Skip to main content
Log in

On the natural merit function for solving complementarity problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Complementarity problems may be formulated as nonlinear systems of equations with non-negativity constraints. The natural merit function is the sum of squares of the components of the system. Sufficient conditions are established which guarantee that stationary points are solutions of the complementarity problem. Algorithmic consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani R., Friedlander A., Martínez J.M.: On the solution of finite-dimensional variational inequalities using smooth optimization with simple bounds. J. Optim. Theory Appl. 94, 635–657 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani R., Friedlander A., Santos S.A.: On the resolution of the generalized nonlinear complementarity problem. SIAM J. Optim. 12, 303–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani R., Martínez J.M.: Reformulation of variational inequalities on a simplex and compactification of complementarity problems. SIAM J. Optim. 10, 878–895 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellavia S., Morini B.: An interior global method for nonlinear systems with simple bounds. Optim. Methods Softw. 20, 1–22 (2005)

    Article  MathSciNet  Google Scholar 

  6. Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birgin E.G., Martínez J.M., Raydan M.: Algorithm 813 SPG: Software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  8. Birgin E.G., Martínez J.M., Raydan M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23, 340–349 (2003)

    Article  Google Scholar 

  9. Cottle R., Pang J.S., Stone H.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  10. Dan H., Yamashita N., Fukushima M.: A superlinearly convergent algorithm for the monotone nonlinear complementarity problem without uniqueness and nondegeneracy conditions. Math. Oper. Res. 27, 743–753 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Fischer, A., Kanzow, C.: A semismooth Newton method for variational inequalities: the case of box constraints. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems—State of the Art, pp. 76–90. SIAM, Philadelphia (1997)

    Google Scholar 

  12. Facchinei F., Fischer A., Kanzow C.: Regularity properties of a semismooth reformulation of variational inequalities. SIAM J. Optim. 8, 850–869 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Facchinei F., Fischer A., Kanzow C., Peng J.-M.: A simply constrained optimization reformulation of KKT systems arising from variational inequalities. Appl. Math. Optim. 40, 19–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Facchinei F., Pang J.S.: Finite-Dimensional Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  15. Facchinei F., Soares J.: A new merit function for complementarity problems and a related algorithm. SIAM J. Optim. 7, 225–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernandes L., Friedlander A., Guedes M.C., Júdice J.: Solution of a general linear complementarity problem using smooth optimization and its applications to bilinear programming and LCP. Appl. Math. Optim. 43, 1–19 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fernandes L., Júdice J., Figueiredo I.: On the solution of a finite element approximation of a linear obstacle plate problem. Int. J. Appl. Math. Comput. Sci. 12, 27–40 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Ferris M.C., Kanzow C., Munson T.S.: Feasible Descent Algorithms for Mixed Complementarity Problems. Math. Program. 86, 475–497 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischer A.: New constrained optimization reformulation of complementarity problems. J. Optim. Theory Appl. 12, 303–321 (2001)

    Google Scholar 

  20. Friedlander A., Martínez J.M., Santos S.A.: Solution of linear complementarity problems using minimization with simple bounds. J. Glob. Optim. 6, 1–15 (1995)

    Article  Google Scholar 

  21. Friedlander A., Martínez J.M., Santos S.A.: A new strategy for solving variational inequalities on bounded polytopes. Numer. Funct. Anal. Optim. 16, 653–668 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haslinger, J., Hlavacek, I., Necas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P., Lions, J.L. (eds.) Handbook of Numerical Analysis vol. 4, North-Holland, Amsterdam (1999)

    Google Scholar 

  23. Kikuchi N., Oden J.T.: Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Elements. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  24. Kojima M., Megiddo N., Noma T., Yoshise A.: A Unified Approach to Interior-Point Algorithms for Linear Complementarity Problems. Lecture Notes in Computer Science 538. Springer, Berlin (1991)

    Google Scholar 

  25. Mangasarian O.L., Solodov M.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program. 62, 277–297 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monteiro R.D.C., Wright S.J.: Local convergence of interior-point algorithms for degenerate monotone LCP problems. Comput. Optim. Appl. 3, 131–155 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monteiro R.D.C., Wright S.J.: Superlinear primal-dual affine scaling algorithms for LCP. Math. Program. 69, 311–333 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Moré J.J.: Global methods for nonlinear complementarity problems. Math. Oper. Res. 21, 598–614 (1996)

    Article  Google Scholar 

  29. Murty K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  30. Patrício, J.: Algoritmos de Pontos Interiores para Problemas Complementares Monótonos e suas Aplicações. PhD Thesis, University of Coimbra, Portugal (2007) (in Portuguese)

  31. Potra F.: Primal-Dual affine scaling interior point methods for linear complementarity problems. SIAM J. Optim. 19, 114–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ralph, D., Wright, S. : Superlinear convergence of an interior-point method for monotone variational inequalities. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems. State of Art, SIAM Publications, Philadelphia (1998)

    Google Scholar 

  33. Shapiro A.: Sensitivity analysis of parameterized variational inequalities. Math. Oper. Res. 30, 109– 126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Simantiraki E., Shanno D.: An infeasible interior point method for linear complementarity problem. SIAM J. Optim. 7, 620–640 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Solodov M.V.: Stationary points of bound constrained minimization reformulations. J. Optim. Theory Appl. 94, 449–467 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wright S.J., Ralph D.: A superlinear infeasible interior-point algorithms for monotone complementarity problems. Math. Oper. Res. 21, 815–838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrício.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreani, R., Júdice, J.J., Martínez, J.M. et al. On the natural merit function for solving complementarity problems. Math. Program. 130, 211–223 (2011). https://doi.org/10.1007/s10107-009-0336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0336-z

Keywords

Mathematics Subject Classification (2000)

Navigation