lemma 21 then follows.

Lemma 22 (Contraction Lemma). Let R0,R1,R2 ⊂ Kr be disjoint collections of full components with
(R

2

)

⊆ R0. Then

mst(R0)−mst(R0∪R
2)≥ mst(R0∪R

1)−mst(R0∪R
1∪R

2).

Proof. The statement to be proved is equivalent to

mst(R0)−mst(R0∪R
2)≥ mst(R0∪R

1)−mst(R0∪R
1∪R

2), (16)

due to Lemma 17 and Fact 9. For a graphH, define therank r(H) of H as the number of edges in a maximal
forest ofH:

r(H) = |V(H)|−# connected components ofH.

For a graphH, letH≤x denote the subgraph ofH consisting of those edges of weight at mostx. By considering
Kruskal’s algorithm, for any graphH having nonnegative edge costs, we see that

mst(H) =
r(H)

∑
i=1

min{x | r(H≤x)≥ i}=
∫ ∞

0

(

r(H)− r(H≤x)
)

dx. (17)
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Note that the integral is proper since the integrand is 0 forx larger than max{ce : e∈ E(H)}.
Here is the crux:r is the rank function for a (graphic) matroid and is thereforesubmodular over the

addition of disjoint edge sets. Since theR i
<x are pairwise disjoint, for everyx, this submodularity implies

that
− r
(

R
0
≤x

)

+ r
(

R
0
≤x∪R

2
≤x

)

≥−r
(

R
0
≤x∪R

1
≤x

)

+ r
(

R
0
≤x∪R

1
≤x∪R

2
≤x

)

. (18)

Notice also that
r(R0)− r(R0∪R

2) = r(R0∪R
1)− r(R0∪R

1∪R
2) (19)

since both sides are equal to the number of Steiner vertices in R2, times−1.
Finally, we add Equation (18) to Equation (19) and integratealongx. Since(R0∪R2)≤x = R0

<x∪R2
≤x

etc. we get
∫ ∞

0

(

r(R0)− r(R0
≤x)
)

dx−
∫ ∞

0

(

r(R0∪R
2)− r

(

(R0∪R
2)≤x

)

)

dx

≥

∫ ∞

0

(

r(R0∪R
1)− r

(

(R0∪R
1)≤x

)

)

dx−
∫ ∞

0

(

r(R0∪R
1∪R

2)− r
(

(R0∪R
1∪R

2)≤x
)

)

dx.

But using Equation (17), this gives precisely Equation (16).

We note that the proof of Lemma 21 easily generalizes to othermatroids. This is a departure from the
existing proofs in [19] and [4, Lemma 3.9], and Rizzi’s more specific result [33, Lemma 2], although a strong
exchange propertyof matroids is used in the proof of [4].

We are finally near the end of the analysis, where the Contraction Lemma comes into play. We can now
bound the valuefi(K i) for all 0≤ i ≤ p−1 in terms of the cost ofT∗’s loss. In the remainder of the section,
let the full components ofT∗ beK∗,1, . . . ,K∗,q, let l∗ denotel(T∗), let msti denotemst(S i) and letmst∗

denotemst(T∗).

Lemma 23. For all 0≤ i ≤ p−1, if msti −mst
∗ > 0, then fi(K i)≤ l∗/(msti −mst

∗).

Proof. By the choice ofK i in Algorithm 1, we havefi(K i) ≤ min j fi(K∗, j). A standard fraction averaging
argument implies that

fi(K
i) ≤

∑q
j=1l(K

∗, j)

∑q
j=1

(

mst(S i)−mst(S i ∪{K∗, j})
)

≤
l∗

∑q
j=1

(

mst(S i ∪{K∗,1, . . . ,K∗, j−1})−mst(S i ∪{K∗,1, . . . ,K∗, j})
) (20)

where the last inequality uses Fact 9 and Lemma 22. (Additional care is needed whenT∗ andS p overlap
in some full components, but the above inequalities still hold.) The denominator of the right-hand side
of Equation (20) is a telescoping sum. Canceling like terms,and using Lemma 21 to replacemst(S i ∪
{K∗,1, . . . ,K∗,q}) with mst

∗, we are done.

We can now bound the cost ofT p.

Proof of Lemma 10.We first bound the lossl(T p) of treeT p. Using Fact 9,

l(T p) =
p−1

∑
i=0

l(K i) =
p−1

∑
i=0

fi(K
i) · (msti −mst

i+1) (21)

17



where the last equality uses the definition offi from (10). Using Corollary 20 and Lemma 23, the right hand
side of Equation (21) is bounded as follows:

p−1

∑
i=0

fi(K
i) · (msti −mst

i+1)≤
p−1

∑
i=0

l∗

max{l∗,msti −mst
∗}

· (msti −mst
i+1). (22)

The right hand side of Equation (22) can in turn be bounded from above by the following integral:

p−1

∑
i=0

l∗ · (msti −mst
i+1)

max{l∗,msti −mst
∗}

≤

∫

mst
0

mst
p

l∗

max{l∗,x−mst
∗}

dx=
∫

mst
0−mst∗

mst
p−mst∗

l∗

max{l∗,x}
dx. (23)

Notice thatmst0 = mst(G[R],c)≥ optr = l∗+mst
∗. The termination condition in Algorithm 1 and Lemma

6 imply thatmstp ≤ optr . Hence the result of evaluating the integral in the right-hand side of Equation (23)
is

l∗− (mstp−mst
∗)+l∗ ·

∫

mst
0−mst∗

l∗

1
x

dx= optr −mst
p+l∗ · ln

(

mst
0−mst

∗

l∗

)

(24)

where the equality uses Lemma 17. Applying Lemma 17 two more times, and combining Equations (21)–
(24), we obtain

c(T p) = mst
p+l(Tp) ≤ optr +l∗ · ln

(

mst
0−mst

∗

l∗

)

= optr +l∗ · ln

(

1+
mst

0− (mst∗+l∗)

l∗

)

= optr +l∗ · ln

(

1+
mst

0−optr

l∗

)

as wanted.

Remark. Gröpl et al. essentially prove Lemma 10 in [19, Lemma 4.3] but a minor error lies in their
equation “(18).” Namely, they assume “mi −m∗ > 0” which ismsti −mst

∗ > 0 in our notation.
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[30] H. J. Prömel and A. Steger. A new approximation algorithm for the Steiner tree problem with per-
formance ratio 5/3. J. Algorithms, 36(1):89–101, 2000. Preliminary version appeared as “RNC-
approximation algorithms for the Steiner problem” at STACS1997.
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