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Abstract

We describe a way of generating a warm-start point for interior point methods in the
context of stochastic programming. Our approach exploits the structural information of the
stochastic problem so that it can be seen as a structure-exploiting initial point generator.
We solve a small-scale version of the problem corresponding to a reduced event tree and
use the solution to generate an advanced starting point for the complete problem. The way
we produce a reduced tree tries to capture the important information in the scenario space
while keeping the dimension of the corresponding (reduced) deterministic equivalent small.
We derive conditions which should be satisfied by the reduced tree to guarantee a successful
warm-start of the complete problem. The implementation within the HOPDM and OOPS
interior point solvers shows remarkable advantages.

1 Introduction

Stochastic programming [4, 18] models uncertainty through the analysis of possible future out-
comes (scenarios). The more detailed the description is, the more robust the decisions taken are.
This involves the generation of very large scenario trees and, consequently, of very-large scale
deterministic equivalent matrices. With the growing industrial acknowledgement of the benefits
of considering uncertainty for planning purposes, it is expected that the need for solving very
large problem instances will grow as well.

The practical advantages of relying on interior point solvers become more and more evident as
the dimensions of the problems increase. Very-large scale problems, however, are very difficult
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to solve with general purpose solvers: problems of these sizes can be solved by exploiting the
structure present in the matrix; this leads to a further advantage that comes from assigning
the computational work to more than one processing unit through the parallelisation of the
linear algebra. This is where structure-exploiting parallel solvers such as OOPS [13] excel. More-
over, structure-exploiting interior point methods can be used not only for linear programming
problems, but also for quadratic and nonlinear problems [12].

In a large scenario tree there may be very little difference among scenarios, and so the large-
scale problem can provide a fine-grained solution to a problem that could have been solved more
coarsely by using a much smaller tree. This observation suggests a warm-start technique that
can be applied in the context of interior point methods. A warm-start solution is obtained by
solving the stochastic optimization problem for a reduced event tree, the dimension of which is
much smaller than that of the complete one. The solution to the reduced problem is used to
construct an advanced iterate for the complete formulation. We provide evidence that this novel
way of exploiting the problem structure to generate an initial iterate provides a better starting
point (in terms of centrality, feasibility, and closeness to optimality) than the one produced by
a generic strategy. We emphasize that the proposed warm-start strategy is independent of the
details of the linear algebra implementation adopted by the solver.

This paper is organised as follows. In Section 2 we outline some basic concepts of stochastic
programming and introduce a measure of the distance between scenarios. In Section 3 we review
some studies on warm-start techniques for interior point methods. In Section 4 we present a
method of generating a reduced event tree and constructing the warm-start iterate. In Section 5
we analyse the approach and derive bounds that the reduced tree has to satisfy to guarantee a
successful warm start. Considerations on the implementation and numerical results are discussed
in Section 6. Finally, in Section 7 we draw our conclusions.

2 Stochastic programming

Data forecasts are usually made through econometric models that take into account historical
data: this helps to determine trends and their variations, but unfortunately it is not applica-
ble to recently introduced products and services, as this data may not be available. When the
uncertainty cannot be conveniently forecast, the use of deterministic models is considered inad-
equate for decision making. In these situations, being able to describe and model the uncertain
parameters becomes a requirement for robust decision making. Stochastic programming [4, 18]
studies the methods and provides the tools for modelling uncertainty.

The relevance of stochastic programming lies in the fact that it allows the handling of uncertainty
in a practical way, through a rich set of tools. The popularity of stochastic programming is on the
increase, as its paradigm is well-suited to modelling many real-life problems in several different
areas (finance, energy production and planning, telecommunications, logistics, etc). In stochastic
programming, the uncertain environment is described through a stochastic process which is
usually estimated from historical data or conjectured according to prescribed properties. The
continuous process is usually further approximated by a discrete distribution in order to obtain
a computationally amenable description. In such a case, the most common techniques [16, 25]
generate a finite, but usually very large, number of scenarios that represent an approximate
description of the possible outcomes.
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2.1 Deterministic equivalent formulation for stochastic programs

A natural formulation of a stochastic programming problem relies on recursion to describe the
dynamics of the modelled process. The term recourse means that, at each time period, the
decision variables adapt to the different outcomes of the random parameters. In a planning
approach, the evolution of uncertainties can be described as an alternating sequence of decisions
and random realisations that occur at different points in time (stages).

The discrete stochastic process can be represented as an event tree (Figure 1). A node denotes a

Figure 1: An event tree.

point in time when a realisation of the random process becomes known and a subsequent decision
is taken. To each node of the event tree we associate a set of constraints, an objective function,
and the conditional probability of visiting the node from its parent node in the previous stage.
A path from the root to a leaf node of the event tree represents a scenario. The probability of
each scenario is the product of the conditional probabilities of visiting each of the nodes on the
path.

To express the deterministic equivalent of the multi-stage stochastic programming problem in
node formulation we need to enumerate all nodes of the event tree: we use a breadth-first
ordering, i.e. we start from the root node corresponding to the initial stage (stage 1) and end
with leaf nodes corresponding to the final stage (stage tf ). Let t = 1, 2, . . . , tf denote the stages
and let Lt be the set of nodes at stage t. With a(l) we denote the direct ancestor of node l ∈ Lt

(which is a node that belongs to stage t − 1). The decision variables are superscripted with the
node number l; similar notation is used for the corresponding matrix and vector blocks.

In the case of one-period recourse, the main constraint that describes the dynamics of the system
has the form

T lxa(l) + W lxl = hl, l ∈ Lt, t = 2, . . . , tf ,

where T l is the technology matrix that varies with the node in the event tree, and W l is the
recourse matrix that, in general, may depend on realisations within the same stage, but often
varies only with time. The deterministic equivalent formulation of the multi-stage problem has
the following general form:

min

tf∑

t=1

∑

l∈Lt

pl(ql)>xl

s.t. W 1x1 = h1,

T ltxa(lt) + W ltxlt = hlt , lt ∈ Lt, t = 2, . . . , tf ,
xlt ≥ 0, lt ∈ Lt, t = 1, . . . , tf .

(1)
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Note that the probabilities in the objective function of problem (1) are the unconditional path
probabilities: pl is the probability that a path goes through node l, which equals the product of
the conditional probabilities δi, for i along the path from the root to node l, so that pi = δipa(i).

If the event tree is traversed with depth-first ordering of the nodes during the generation of the
program, the corresponding constraint matrix displays a nested dual block-angular structure.
Figure 2 displays the two possible structures for the event tree of Figure 1 according to the chosen
ordering of nodes. While the different ordering of blocks within the matrix is not relevant for

Figure 2: Deterministic equivalent corresponding to the event tree of Figure 1, with nodes listed
in breadth-first order (left) and depth-first order (right).

general-purpose solvers, the structure-exploiting software OOPS [12, 13] can take full advantage
of the nested dual block-angular structure resulting from the depth-first ordering in its internal
object-oriented linear algebra representation.

Several solution methods for stochastic linear programs have been presented in the literature.
These often rely on some decomposition approach [2, 19, 23], among others. In this paper,
instead, we consider solving the deterministic equivalent problem directly through an interior
point method.

2.2 Scenario distance

For the purposes of this paper (see Section 4.1), we need to introduce a measure of distance
between scenarios. Let the total number of scenarios be N . Recalling that a scenario is a path
in the event tree from the root to a leaf node, we can encode a scenario sk, k = 1, . . . , N , as an
ordered set of nodes sk = {l1, . . . , ltf : lt = a(lt+1), t = 1, . . . , tf − 1}. To each node lt of the

tree we associate the 4-tuple ηlt = {T lt ,W lt , hlt , qlt} of matrices, right-hand side and objective
coefficients.

We first define the distance between two nodes it and jt that belong to the same stage t as

d(ηit , ηjt) = ‖T it − T jt‖∞ + ‖W it − W jt‖∞ + ‖hit − hjt‖∞ + ‖qit − qjt‖∞. (2)

Hence, we compute the distance between scenarios si and sj as

D(si, sj) =

tf∑

t=1

d(ηit , ηjt), it ∈ si, jt ∈ sj.
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Scenarios that belong to the same branch of the tree will have smaller distance in general, as
they share some of the nodes. Conversely, scenarios are likely to be farther away if they do not
share nodes apart from the root.

3 Warm-start with interior point methods

Consider the linear programming problem in standard form

min c>x s.t. Ax = b, x ≥ 0, (3)

where A ∈ Rm×n is full rank, x, c ∈ Rn and b ∈ Rm. For the purposes of this paper, problem
(3) corresponds to the deterministic equivalent generated from a given event tree T , and we will
refer to it as the complete problem.

In the context of interior point methods, the non-negativity conditions are replaced by a loga-
rithmic term, thus generating the barrier problem

min c>x − µ

n∑

i=1

lnxi s.t. Ax = b, (4)

where µ > 0 is the barrier parameter. The first-order optimality conditions (Karush-Kuhn-
Tucker conditions) corresponding to problem (4) can be expressed as

Fµ(x, y, s) =




Ax − b
A>y + s − c
XSe − µe


 = 0, (x, s) > 0,

where s ∈ Rn is the vector of dual slacks, X and S are diagonal matrices with elements xi and
si respectively, and e ∈ Rn is a vector of ones. As µ is decreased at each iteration, the solution
of the perturbed Karush-Kuhn-Tucker conditions traces a unique path toward the optimal set,
generally referred to as the central path. Path-following interior point methods [26] seek a
solution to the nonlinear system Fµ(x, y, s) = 0 by using Newton’s method, and consider the
Newton system




A 0 0
0 A> I
S 0 X







∆x
∆y
∆s


 =




b − Ax
c − A>y − s
−XSe + µe


 =




ξb

ξc

ξµ


 , (5)

which needs to be solved with a specified µ for a search direction (∆x,∆y,∆s). To guarantee
the positivity of the x and s components when moving along the search direction, the maximum
stepsize α is computed such that (x+α∆x, s+α∆s) > 0. Path-following methods rely on keeping
the iterates in a neighbourhood of the central path, thus follow it in approaching the optimal
solution. In our analysis we work with the symmetric neighbourhood [6] of the central path

Ns(γ) = {(x, y, s) : Ax = b, A>y + s = c, (x, s)>0, γµ ≤ xisi ≤ µ/γ }, (6)

where 0 < γ < 1. In the authors’ experience, such a neighbourhood best describes the desired
properties of a “well-centered” interior point iterate.

5



The problem of finding a starting point is usually solved by using Mehrotra’s starting point
heuristic [20], which is considered to be computationally effective. In this heuristic, the starting
point is found by solving two least squares problems which attempt to satisfy primal and dual
constraints; this point is then shifted inside the positive orthant. However, many practical appli-
cations rely on solving a sequence of closely related problems, where the instances differ by some
perturbation. This happens within algorithms that are sequential in their nature; also it is very
common in (mixed) integer programming, when the problems are solved with some branching
strategy, when new cuts are added, etc. In these situations, we expect the solution of an instance
to be close to the solution of the next one. Therefore, (warm) starting the optimization of one
problem from the solution of the previous problem should reduce the computational effort of
solving the perturbed instance. Warm-start techniques are very successful when implemented
with a simplex solver (see, for example, [5]). Instead, in the context of interior point methods,
they are much more difficult to implement successfully, for the reasons we outline below.

The optimal solution of a linear programming problem found with a path-following interior point
method is very close to a vertex of the feasible polytope or, in the case of multiple solutions,
it is close to the analytic center of the optimal set of solutions. If the polytope changes, the
previously optimal solution may now be very far away from the central path of the perturbed
instance. Moreover, an interior point algorithm may get stuck when an iterate gets too close to a
boundary before optimality is reached. Hipolito [15] analysed such situation and showed that if
the iterate is close to a boundary, the search direction may be parallel to the nearby constraints.

The required features for a good warm-start candidate for an interior point algorithm are some-
what contradictory. The point should not be too close to the boundary of the feasible region
in order to be able to absorb larger perturbations in the problem data. Also, it should be suf-
ficiently advanced to provide computational savings over a cold-start iterate. The theory and
practice of warm-start techniques for interior point methods is a relatively new and still open
field of study. In the remainder of this section, we present a review of some of the warm-start
approaches proposed in the interior point literature.

3.1 Literature review

Mitchell [21] and Mitchell and Todd [22] analyse the potential reduction interior point method
within a cutting plane algorithm. They exploit the fact that the primal feasible point can be con-
structed after a set of new columns is added to the problem. They use this strategy with success
in column generation scheme and more generally in the solution of combinatorial optimization
problems.

Gondzio [9] presents a warm-start procedure for primal–dual interior point methods in the
context of a cutting plane method. The interior point method is used to solve a sequence of
restricted master problems, which differ by one or more cutting planes. The idea proposed in [9]
is to store a nearly optimal point (3–4 digits of accuracy) to be employed as a warm-start point.
As one requirement for a good iterate is centrality, it is of interest to perform a few centering
steps based on centrality correctors [8] on the stored iterate. An auxiliary feasibility recovery
procedure may be needed as, due to the addition of cuts, large infeasibilities are often produced.
The warm-start approach proposed in [9] is extended in [14] to the case of solving a sequence
of problems with the same dimensions but changing problem data (the objective function or
the right-hand side) which arise in the context of decomposition approaches for large structured
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linear programs.

Yıldırım and Wright [27] consider again the case of solving a sequence of problems in fixed
dimensions, and analyse the number of iterations required to converge to a solution of the
perturbed instance from the warm-start point and obtain worst-case estimates. They show that
these estimates depend on the size of the perturbation as well as on the conditioning of the
problem instances. Thus they obtain conditions under which the complexity of the warm-start
approach is better than for the cold start case. The strategy proposed in [27] aims at absorbing
the primal and dual infeasibilities introduced by the perturbation in just one step. This strategy
requires to backtrack to an iterate for which µ is large enough to allow a full step for the correction
direction they produce. The amount of necessary backtracking depends on the magnitude of
the perturbation (as measured by the change in the problem data): this is intuitively justified
considering that a large perturbation will produce a large adjustment. To ensure the availability
of an approximate µ-center from which the perturbation can be absorbed in one step, a subset
of iterates for different values of µ is stored. When the size of the perturbation becomes known,
the closest µ available is retrieved, and the corresponding iterate is used as a warm-start point
for the next problem in the sequence. In [27], two different corrections for the perturbation
are studied: one is based on least squares, the other on a Newton step correction. A detailed
computational comparison of these strategies has been carried out by John and Yıldırım [17].

Gondzio and Grothey [10] assess perturbations by a relative measure of implied primal and
dual infeasibilities, and analyse recovery steps in the primal and the dual spaces independently.
This reoptimization procedure is based on two phases: first, an attempt is made to absorb the
infeasibilities caused by the perturbation with a full Newton step; second, the centrality of the
iterate is improved. Another key feature of Gondzio and Grothey’s approach [10] is that the
primal search direction is governed only by the primal perturbation, and similarly for the dual
space. They produce bounds on the magnitude of primal perturbation ξb and dual perturbation
ξc that can be absorbed in a single Newton step; as opposed to the results of [27], these bounds
are easy to compute and thus can be used in practice. An approximate µ-center is stored for a
tolerance level that depends on the magnitude of the expected perturbation. The absorption of
infeasibilities may be spread across a few iterations whenever the stepsizes fall below a predefined
level. As this strategy does not make assumptions upon the centrality of the warm-start iterate,
it can be initialised with any iterate. Gondzio and Grothey [10] apply this warm-start strategy
successfully to structured problems for crash-start points that come from a cross-decomposition
scheme, and thus may lack centrality. In subsequent work, Gondzio and Grothey [11] develop a
variety of heuristics based on sensitivity analysis according to which the warm-start iterate is
perturbed with the aim of allowing a longer stepsize in the search direction.

A different approach has been studied by Benson and Shanno [1]. They investigate how to im-
prove the efficiency of interior point methods in a reoptimization context by the use of a primal–
dual penalty approach. While standard penalty techniques are effective only in one space, the
introduction of penalty parameters in both the primal and the dual problems allows to capture
perturbations in both spaces. The strategy relaxes the non-negativity constraints for the deci-
sion variables, penalising the violation in the objective, for both the primal and dual problems.
The penalised problem allows the variables to become negative: this provides more freedom of
movement for the variables, with the immediate advantage of accepting larger stepsizes along
the computed search direction. This favours a faster progress especially in the first few itera-
tions, when the perturbation needs to be absorbed. Benson and Shanno [1] also provide some
computational evidence of the effectiveness of their strategy.
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4 A reduced-tree warm-start iterate

While the strategies mentioned in the previous section apply to general linear problems, we
introduce an approach tailored to stochastic programming. In particular, we propose to exploit
the structure inherent to a stochastic programming problem to generate a good warm-start
iterate.

In the event tree corresponding to a large multistage program, the numerous leaf nodes descend
from a relatively small number of branches in the first few stages. Two “neighbouring” scenarios,
that is two scenarios that have common nodes, may display large differences concerning later
stage decisions, but the decisions taken in the earlier stages are identical (nonanticipativity).

Techniques for reducing the size of the scenario tree have been studied before from a probabilistic
perspective; in some cases considerable savings can be obtained with such methods. Among
others, Dupačová et al. [7] discuss an optimal scenario reduction technique that couples a large
reduction of the scenario tree with a small loss in accuracy. In their example, a reduction by
50% of the scenario tree still maintains about 90% of the original accuracy. In this paper, we
are interested in capturing some aspects of the stochasticity of the event tree without assuming
further knowledge on the underlying stochastic process that generated it. Given this difference
from what is required for example by [7], we will use less sophisticated arguments in finding a
reduced tree. We remark that if we had knowledge of the underlying stochastic process, then we
could exploit it in the generation of the reduced tree.

We first study how to build a reduced tree, TR, by choosing just some of the available scenarios.
We provide some insight on how to make this selection, so that our choice performs better than
an arbitrary one. Then we discuss how to obtain a warm-start solution from the reduced tree
that corresponds to the chosen scenarios. Our aim is to generate a warm-start iterate that allows
the complete problem to be solved to optimality in fewer iterations (and less computing time)
than an iterate chosen with a standard starting point heuristic [20]. With these aims, we propose
a way of choosing a subset of scenarios that we believe to be sufficiently representative of the
whole tree. The approach can be summarised in the steps of Algorithm 1.

Algorithm 1 Reduced-tree warm-start algorithm

Require: The complete event tree T .
1. Generate a reduced event tree TR ⊂ T ;
2. Solve the deterministic equivalent corresponding to TR with a loose tolerance;
3. Use this solution to construct a warm-start iterate for the complete problem;
4. Solve the complete problem to optimality.

In the rest of this section we define our method of generating a reduced tree and describe the
construction of the complete warm-start iterate.

4.1 Reduced tree generation

We generate the reduced tree by taking into account both the structural and the stochastic
information available from the problem formulation. By structural information we mean the
shape of the event tree, i.e. how the tree branches at the various stages. By stochastic information
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we mean the probabilities associated to each node in the tree, and consequently to each scenario.
Hence we adopt two complementary strategies. First we choose a subset of branches of the event
tree; then, in each branch, we choose the most representative leaf nodes.

We try to capture the structure of the complete tree by making sure that a sufficient number
of different early stage decisions will appear in the reduced tree. In some sense, we look for a
way to span the breadth of the complete tree. For a defined small value κ < tf , where tf is the
number of stages in the problem, we choose some of the nodes at the κ-th stage, together with
all their ancestors up to the root, to appear in the subtree. The choice of nodes to appear in
the reduced tree should be guided by probabilities. The rationale for this strategy is to ensure
that our warm-start iterate is a good representation of the decisions to be taken in the first few
stages, as getting early decisions right is fundamental for easier optimization of the later stages.

To illustrate this idea, suppose we deal with a multistage setting where there are tf = 4 stages,
such as in the tree of Figure 3: for κ = 2 we choose nodes 1, 2 and 3 to be in the reduced tree.

Figure 3: Complete tree and the reduced tree corresponding to the chosen scenarios (in bold).

Each of the chosen nodes in the κ-th stage now becomes the root of a branch of the tree, which
we call a subtree. In each subtree we choose the scenario that minimises the distance to an
average scenario in the same subtree. Let St be the set of nodes in the subtree S at stage t,
and |St| its cardinality. For each stage t within subtree S, we determine an artificial node nt by
averaging the data associated to all the subtree nodes at this stage:

nt =
1

|St|
∑

lt∈St

(T lt ,W lt , hlt , qlt), κ < t ≤ tf .

We define the average scenario for subtree S as an ordered set of nodes {lκ, nκ+1, . . . , ntf }.
Therefore, the average scenario s̄ (in the complete tree) is obtained by listing the nodes from
the root of the tree to the root of the subtree S, and then by appending the artificial (averaged)
nodes. We define it as

s̄ = { l1, . . . , lκ, nκ+1, . . . , ntf },
where lt = a(lt+1) for t = 1, . . . , κ−1. Scenario s̄ is completely artificial, and there is no guarantee
that it is feasible; hence, we cannot use it directly as our representative scenario. Instead, we use
it as a reference point which we compare all other scenarios to, and thus find the closest scenario
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among the existing ones. In this way we do not introduce spurious infeasibilities. Hence, in the
subtree S we choose the representative scenario s∗ as

s∗ = sk, k = arg min
i∈S

{(1 − pi)D(si, s̄)}, (7)

where, since our ultimate goal is to find the most representative scenario in the subtree, we use
the term (1 − pi) to “bring closer” scenarios that have a higher probability of occurring.

The reduced tree selection induces a function r : T → TR that maps each node l of the complete
tree to a corresponding node in the reduced tree in the following way: if l ∈ TR, then r(l) = l;
if l 6∈ TR, then we choose as r(l) the node in the representative scenario corresponding to the
same stage as node l. In other words, to get from node l ∈ T to r(l) ∈ TR we walk up the tree
T until we find a node that is also in TR, and from there walk back down the reduced tree until
we arrive at the same stage as the original node.

The mapping between the two trees is used to decide how to initialise the warm-start iterate
for the complete tree, as presented in the next section. We remark that our generation process
guarantees that for each l ∈ T , the following properties hold:

a(r(l)) ∈ TR, and a(r(l)) = r(a(l)), (8)

that is, if a node is in the reduced tree then so is its parent, and the mapping r(·) preserves the
parent-child relationship.

Continuing the example started above, we consider two subsets of scenarios, corresponding to
nodes 9–12 (for the subtree rooted at node 2) and to nodes 13–18 (for the subtree rooted at node
3). Within each subset we build the scenario of average nodes and then find the representative
scenario. The resulting reduced tree is shown in the right of Figure 3.

Before proceeding further, we introduce some notation. We adopt the convention that symbols
referring to the reduced tree carry the subscript R. Given a node l ∈ Lt, we define Dl ⊂ Lt+1 to
be the set of direct descendants of node l. We introduce the set I k of nodes in the complete tree
that are mapped to the same reduced-tree node k, that is I k = { l ∈ T : r(l) = k } for k ∈ TR.
In what follows, we will exploit the fact that

Dl =
⋃

k∈D
r(l)
R

Ik ∩ Dl, (9)

that is, the set of descendants can be partitioned according to which nodes of the reduced tree
they map to.

As will be seen later it is advantageous if the aggregation of nodes is balanced throughout the
tree. On average, every node in the reduced tree corresponds to n/nR nodes in the full tree, so
for a totally balanced aggregation we would expect

pl

p
r(l)
R

n

nR
≈ 1.

We define the deviation from this as

ρ = min
l∈T

{
pl

p
r(l)
R

n

nR
,
p

r(l)
R

pl

nR

n

}
. (10)
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4.2 Construction of the warm-start iterate

From the reduced tree we build the reduced deterministic equivalent problem

min c>

RxR s.t. ARxR = bR, xR ≥ 0, (11)

with AR ∈ RmR×nR , xR, cR ∈ RnR and bR ∈ RmR . We call problem (11) the reduced problem.
As we expect that (mR, nR) � (m,n), the reduced problem is much smaller than the complete
formulation, and hence much easier to solve.

We solve problem (11) with an interior point method. For the reasons presented in Section 3, we
do not aim for optimality, but instead we aim for a sufficiently advanced primal–dual feasible
point. Therefore we stop at an iterate (x∗

R, y∗R, s∗R) ∈ Ns(γ) for a barrier parameter corresponding
to merely few digits of accuracy in the solution. This iterate is used to construct the warm-start
point (x̂, ŷ, ŝ) for the complete problem on a node-by-node basis.

It should be noted that the reduced-tree generation process can be interpreted as a node-
aggregation process, in which all nodes in Ik ⊂ T are aggregated into a single node k ∈ TR.
The node aggregation determines the node probabilities pk

R associated with each node k ∈ TR;
we use:

pk
R =

∑

i∈Ik

pi, k ∈ TR. (12)

Denote by (x̂l, ŷl, ŝl) the part of the vectors (x̂, ŷ, ŝ) corresponding to node l ∈ T , and likewise

(x
r(l)
R , y

r(l)
R , s

r(l)
R ) for components of the reduced problem solution. We construct the starting

point for the complete problem in the following manner:

x̂l = x
r(l)
R , (ŷl, ŝl) =

pl

p
r(l)
R

(y
r(l)
R , s

r(l)
R ), l ∈ T , (13)

where p
r(l)
R is computed according to (12). This means that the dual reduced-tree solution is

spread among the nodes it initialises, as can be seen here:

∑

i∈Ik

(ŷi, ŝi) =
∑

i∈Ik

pi

pk
R

(yk
R, sk

R) = (yk
R, sk

R)
1

pk
R

∑

i∈Ik

pi = (yk
R, sk

R), k ∈ TR.

Considering again the example of Figure 3, suppose that in the reduced tree we accepted only
the scenarios that end at node 10 and node 15, so that the reduced tree consists of nodes 1,
2, 3, 4, 7, 10 and 15. By solving the corresponding reduced problem, we obtain the parts of
the solution vector associated to such nodes. These can be used directly in the complete iterate
(Figure 4 top). We fill in the missing elements by reproducing the solution from the nodes in
the same subtree and the same stage (Figure 4 bottom). The proposed way of constructing the
complete iterate is easy to implement and its execution time is negligible.

5 Analysis of the warm-start iterate

In this section we study how the warm-start iterate generated with the procedures presented
above satisfies the conditions expressed by Gondzio and Grothey [10]. Contrary to what is

11



Figure 4: Generation of the warm-start iterate.

assumed in both [27] and [10], in our approach the dimension of the problem changes, as the
reduced tree problem is, by construction, much smaller than the complete problem.

However, similarly to what we did with the solution vector, we can expand the reduced problem
to one which has the same dimension as the complete problem (3) by replicating the blocks in
the coefficient matrix and in the objective and right-hand side vectors, as shown in Figure 5.
This corresponds to creating the (artificial) expanded problem

Figure 5: The expanded system for the complete event tree of Figure 3.

min ĉ>x s.t. Âx = b̂, x ≥ 0, (14)

the dimension of which, Â ∈ Rm×n, ĉ, x ∈ Rn and b̂ ∈ Rm, corresponds to the dimension of the
complete problem (3). Using the notation introduced earlier, we will denote all symbols referring
to the expanded problem with a hat .̂

To analyse the warm-start iterate we can now follow a two-step procedure. First we note that
from an advanced iterate (xR, yR, sR) ∈ NR

s (γ) for the reduced problem the procedure in (13)
constructs a primal–dual feasible point (x̂, ŷ, ŝ) for the expanded problem. Indeed, in Theorem 3
we will show that (x̂, ŷ, ŝ) ∈ N̂s(γ̂). In the second step we can use this iterate to warm-start the
complete problem. Since from the expanded to the complete problem the problem size does not
change, the methods developed in [10, 27] can be used to analyse the warm-start iterate.

12



We start the analysis with a technical result.

Lemma 1. Let l ∈ T , then

∑

i∈Dl

T r(i)>ŷi =
pl

p
r(l)
R

∑

k∈D
r(l)
R

T k>

yk
R.

Proof. We have this chain of identities:

∑

i∈Dl

T r(i)>ŷi =
∑

i∈Dl

T r(i)>y
r(i)
R

pi

p
r(i)
R

=
pl

p
r(l)
R

∑

i∈Dl

T r(i)>y
r(i)
R

δi

δ
r(i)
R

=
pl

p
r(l)
R

∑

k∈D
r(l)
R

T k>
yk

R

δk
R

∑

i∈Ik∩Dl

δi,

where the first equality follows from (13) and the second from pi = plδi and p
r(i)
R = p

r(l)
R δ

r(i)
R for

i ∈ Dl. The last equality is obtained observing that we can partition D l according to (9). The
claim then follows noting that for a node l at stage t < κ:

∑

i∈Ik∩Dl

δi =
∑

i∈Ik

δi = δk = δk
R,

while for a node l at stage t ≥ κ:
∑

i∈Ik∩Dl

δi =
∑

i∈Dl

δi = δk
R = 1.

The next two results show that the reduced tree solution can be used to generate a point that
is primal–dual feasible and central for the expanded problem.

Theorem 2. If (xR, yR, sR) is primal and dual feasible for the reduced problem (11), then the
warm-start solution (x̂, ŷ, ŝ) obtained from (13) is primal and dual feasible for the expanded
problem (14).

Proof. As x̂l = x
r(l)
R , primal feasibility is trivially satisfied:

T r(l)x̂a(l) + W r(l)x̂l = hr(l), l ∈ T . (15)

Now we consider dual feasibility. By assumption, the reduced problem solution satisfies the dual
constraints:

W r(l)>y
r(l)
R +

∑

k∈D
r(l)
R

T r(k)>y
r(k)
R + s

r(l)
R = p

r(l)
R qr(l), r(l) ∈ TR.

Multiplying both terms by pl/p
r(l)
R we obtain

pl

p
r(l)
R

(
W r(l)>y

r(l)
R +

∑

k∈D
r(l)
R

T r(k)>y
r(k)
R + s

r(l)
R

)
= plqr(l),

which, according to (13) and Lemma 1, becomes

W r(l)>ŷl +
∑

i∈Dl

T r(i)>ŷi + ŝl = plqr(l), l ∈ T , (16)

so (ŷ, ŝ) satisfies the dual constraints in the expanded problem.
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Theorem 3. If (xR, yR, sR) ∈ NR
s (γ) for some γ ∈ (0, 1), then (x̂, ŷ, ŝ) ∈ N̂s(ργ), with ρ defined

in (10).

Proof. From Theorem 2, the warm-start iterate (x̂, ŷ, ŝ) is feasible in the reduced system. Hence,
here we only need to prove centrality. We observe that

µ̂ =
x̂>ŝ

n
=

1

n

∑

l∈T

(x̂l)>ŝl =
1

n

∑

k∈TR

∑

i∈Ik

(x̂i)>ŝi

=
1

n

∑

k∈TR

∑

i∈Ik

pi

pk
R

(xk
R)>sk

R

=
1

n

∑

k∈TR

1

pk
R

(xk
R)>sk

R

∑

i∈Ik

pi

=
nR

n
µR,

where we used (13) and (12), and µR = x>

RsR/nR. Hence, since (xR, yR, sR) ∈ Ns(γ) implies
(xR)j(sR)j ≥ γµR, for j = 1, . . . , nR, using (10) we have

x̂l
j ŝ

l
j = (x

r(l)
R )j(s

r(l)
R )j

pl

p
r(l)
R

≥ γµR
pl

p
r(l)
R

= γµ̂
n

nR

pl

p
r(l)
R

≥ ργµ̂, l ∈ T .

The upper bound x̂l
j ŝ

l
j ≤ µ̂/(ργ) can be derived similarly.

5.1 Absorbing perturbations

We argue that the difference between the data of the expanded problem (14) and that of the
original (complete) problem (3) can be interpreted as a perturbation between two problem
instances of identical dimension. Clearly the expanded system has merely a theoretical interest,
as we use it to evaluate the magnitude of the perturbation introduced, and we never generate it
in practice.

We assume that a feasible long-step path-following algorithm based on the symmetric neighbour-
hood Ns(γ) [6] is used to solve the warm-started complete problem. Although the constructed
warm-start iterate (x̂, ŷ, ŝ) from (13) is feasible in the expanded problem, it is not feasible in
the complete problem. As in [27] and [10] we derive conditions that guarantee to absorb these
infeasibilities with one modification step. For this, consider the following Newton system:




A 0 0
0 A> I

Ŝ 0 X̂







∆x
∆y
∆s


 =




ξb

ξc

0


 , (17)

where ξb = b − Ax̂ and ξc = c − A>ŷ + ŝ are the infeasibilities incurred by using the expanded
iterate (x̂, ŷ, ŝ) to warm-start the complete problem. Gondzio and Grothey [10] analyse the same
system, but are concerned with absorbing primal and dual infeasibility separately by splitting
(17) into two separate directions. We will give a more general result and apply it to the situation
of warm start for stochastic programming problems. To avoid overburdening the notation, we
will drop the hat from the warm-start vectors. We will keep it in the neighbourhoods to make
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a clear distinction between N̂s(γ) and Ns(γ) denoting the symmetric neighbourhoods for the
expanded problem (14) and the complete problem (3), respectively.

After some straightforward manipulation following the arguments of [10], the Newton direction
(17) can be expressed in terms of the primal and dual residuals ξb, ξc as

∆x = (XS−1A>(AXS−1A>)−1AXS−1−XS−1)ξc+XS−1A>(AXS−1A>)−1ξb,

∆y = (AXS−1A>)−1(AXS−1ξc + ξb), (18)

∆s = (I − A>(AXS−1A>)−1AXS−1)ξc−A>(AXS−1A>)−1ξb.

We consider matrix Q = I − S−1A>(AXS−1A>)−1AX, and restate Lemma 3.2 of [10], which
provides a bound on the norm of Q, in terms of the symmetric neighbourhood Ns(γ).

Lemma 4. If (x, y, s) ∈ Ns(γ), then ‖Q‖2 ≤ 1/γ.

Proof. For a point (x, y, s) ∈ Ns(γ), the following inequalities hold:

(xisi)
−1/2 ≤ (γµ)−1/2, and (xisi)

1/2 ≤ (µ/γ)1/2.

With some manipulations, we can express matrix Q as

Q = X−1/2S−1/2
[
I − X1/2S−1/2A>(AXS−1A>)−1AX1/2S−1/2

]
X1/2S1/2,

where the term in square brackets is an orthogonal projection on the null space of AX 1/2S−1/2,
so its Euclidean norm is 1. As desired, we obtain

‖Q‖2 = ‖X−1/2S−1/2‖2‖X1/2S1/2‖2 ≤ 1/γ.

In the next Lemma we state sufficient conditions for the perturbations to guarantee a full Newton
step.

Lemma 5. Let (x, y, s) ∈ N̂s(γ) be the warm-start iterate and define the scaled residuals

ξ̃b = X−1A>(AA>)−1ξb and ξ̃c = S−1ξc. (19)

If for β < 1 we have
‖ξ̃b‖∞ + ‖ξ̃c‖∞ ≤ β

(
1 +

√
n/γ

)−1
,

then the full Newton step (17) from the warm-start iterate can be taken and absorbs the complete
infeasibilities.

Proof. Using the definitions of the matrix Q and of the relative residual vectors (19), the relations
(18) simplify to

X−1∆x = −Qξ̃c + (I − Q)ξ̃b = −S−1∆s,

yielding the bound

‖X−1∆x‖∞ ≤ ‖Q‖∞‖ξ̃c‖∞ + (1 + ‖Q‖∞)‖ξ̃b‖∞ ≤ (1 + ‖Q‖∞)(‖ξ̃b‖∞ + ‖ξ̃c‖∞). (20)
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As (x, y, s) ∈ N̂s(γ), using Lemma 4 we obtain ‖Q‖∞ ≤ √
n‖Q‖2 ≤ √

n/γ. Substituting it into
(20), we get

‖X−1∆x‖∞ ≤
(
1 +

√
n/γ

)
(‖ξ̃b‖∞ + ‖ξ̃c‖∞),

which, under the condition of the Lemma, implies

‖X−1∆x‖∞ = ‖S−1∆s‖∞ ≤ β, (21)

that is the full Newton step is feasible, as β < 1.

The following theorem establishes that the search direction obtained from (17) brings the iterate
inside a symmetric neighbourhood of the central path for the complete problem.

Theorem 6. Let (x, y, s) ∈ N̂s(γ) and β < 1. Under the conditions of Lemma 5, the new point
(x̃, ỹ, s̃) = (x + ∆x, y + ∆y, s + ∆s) ∈ Ns

(
(1 − β2)γ

)
.

Proof. The barrier parameter at the new point (x̃, ỹ, s̃) is

nµ̃ =
n∑

i=1

x̃is̃i =
n∑

i=1

(xi + ∆xi)(si + ∆si) =
n∑

i=1

(xisi + ∆xi∆si), (22)

as, according to the last equation of (17), si∆xi +xi∆si = 0, i = 1, . . . , n; the latter also implies
that ∆xi∆si ≤ 0. Using (21) from Lemma 5, we have ‖X−1∆x‖∞‖S−1∆s‖∞ ≤ β2, and so

−β2xisi ≤ ∆xi∆si ≤ 0. (23)

By summing up all products and adding nµ =
∑

i xisi to all terms, and by using (22), we obtain

(1 − β2)nµ ≤ nµ̃ ≤ nµ. (24)

We now study whether the new iterate is still in (some) symmetric neighbourhood of the central
path by checking the pairwise complementary products

x̃is̃i = xisi + ∆xi∆si =
(
1 +

∆xi∆si

xisi

)
xisi.

Using (23) and (24) we obtain

x̃is̃i ≥ (1 − β2)γµ ≥ (1 − β2)γµ̃ and x̃is̃i ≤
1

γ
µ ≤ 1

(1 − β2)γ
µ̃,

which proves the statement of the theorem.

5.2 Conditions on the warm-start iterate

We use Lemma 5 to obtain conditions that the reduced tree has to satisfy in order for a warm
start of the complete problem to be successful. In order to prove this result, we need to assume
that the primal–dual solution (x∗

R, y∗R, s∗R) to the reduced stochastic programming problem is
uniformly bounded, say,

max{‖x∗
R‖∞, ‖y∗R‖∞, ‖s∗R‖∞} ≤ B, max{‖(X∗

R)−1e‖∞, ‖(S∗
R)−1e‖∞} ≤ B, (25)
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where B > 1. It is worth noting that since we work with the symmetric neighbourhood (6), we
actually need only the first inequality to hold. Indeed, if x∗

j ≤ B then 1/s∗j ≤ x∗
j/(γµ) ≤ B/(γµ)

and, similarly, if s∗j ≤ B then 1/x∗
j ≤ s∗j/(γµ) ≤ B/(γµ). In other words, the boundedness of

the iterate (x∗
R, y∗R, s∗R) implies the boundedness of the component-wise inverses of x∗

R and s∗R.

The reduced problem solution is in a neighbourhood of the central path for the reduced problem.
In particular, this is the case if additional centering steps are computed once the desired tolerance
level has been attained [9]. Using the feasibility result of Theorem 2, the residuals for the complete
problem at the warm-start point (x̂, ŷ, ŝ) are:

ξb = b − Ax̂ = (b − b̂) − (A − Â)x̂,

ξc = c − A>ŷ − ŝ = (c − ĉ) − (A − Â)>ŷ.

It is crucial to ensure that the primal and dual residuals ξb and ξc are small. By construction,
the elements of the vectors (b − b̂) and (c − ĉ) that correspond to nodes in the reduced tree are
zero; for the same reason, the corresponding blocks of (A − Â) are zero as well. The elements
corresponding to the nodes not considered in the reduced tree will be, in general, non zero.
However, as the scenarios in the reduced tree were chosen according to (7) in order to minimize
the distance from the average case, we expect the perturbations to be small.

We can now state the following result, in which we obtain some bounds on the size of the primal
and dual perturbations.

Lemma 7. Let the reduced tree be chosen in such a way that for every node i ∈ T the node
distance (2) is d(r(i), i) < ε, for an ε > 0. If the reduced problem solution is primal and dual
feasible and satisfies (25), then ‖ξb‖∞ ≤ εB and ‖ξc‖∞ ≤ εB|TR|, where |TR| is the number of
nodes in the reduced tree.

Proof. Using the form of the stochastic programming problem (1) we can write the primal
residual of the complete problem as

‖ξb‖∞ = ‖b − Ax̂‖∞ = max{‖hl − T lx̂a(l) − W lx̂l‖∞ : l ∈ Lt, t = 1, . . . , tf}.

The contribution of a node l ∈ T to ξb is

‖ξl
b‖∞ = ‖hl−T lx̂a(l)−W lx̂l‖

= ‖hl−hr(l) − (T l− T r(l))x̂a(l) − (W l − W r(l))x̂l‖
≤

(
‖hl−hr(l)‖ + ‖T l−T r(l)‖ + ‖W l−W r(l)‖

)
B

≤ d(l, r(l))B ≤ εB,

where the step from the first to the second line uses (15), and all norms here are infinity norms.
This clearly implies that ‖ξb‖∞ ≤ εB.

The dual residual for the complete problem at the warm-start point can be written as

‖ξc‖∞ = ‖c − A>ŷ − ŝ‖∞ = max{‖plql − W l>ŷl −
∑

i∈Dl

T i>ŷi − ŝl‖∞ : l ∈ Lt, t = 1, . . . , tf}.
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The contribution of a node l ∈ T to ξc is

ξl
c = plql − W l>ŷl −

∑

i∈Dl

T i>ŷi − ŝl

= pl(ql−qr(l)) − (W l−W r(l))>ŷl −
∑

i∈Dl

(T i−T r(i))>ŷi

= pl(ql−qr(l)) − pl

p
r(l)
R

[
(W l−W r(l))>y

r(l)
R +

∑

i∈Dl

(T i−T r(i))>
δi

δ
r(i)
R

y
r(i)
R

]
,

where the step from the first to the second line uses (16) and the next step uses (13) together

with pi = plδi, p
r(i)
R = p

r(l)
R δ

r(i)
R . Taking norms (all norms here are infinity norms) and using the

partitioning defined in (9) we obtain

‖ξl
c‖∞ ≤ ‖ql − qr(l)‖ + ‖W l − W r(l)‖‖yr(l)

R ‖ +
∑

k∈D
r(l)
R

‖yk
R‖

∑

i∈Ik∩Dl\{k}

‖T i − T k‖ δi

δk
R

≤ ‖ql − qr(l)‖ + ‖W l − W r(l)‖‖yr(l)
R ‖ +

∑

k∈D
r(l)
R

‖yk
R‖ε

∑

i∈Ik∩Dl\{k}

δi

δk
R

≤
(
‖ql − qr(l)‖ + ‖W l − W r(l)‖ +

∑

k∈D
r(l)
R

(
1 − δk

δk
R

)
ε
)
B ≤ εB|TR|.

The following result combines the findings of Lemmas 5 and 7.

Theorem 8. Let the assumptions of Lemma 7 be satisfied and

εB2 max{‖A>(AA>)−1‖∞, |TR|} ≤ 1

2
β

(
1 +

√
n/γ

)−1
.

Then the full Newton step (17) from the warm-start iterate is feasible and restores primal and
dual feasibility.

Proof. Using the definition of ξ̃b from (19), the bounds (25), and Lemma 7, we get

‖ξ̃b‖∞ = ‖X−1A>(AA>)−1ξb‖∞ ≤ εB2‖A>(AA>)−1‖∞ ≤ 1

2
β

(
1 +

√
n/γ

)−1
.

In a similar way, we obtain

‖ξ̃c‖∞ = ‖S−1ξc‖∞ ≤ εB2|TR| ≤
1

2
β

(
1 +

√
n/γ

)−1
.

Now the result follows from Lemma 5.

It is worth making a few remarks about these results. Theorem 8 implies that if we can choose
the reduced scenario tree such that ε = maxi{d(r(i), i)} is small enough to satisfy the bound
given in the Theorem, then the warm-start point constructed from the reduced scenario tree
will be successful for the complete problem. Unfortunately we have only limited influence on
ε. Indeed ε is the result of the variation of the problem data between the expanded and the
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complete systems. However, we can reduce ε by having a denser reduced tree, although this
would make the solution of the reduced problem more expensive.

While the analysis performed concerned a primal–dual interior point algorithm applied to a
deterministic equivalent problem with node (rather than scenario) formulation, we expect that
similar results could be adapted to a different interior point algorithm and problem formulation.

It is important to remember that these are theoretical bounds. There is a gap between theory
and practice. In practice much larger infeasibilities ‖ξ̃b‖, ‖ξ̃c‖ can be absorbed. This is confirmed
by our numerical results where even choosing just two scenarios in the reduced tree leads to a
significant reduction in the number of interior point iterations required to solve the complete
problem. We remark that this is problem dependent, and on other instances a larger number of
scenarios in the reduced tree may be necessary.

6 Implementation and numerical results

We first implemented the strategy of generating a reduced tree and the corresponding warm-
start iterate within the HOPDM [8] solver. We tested a series of publicly available stochastic
problems in the SMPS format [3] coming from the POSTS collection available from:
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html.
It should be noted that we disabled HOPDM’s presolve in order to preserve the dimensions of
the problems, and thus obtain sensible warm-start points.

While the analysis of Section 5 is very conservative in its estimates of the absorbable pertur-
bations, in practice we noticed that the reduced-tree warm-start strategy is effective even with
a much sparser tree than that suggested by the theory. In our experiments different choices for
the reduced tree size have been explored, without any noticeable difference in the effectiveness
of the warm-start strategy. In results presented below, the reduced tree was built with only two
scenarios.

We solved the reduced problem with an optimality tolerance of 5.0× 10−1, while the optimality
tolerance for the complete problem was set to 5.0 × 10−8. Computations were performed on a
Linux PC with a 3.0GHz Intel Pentium processor and 1GB of RAM. In Table 1 we report the
dimensions of the problems in terms of the number of stages and scenarios for the complete tree,
the number of iterations and the computing time (in seconds) with cold start and warm start.
The latter includes the generation and solution of the reduced problem, and the construction of
the warm-start iterate.

The problems solved show an overall good behaviour of our warm-start strategy, with time
savings of up to 59% (for problem pltexpA5 6). The generation of the reduced tree and the
solution of the corresponding problem (11) is generally fast, and becomes negligible as the
problem sizes increase. However, for the smallest instances of our test set (fxm2 16, fxm3 6 and
fxm4 6), it is noticeable and consumes the savings produced by using an advanced iterate.
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Problem data Cold start Warm start
Name Stages Scens Iters Time Iters Time

fxm2 16 2 16 22 1.2 13 1.0
fxm3 6 3 36 30 1.5 17 1.3
fxm3 16 3 256 40 31.1 20 20.7
fxm4 6 4 216 30 8.2 22 8.3
fxm4 16 4 4096 41 218.3 27 182.6

pltexpA3 16 3 256 26 153.8 14 87.8
pltexpA4 6 4 216 36 55.8 16 27.5
pltexpA5 6 5 1296 81 772.0 30 311.5

storm27 2 27 41 95.4 22 53.2
storm125 2 125 73 107.3 36 69.1
storm1000 2 1000 107 1498.3 45 831.5

Table 1: Results obtained with HOPDM, 2 scenarios in the reduced tree.

6.1 Telecommunication problems

We implemented the same approach in OOPS [12, 13], where we were able to test larger prob-
lem instances. Since OOPS does not have features such as presolve and scaling, the accuracy
requested in the solution has to be smaller. We set it to 5.0×10−4 which is sufficient for telecom-
munication applications. On the other hand, OOPS makes an effective use of its structure-
exploiting capabilities allowing the solver to tackle large-scale problems and provides access to
parallel computing techniques.

We applied our warm-start strategy to the capacity assignment problem with uncertain demand,
a model relevant to the telecommunication industry [24]. The objective of this model is to find
the optimal choice of capacities to be assigned to the links in the network in order to minimize
unsatisfied customer demands. In our particular application we assume that the topology of the
network and the sets of origin–destination pairs are given and are not going to change during
the planning horizon.

We model this situation as a two-stage stochastic linear program with recourse. The general
model has the following form:

min
x

Ed[f(x, d)] s.t.
∑

l∈A

clxl ≤ M, x ≥ 0,

where cl and xl are the cost and capacity of link l ∈ A, respectively, and M is a bound on
the budget. The objective here is to minimize the expected cost (conditional on the uncertain
demand). This general model describes the first stage decision about the link capacities. The
function f(x, d) is defined in the following model, which describes the second stage decisions:

f(x, d) = min
∑

k∈D

(dk −
∑

p∈Pk

zp)

s.t.
∑

k∈D

∑

p∈Pk:l∈p

zp ≤ xl ∀l ∈ A
∑

p∈Pk

zp ≤ dk ∀k ∈ D

zp ≥ 0,
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where dk is the demand for the k-th origin–destination pair, Pk is a given set of paths linking the
k-th pair, and zp is the flow on path p. While this problem has relatively complete recourse, that
is, for any first-stage decision there is always a second-stage recourse that satisfies all constraints,
our warm-start approach does not exploit this property. Indeed we do not attempt do construct
a primal-feasible recourse decision for the incoming scenarios, rather we aim to construct an
approximately primal-dual feasible and central point for the complete problem on the full tree.

To generate scenarios, we used the approach described in [24]. For each origin–destination pair
k we need to have a demand estimate dk, which can be determined from historic data or from
an educated guess. The demand is assumed to be uniformly distributed around this estimate.
Hence, the demand ds

k for the k-th pair in scenario s is given by

ds
k = (1 + εs

k)dk,

where εs
k is a random number generated in the interval [−%, %]. The value of % > 0 determines

the range in which we assume the demand to fluctuate. In our experiments we chose a value of
% = 0.5, thus allowing very large variations in the demand.

The relevant network characteristics of the problems solved are shown in Table 2, where we
detail the size of the network, the number of demands considered, the overall number of paths
and the average number of arcs in each path.

Name Nodes Arcs Demands Paths Av.Length

mnx 12 50 66 189 2.6
jlg 26 84 264 697 5.6
mgntA 53 158 1378 3574 6.7
mgntB 70 210 2346 6137 6.4

Table 2: Characteristics of the telecommunication problems.

For a problem with N scenarios, the number of constraints and decision variables (including
slacks) are

m = 1 + N × (#A + #D), and n = 1 + #A + N × (#A + #D + #P),

respectively, where #A is the number of arcs, #D the number of demands, and #P the total
number of paths.

In the second and third column of Table 3 we report the solution statistics for OOPS. Computa-
tions were performed on a Linux PC with 3.0GHz Intel Pentium processor and 2GB of RAM. In
all cases the reduced tree was built with merely two scenarios. Therefore the computation time
corresponding to the solution of the reduced problem (included in time reported in the table)
was always negligible. The savings of warm start over cold start strategy vary between 40% and
80% in most cases.

We have also solved the smallest instances of these problems with Cplex 9.0 Barrier Solver. The
problems mnx-100, jlg-100, mgntA-100 and mgntB-100 were solved in 1.1s, 7.1s, 4379.9s and
9030.4s, respectively. This means that Cplex was about 4 and 2 times faster than OOPS on
mnx-100 and jlg-100 problems, respectively but it was about 28 times slower than OOPS on
more difficult mgntA-100 and mgntB-100 problems.
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Serial case Parallel case
Problem Cold start Warm start Cold start Warm start

Iters Time Iters Time Iters Time Iters Time

mnx-100 15 6.7 9 3.9 15 3.9 9 2.6
mnx-200 13 12.9 7 7.3 13 4.6 7 3.5
mnx-400 16 28.9 8 15.5 16 10.5 8 6.3
mnx-800 17 58.8 10 39.5 17 18.8 10 10.7
mnx-1600 19 131.1 10 68.8 19 50.3 10 31.4

jlg-100 21 38.3 6 15.5 21 11.0 6 6.1
jlg-200 45 164.9 17 39.5 45 49.9 17 20.7
jlg-400 44 255.2 18 103.1 43 83.2 19 39.7
jlg-800 27 353.4 10 152.9 29 130.5 10 50.1
jlg-1600 32 855.3 13 360.6 35 286.1 14 129.7

mgntA-100 28 260.0 14 156.2 28 76.9 14 51.6
mgntA-200 50 877.1 35 690.6 50 256.4 34 195.3
mgntA-400 40 1470.3 14 572.5 40 410.9 14 181.6

mgntB-100 23 511.1 14 318.0 23 137.5 14 103.9
mgntB-200 25 909.4 8 332.4 25 284.2 8 140.5
mgntB-400 29 2154.5 7 538.1 29 605.5 7 211.6

Table 3: Efficiency of the warm-start strategy in OOPS in the serial case (2 scenarios in the
reduced tree) and in the parallel case (4 processors and 4 scenarios in the reduced tree).

In the fourth and fifth columns of Table 3 we report the parallel performance of OOPS on a
cluster of four machines with a 3.0GHz Intel Pentium processor and 2GB of RAM each. In this
case, we choose the size of the reduced tree to be equal to the number of processors employed
for two complementary reasons. First, it is preferable to assign to OOPS a balanced number
of blocks on each processor, so we needed to guarantee that each processor gets at least one
block; second, we obtain a more refined starting solution at no additional computational cost.
However the analysis of the parallel results collected in Table 3 indicates that the use of a slightly
larger reduced tree does not translate into any noticeable improvement in the warm start runs
as measured with the number of warm start iterations. Obviously, the solution times are reduced
but this is the effect of using more processors.

6.2 Effectiveness with respect to the VSS

We considered the effectiveness of the warm-start strategy with respect to the value of stochastic
solution (VSS) [4]. The VSS measures the improvement in objective function obtained by solving
a stochastic problem over solving an expected value problem. Therefore, for low values of the
VSS, it may not be worthwhile formulating and solving a stochastic problem; however, for
higher values of the VSS, the stochastic solution yields measurably better decisions. The VSS
can therefore be seen as a measure of how much new problem information is contained in the
additional scenarios, and how far we expect the first-stage decisions for the complete tree differ
from the ones obtained on the reduced tree.

In the context of the telecomunication problem of Section 6.1, we noticed that we could modify
the VSS by considering different values of the budget M . For very small values of the budget,
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the first-stage decisions are virtually independent of the stochasticity, as we would resort to
buying the cheapest arcs for any value of the unknown demand. However, for larger values of
the budget, stochasticity has an impact on the first-stage decisions, and therefore the stochastic
measure grows.

In Figure 6 we present the results we obtained by setting different values of the budget in prob-
lems mnx-200 and jlg-200. As we can see, for these problems there is no discernible relationship
between the magnitude of the VSS and the success of the warm-start strategy.
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Figure 6: Plot of the relative savings in number of iterations against the relative VSS.

7 Conclusions

We introduced a technique that exploits the near-optimal solution to a stochastic linear program
corresponding to a reduced scenario tree to warm-start a much larger problem that encompasses
the complete scenario tree. Our way of reducing the dimension of the scenario tree was based on
the assumption that we have no knowledge of the underlying stochastic process, and therefore
we developed an ad-hoc measure of distance between the scenarios. We proposed to minimize the
distance to a selection of representative scenarios; other possibilities can be devised, and may be
the subject of future research. We observed that the iterate generated from the reduced problem
provides an advanced starting point for the solution of the complete problem, in general resulting
in a decrease of the number of iterations needed. As the computational cost of generating such
an iterate is negligible, this produces consistent savings in computational time.

Acknowledgements: We thank one of the referees for pointing out a way to strengthen the
statement of Theorem 6.
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