Skip to main content
Log in

New results on Hermitian matrix rank-one decomposition

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we present several new rank-one decomposition theorems for Hermitian positive semidefinite matrices, which generalize our previous results in Huang and Zhang (Math Oper Res 32(3):758–768, 2007), Ai and Zhang (SIAM J Optim 19(4):1735–1756, 2009). The new matrix rank-one decomposition theorems appear to have wide applications in theory as well as in practice. On the theoretical side, for example, we show how to further extend some of the classical results including a lemma due to Yuan (Math Program 47:53–63, 1990), the classical results on the convexity of the joint numerical ranges (Pang and Zhang in Unpublished Manuscript, 2004; Au-Yeung and Poon in Southeast Asian Bull Math 3:85–92, 1979), and the so-called Finsler’s lemma (Bohnenblust in Unpublished Manuscript; Au-Yeung and Poon in Southeast Asian Bull Math 3:85–92, 1979). On the practical side, we show that the new results can be applied to solve two typical problems in signal processing and communication: one for radar code optimization and the other for robust beamforming. The new matrix decomposition theorems are proven by construction in this paper, and we demonstrate that the constructive procedures can be implemented efficiently, stably, and accurately. The URL of our Matlab programs is given in this paper. We strongly believe that the new decomposition procedures, as a means to solve non-convex quadratic optimization with a few quadratic constraints, are useful for many other potential engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ai W., Huang Y.W., Zhang S.: On the low rank solutions for linear matrix inequalities. Math. Oper. Res. 33(4), 965–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ai W., Zhang S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Au-Yeung Y.H.: A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitian matrices. Proc. Am. Math. Soc. 20(2), 545–548 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Au-Yeung Y.H., Poon Y.T.: A remark on the convexity and positive definiteness concerning Hermitian matrices. Southeast Asian Bull. Math. 3, 85–92 (1979)

    MathSciNet  MATH  Google Scholar 

  5. Barvinok A.: Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geometry 12, 189–202 (1995)

    Article  MathSciNet  Google Scholar 

  6. Barvinok A.: A remark on the rank of positive semidefinite matrices subject to affine constraints. Discrete Comput. Geometry 25, 23–31 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Beck A.: Quadratic matrix programming. SIAM J. Optim. 17(4), 1224–1238 (2007)

    Article  MATH  Google Scholar 

  8. Bertsekas D.P., Nedić A., Ozdaglar A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  9. Bohnenblust, F.: Joint positiveness of matrices. Unpublished Manuscript

  10. Brickman L.: On the field of values of a matrix. Proc. Am. Math. Soc. 12, 61–66 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen X., Yuan Y.X.: A note on quadratic forms. Math. Program. 86, 187–197 (1997)

    Article  MathSciNet  Google Scholar 

  12. De Maio A., De Nicola S., Huang Y.W., Zhang S., Farina A.: Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Trans. Signal Process. 56(11), 5618–5629 (2008)

    Article  MathSciNet  Google Scholar 

  13. De Maio A., De Nicola S., Huang Y.W., Zhang S., Farina A.: Adaptive detection and steering estimation in the presence of useful signal and interference mismatches. IEEE Trans. Signal Process. 57(2), 436–450 (2009)

    Article  MathSciNet  Google Scholar 

  14. De Maio, A., De Nicola, S., Huang, Y.W., Palomar, D.P., Zhang, S., Farina, A.: Code design for radar STAP via optimization theory. Technical Report SEEM2009-04, Department of Systems Engineering & Engineering Management, The Chinese University of Hong Kong, Accepted for publication in IEEE Trans. Signal Process. (2009)

  15. Hausdorff F.: Der wertvorrat einer bilinearform. Mathematische Zeitschrift 3, 314–316 (1919)

    Article  MathSciNet  Google Scholar 

  16. Hiriart-Urruty J.-B., Torki M.: Permanently going back and forth between the “quadratic world” and the “convexity world” in optimization. Appl. Math. Optim. 45, 169–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  18. Huang Y.W., Zhang S.: Complex matrix decomposition and quadratic programming. Math. Oper. Res. 32(3), 758–768 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J., Stoica P.: Robust Adaptive Beamforming. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  20. Li J., Stoica P., Wang Z.: Doubly constrained robust capon beamformer. IEEE Trans. Signal Process. 52(9), 2407–2423 (2004)

    Article  Google Scholar 

  21. Pang, J.S., Zhang, S.: The joint numerical range and quadratic optimization. Unpublished Manuscript. (2004)

  22. Pataki G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339–358 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polyak B.T.: Convexity of quadratic transformations and its use in control and optimization. J. Optim. Theory Appl. 99, 53–583 (1998)

    Article  MathSciNet  Google Scholar 

  24. Pólik I., Terlaky T.: S-lemma: a survey. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sturm J.F., Zhang S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye Y., Zhang S.: New results on quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan Y.X.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53–63 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbao Ai.

Additional information

Wenbao Ai was supported by Chinese NSFC. Shuzhong Zhang was supported by Hong Kong RGC Earmarked Grants CUHK418505 and CUHK418406.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, W., Huang, Y. & Zhang, S. New results on Hermitian matrix rank-one decomposition. Math. Program. 128, 253–283 (2011). https://doi.org/10.1007/s10107-009-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0304-7

Keywords

Mathematics Subject Classification (2000)

Navigation