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Abstract

A set is called semidefinite representable or semidefinite programming (SDP) representable if it can
be represented as the projection of a higher dimensional set which is represented by some Linear Matrix
Inequality (LMI). This paper discuss the semidefinite representability conditions for convex sets of the
form SD(f) = {x ∈ D : f(x) ≥ 0}. Here D = {x ∈ R

n : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is a convex domain
defined by some “nice” concave polynomials gi(x) (they satisfy certain concavity certificates), and f(x) is
a polynomial or rational function. When f(x) is concave over D, we prove that SD(f) has some explicit
semidefinite representations under certain conditions called preordering concavity or q-module concavity,
which are based on the Positivstellensatz certificates for the first order concavity criteria:

f(u) +∇f(u)T (x− u)− f(x) ≥ 0, ∀ x, u ∈ D.

When f(x) is a polynomial or rational function having singularities on the boundary of SD(f), a per-
spective transformation is introduced to find some explicit semidefinite representations for SD(f) under
certain conditions. In the particular case n = 2, if the Laurent expansion of f(x) around one singular
point has only two consecutive homogeneous parts, we show that SD(f) always admits an explicitly
constructible semidefinite representation.

Key words: convex set, linear matrix inequality, perspective transformation, polynomial, Positivstellensatz,
preordering convex/concave, q-module convex/concave, rational function, singularity, semidefinite program-
ming, sum of squares

1 Introduction

Semidefinite programming (SDP) [1, 11, 12, 21] is an important convex optimization problem. It has wide
applications in combinatorial optimization, control theory and nonconvex polynomial optimization as well
as many other areas. There are efficient numerical algorithms and standard packages for solving semidefinite
programming. Hence, a fundamental problem in optimization theory is what sets can be presented by
semidefinite programming. This paper discusses this problem.

A set S is said to be Linear Matrix Inequality (LMI) representable if

S = {x ∈ R
n : A0 +A1x1 + · · ·+Anxn � 0}

for some symmetric matrices Ai. Here the notation X � 0 (≻ 0) means X is positive semidefinite (definite).
The above is then called an LMI representation for S. If S is representable as the projection of

Ŝ =







(x, u) ∈ R
(n+N) : A0 +

n
∑

i=1

Aixi +
N
∑

j=1

Bjuj � 0







⊂ R
(n+N),
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that is, S =
{

x ∈ Rn : ∃u ∈ Rn, (x, u) ∈ Ŝ
}

, for some symmetric matrices Ai and Bj , then S is called

semidefinite representable or semidefinite programming (SDP) representable. The lifted LMI above is then
called a semidefinite representation, SDP representation or lifted LMI representation for S. Sometimes, we
also say S = Ŝ if S equals the projection of the lift Ŝ.

Nesterov and Nemirovski ([11]), Ben-Tal and Nemirovski ([1]), and Nemirovsky ([12]) gave collections
of examples of SDP representable sets. Thereby leading to the fundamental question which sets are SDP
representable? Obviously, to be SDP representable, S must be convex and semialgebraic. Is this necessary
condition also sufficient? What are the sufficient conditions for S to be SDP representable? Note that not
every convex semialgebraic set is LMI representable (see Helton and Vinnikov [8]).

Prior work When S is a convex set of the form {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} defined by
polynomials gi(x), there is recent work on the SDP representability of S. Parrilo [14] gave a construction
of lifted LMIs using moments and sum of squares techniques, and proved the construction gives an SDP
representation in the two dimensional case when the boundary of S is a single rational planar curve of
genus zero. Lasserre [10] showed the construction can give arbitrarily accurate approximations to compact
S, and the construction gives a lifted LMI for S under some algebraic properties called S-BDR or PP-
BDR, i.e., requiring almost all positive affine polynomials on S have certain SOS representations with
uniformly bounded degrees. Helton and Nie [6] proved that the convex sets of the form {x ∈ Rn : g1(x) ≥
0, · · · , gm(x) ≥ 0} are SDP representable if every gi(x) is sos-concave (−∇2gi(x) = Gi(x)

TGi(x) for some
possibly nonsquare matrix polynomial Gi(x)), or every gi(x) is strictly quasi-concave on S, or a mixture
of the both. Later, based on the work [6], Helton and Nie [7] proved a very general result that a compact
convex semialgebraic set S is always SDP representable if the boundary of S is nonsingular and has positive
curvature. This sufficient condition is not far away from being necessary: the boundary of a convex set has
nonnegative curvature when it is nonsingular. So the only unaddressed cases for SDP representability are
that the boundary of a convex set has zero curvature somewhere or has some singularities.

Contributions The results in [6, 7, 10] are more on the theoretical existence of SDP representations.
The constructions given there might be too complicated to be useful for computational purposes. And these
results sometimes need check conditions of Hessians of defining polynomials, which sometimes are difficult
or inconvenient to verify in practice. However, in many applications, people often want explicit and simple
semidefinite representations. Thus some “simple” SDP representations and conditions justifying them are
favorable in practical applications. All these practical issues motivate this paper. Our contributions come
in the following three aspects.

First, there are some convex sets defined by polynomials that are not concave in the whole space Rn but
concave over a convex domain D ⊂ Rn. For instance, for convex set {x ∈ R2 : x2 − x3

1 ≥ 0, x1 ≥ 0}, the
defining polynomial x2 − x3

1 is not concave when x1 < 0, but is concave over the domain R+ ×R. However,
this set allows an SDP representation, e.g.,

{

(x1, x2) : ∃u,

[

x1 u
u x2

]

� 0,

[

1 x1

x1 u

]

� 0

}

.

For convex sets given in the form SD(f) = {x ∈ D : f(x) ≥ 0}, where f(x) is a polynomial concave over
a convex domain D, we prove some sufficient conditions for semidefinite representability of SD(f) and give
explicit SDP representations. This will be discussed in Section 2.

Second, there are some convex sets defined by rational functions (also called rational polynomials) which
are concave over a convex domain D of Rn. If we redefine them by using polynomials, the concavity of
rational functions might not be preserved. For instance, the unbounded convex set

{

x ∈ R
2
+ : 1−

1

x1x2
≥ 0

}

is defined by a rational function concave over R2
+ (R+ is the set of nonnegative real numbers). This set can

be equivalently defined by polynomials

{

x ∈ R
2 : x1x2 − 1 ≥ 0, x1 ≥ 0, x2 ≥ 0

}

.
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But x1x2 − 1 is not concave anywhere. The prior results in [6, 7] do not imply the SDP representability of
this set. However, this set is SDP representable, e.g.,

{

x ∈ R
2 :

[

x1 1
1 x2

]

� 0

}

.

For convex sets given in the form SD(f) = {x ∈ D : f(x) ≥ 0}, where f(x) is a rational function concave
over a convex domain D, we prove some sufficient conditions for semidefinite representability of SD(f) and
give explicit SDP representations. This will be discussed in Section 3.

Third, there are some convex sets that are defined by polynomials or rational functions which are singular
on the boundary. For instance, the set

{x ∈ R
2 : x2

1 − x3
1 − x2

2 ≥ 0, x1 ≥ 0}

is convex, and the origin is on the boundary. The polynomial x2
1 − x3

1 − x2
2 is singular at the origin, i.e., its

gradient vanishes at the origin. The earlier results in [6, 7] do not imply the SDP representability of this set.
However, this set can be equivalently defined as

{

(x1, x2) ∈ R+ × R : x1 − x2
1 −

x2
2

x1
≥ 0

}

,

a convex set defined by a concave rational function over the domain R+ × R. By Schur’s complement, we
know it can be represented as







(x1, x2) :





x1 x2 x1

x2 x1 0
x1 0 1



 � 0







.

It is an LMI representation without projections. The technique of Schur’s complement works only for very
special concave rational functions, and is usually difficult to be applied for general cases. For singular
convex sets of the form SD(f) = {x ∈ D : f(x) ≥ 0}, where f(x) is a polynomial or rational function with
singularities on the boundary, we give some sufficient conditions for semidefinite representability of SD(f)
and give explicit SDP representations. In the particular case n = 2, we show that SD(f) always admits an
explicitly constructible SDP representation when the Laurent expansion of f(x) around one singular point
has only two consecutive homogeneous parts. This will be discussed in Section 4.

In this paper, we always assume D = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is a convex domain defined by
some nice concave polynomials gi(x). Here “nice” means that they satisfy certain concavity certificates. For
instance, a very useful case is D is a polyhedra. We do not require D or SD(f) to be compact, as required by
[6, 7, 10]. When f(x) is concave over D, the sufficient conditions for SDP representability of SD(f) proven
in this paper are based on some certificates for the first order concavity criteria:

f(u) +∇f(u)T (x− u)− f(x) ≥ 0, ∀x, u ∈ D.

Some Positivstellensatz certificates like Putinar’s Positivstellensatz [16] or Schmüdgen’s Positivstellensatz
[19] for the above can be applied to justify some explicitly constructible SDP representations for SD(f).

Throughout this paper, R (resp. N) denotes the set of real numbers (resp. nonnegative integers).
For α ∈ Nn and x ∈ Rn, denote |α| = α1 + · · · + αn and xα = xα1

1 · · ·xαn
n . B(u, r) denotes the ball

{x ∈ Rn : ‖x − u‖2 ≤ r}. A vector x ≥ 0 means all its entries are nonnegative. A polynomial p(x) is
said to be a sum of squares or sos if there finitely many polynomials qi(x) such that p(x) =

∑

qi(x)
2. A

matrix polynomial H(x) is called a sum of squares or sos if there is a matrix polynomial G(x) such that
H(x) = G(x)TG(x).

2 Convex sets defined by polynomials concave over domains

In this section, consider the convex set SD(f) = {x ∈ D : f(x) ≥ 0} defined by a polynomial f(x). Here
D = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is a convex domain. When f(x) is concave on D, it must hold

−Rf(x, u) := f(u) +∇f(u)T (x− u)− f(x) ≥ 0, ∀x, u ∈ D.

3



The difference Rf (x, u) is the first order Lagrange remainder.

2.1. q-module convexity and preordering convexity

Now we introduce some types of definitions about convexity/concavity. Define g0(x) = 1. We say f(x)
is q-module convex over D if it holds

Rf (x, u) =

m
∑

i=0

gi(x)





m
∑

j=0

gj(u)σij(x, u)





for some sos polynomials σij(x, u). Then define f(x) to be q-module concave over D if −f(x) is q-module
convex over D. We say f(x) is preordering convex over D if it holds

Rf (x, u) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)





∑

µ∈{0,1}m

gµ1

1 (u) · · · gµm
m (u)σν,µ(x, u)





for some sos polynomials σν,µ(x, u). Similarly, f(x) is called preordering concave over D if −f(x) is preorder-
ing convex over D. Obviously, the q-module convexity implies preordering convexity, which then implies the
convexity, but the converse might not be true.

We remark that the defining polynomials gi(x) are not unique for the domain D. When we say f(x) is
q-module or preordering convex/concave over D, we usually assume a certain set of defining polynomials
gi(x) is clear in the context.

In the special case D = Rn, the definitions of q-module convexity and preordering convexity coincide each
other, and then are specially called first order sos convexity. And first order sos concavity is defined in a
similar way. Recall that a polynomial f(x) is sos-convex if its Hessian ∇2f(x) is sos (see [6]). An interesting
fact is if f(x) is sos-convex then it must also be first order sos convex. This is due to that

f(x)− f(u)−∇(u)T (x− u)

= (x− u)T
(
∫ 1

0

∫ t

0

f ′′(u+ s(x− u)) ds dt

)

(x− u)

= (x− u)T
(
∫ 1

0

∫ t

0

F (u+ s(x− u))TF (u+ s(x − u)) ds dt

)

(x− u)

is an sos polynomial (see Lemma 3.1 of [6]).

Example 2.1. The bivariate polynomial f(x) = x3
1 + x2

1x2 + x1x
2
2 + x3

2 is convex over the nonnegative
orthant R2

+. It is also q-module convex with respect to R2
+. This is due to the identity

Rf (x, u) =
(1

3
u1 +

1

6
x1

)(

4(x1 − u1)
2 + 2(x1 + x2 − u1 − u2)

2
)

+

(1

3
u2 +

1

6
x2

)(

4(x2 − u2)
2 + 2(x1 + x2 − u1 − u2)

2
)

.

2.2. SDP representations

Throughout this subsection, we assume the polynomials f(x) and gi(x) are either all q-module concave
or all preordering concave over D. For any h(x) from the set {f(x), g1(x), · · · , gm(x)}, we thus have either

−Rh(x, u) =

m
∑

i=0

gi(x)





m
∑

j=0

gj(u)σ
h
ij(x, u)





for some sos polynomials σh
ij(x, u), or

−Rh(x, u) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)





∑

µ∈{0,1}m

gµ1

1 (u) · · · gµm
m (u)σh

ν,µ(x, u)





4



for some sos polynomials σh
ν,µ(x, u). Let di = ⌈ 1

2 deg(gi)⌉, dν = ⌈ 1
2 degx(g

ν1
1 · · · gνmm )⌉ and

d
(P )
qmod = max

h∈{f,g1,··· ,gm}
max

0≤i,j≤m
⌈ 1
2 degx(giσ

h
ij)⌉

d
(P )
pre = max

h∈{f,g1,··· ,gm}
max

ν∈{0,1}m,µ∈{0,1}m
⌈ 1
2 degx(g

ν1
1 · · · gνmm σh

ν,µ)⌉
(2.1)

where degx(·) denotes the degree of a polynomial in x. Then define d = d
(P )
qmod (resp. d = d

(P )
pre) when f(x)

and all gi(x) are q-module (resp. preordering) concave over D.

Define matrices G
(i)
α and G

(ν)
α such that

gi(x)md−di
(x)md−di

(x)T =
∑

α∈Nn:|α|≤2d

G
(i)
α xα

gν11 (x) · · · gνmm (x)md−dν
(x)md−dν

(x)T =
∑

α∈Nn:|α|≤2d

G
(ν)
α xα.

(2.2)

Here mk(x) is the vector of all monomials with degrees ≤ k. Let y be a vector multi-indexed by integer
vectors in Nn. Then define

Ni(y) =
∑

α∈Nn:|α|≤2d

G(i)
α yα, i = 0, 1, . . . ,m,

Nν(y) =
∑

α∈Nn:|α|≤2d

G(ν)
α yα, ν ∈ {0, 1}m.

Suppose the polynomial f(x) is given in the form f(x) =
∑

α∈Nn: |α|≤2d fα xα. Then define vector f such

that fT y =
∑

α∈Nn: |α|≤2d fα yα. Define two sets

LD
qmod(f) =

{

y ∈ Rα∈Nn,|α|≤2d : y0 = 1, fTy ≥ 0, Ni(y) � 0, ∀ 0 ≤ i ≤ m
}

(2.3)

LD
pre(f) =

{

y ∈ Rα∈Nn,|α|≤2d : y0 = 1, fTy ≥ 0, Nν(y) � 0, ∀ ν ∈ {0, 1}m
}

(2.4)

via their LMI representations. Then SD(f) is contained in the image of both LD
qmod(f) and LD

pre(f) under the
projection map: ρ(y) = (y10...0, y010...0, . . . , y00...01), because for any x ∈ SD(f) we can choose yα = xα

such that y ∈ LD
qmod(f) and y ∈ LD

pre(f). We say SD(f) equals LD
qmod(f) (resp. L

D
pre(f)) if SD(f) equals the

image of LD
qmod(f) (resp. L

D
pre(f)) under this projection. Similarly, we say x ∈ LD

qmod(f) (resp. x ∈ LD
pre(f))

if there exists y ∈ LD
qmod(f) (resp. y ∈ LD

pre(f)) such that x = ρ(y).

Lemma 2.2. Assume SD(f) has nonempty interior. Let {x ∈ Rn : aTx = b} be a supporting hyperplane of
SD(f) such that aTx ≥ b, ∀ x ∈ SD(f) and aTu = b for some point u ∈ SD(f).

(i) If f(x) and every gi(x) are q-module concave over D, then it holds

aTx− b− λf(x) =

m
∑

i=0

gi(x)σi(x)

for some scalar λ ≥ 0 and sos polynomials σi(x) such that deg(giσi) ≤ 2d
(P )
qmod.

(ii) If f(x) and every gi(x) are preordering concave over D, then it holds

aTx− b− λf(x) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)σν (x).

for some scalar λ ≥ 0 and sos polynomials σν(x) such that deg(gν11 · · · gνmm σν) ≤ 2d
(P )
pre .

5



Proof. Since SD(f) has nonempty interior and the polynomials f(x), g1(x), · · · , gm(x) are all cocnave, the
first order optimality condition holds at u for convex optimization problem (u is a minimizer)

min
x

aTx subject to f(x) ≥ 0, gi(x) ≥ 0, i = 1, . . . ,m.

Hence there exist Lagrange multipliers λ ≥ 0, λ1 ≥ 0, λm ≥ 0 such that

a = λ∇f(u) +

m
∑

i=1

λi∇gi(u), λf(u) = λ1g1(u) = · · · = λmgm(u) = 0.

Thus the Lagrange function aTx− b− λf(x)−
∑m

i=1 λigi(x) has representation

λ
(

f(u) +∇f(u)T (x− u)− f(x)
)

+

m
∑

i=1

λi

(

gi(u) +∇gi(u)
T (x− u)− gi(x)

)

.

Therefore, the claims (i) and (ii) can be implied immediately from the definition of q-module concavity or
preordering concavity and plugging in the value of u.

Theorem 2.3. Assume D and SD(f) are both convex and have nonempty interior.

(i) If f(x) and every gi(x) are q-module concave over D, then SD(f) = LD
qmod(f).

(ii) If f(x) and every gi(x) are preordering concave over D, then SD(f) = LD
pre(f).

Proof. (i) Since SD(f) is contained in the projection of LD
qmod(f), we only need prove SD(f) ⊇ LD

qmod(f) .

For a contradiction, suppose there exists some ŷ ∈ LD
qmod(f) such that x̂ = ρ(ŷ) /∈ SD(f). By the convexity

of SD(f), it holds

SD(f) =
⋂

{aT x=b} is a
supporting hyperplane

{

x ∈ R
n : aTx ≥ b

}

.

If x̂ /∈ SD(f), then there exists one hyperplane {aTx = b} of SD(f) such that aT x̂ < b. By Lemma 2.2, we
have representation

aTx− b = λf(x) +

m
∑

i=0

gi(x)σi(x) (2.5)

for some sos polynomials σi(x) such that deg(giσi) ≤ 2d
(P )
qmod. Note that d

(P )
pre = d. Write σi(x) as

σi(x) = md−di
(x)TWimd−di

(x), i = 0, 1, . . . ,m

for some symmetric matrices Wi � 0. Then the identity (2.5) becomes (noting (2.2))

aTx− b = λf(x) +

m
∑

i=0

(gi(x)md−di
(x)md−di

(x)T ) •Wi = λf(x) +

m
∑

i=0





∑

α∈Nn:|α|≤2d

G(i)
α xα



 •Wi.

In the above identity, if we replace each xα by ŷα, then get the contradiction

aT x̂− b = fT ŷ +
m
∑

i=0

Ni(ŷ) •Wi ≥ 0.

(ii) The proof is almost the same as for (i). The only difference is that we have a new representation

aTx− b = λf(x) +
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)σν(x)

for some sos polynomials σν(x) such that deg(gν11 · · · gνmm σν) ≤ 2d
(P )
pre = 2d. Write σi(x) as

σν(x) = md−dν
(x)TWνmd−dν

(x), Wν � 0.

Then a similar contradiction argument can be applied prove the claim.

6



2.3. Some special cases

Now we turn to some special cases about q-module or preordering convexity/concavity or SDP represen-
tations.

2.3.1 The q-module or preordering convexity certificate using Hessian

The q-module or preordering convexity of f(x) over the domain D can be verified by solving some semidefinite
programming. See [13, 9] about the sos polynomials and semidefinite programming. However, in some special
cases like D = Rn

+, a certificate for semidefiniteness of the Hessian ∇2f(x) can be applied to prove the q-
module or preordering convexity of f(x).

First, consider the case that gk(x) are concave over Rn. By concavity, it holds

gk(sx+ (1− s)u) ≥ sgk(x) + (1 − s)gk(u), ∀ s ∈ [0, 1], x, u ∈ R
n.

Now we assume the following certificate for the above criteria

gk(sx+ (1− s)u)− sgk(x)− (1 − s)gk(u) =

σ
(k)
0 (x, u, s) + sσ

(k)
1 (x, u, s) + (1 − s)σ

(k)
2 (x, u, s) + s(1− s)σ

(k)
3 (x, u, s)

(2.6)

where σ
(k)
0 (x, u, s), σ

(k)
1 (x, u, s), σ

(k)
2 (x, u, s), σ

(k)
3 (x, u, s) are sos polynomials in (x, u, s). Note that the iden-

tity (2.6) is always true when D is a polyhedra, i.e., every gk(x) has degree one.

Theorem 2.4. Suppose for every 1 ≤ k ≤ m, the identity (2.6) holds. If ∇2f(x) belongs to the quadratic
module (resp. preordering) generated by polynomials g1(x), · · · , gm(x), i.e.,

∇2f(x) =

m
∑

i=0

gi(x)Hi(x)



resp. ∇2f(x) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)Hν(x)





for some sos matrices Hi(x) (resp. Hν(x)), then f(x) is q-module convex (resp. preordering convex) over
the domain D.

Proof. First suppose ∇2f(x) belongs to the quadratic module generated by g1(x), · · · , gm(x), i.e., ∇2f(x) =
∑m

i=0 gi(x)Hi(x) (recall g0(x) = 1) for some sos matrices Hi(x). Then we have

f(x)− f(u)−∇f(u)T (x − u)

=(x− u)T
(∫ 1

0

∫ t

0

∇2f(u+ s(x− u)) ds dt

)

(x− u)

=(x− u)T

(

m
∑

k=1

∫ 1

0

∫ t

0

gk(sx+ (1 − s)u)Hi(sx + (1− s)u) ds dt

)

(x− u).

By identity (2.6), we have

∫ 1

0

∫ t

0

gk(sx+ (1− s)u)Hi(sx+ (1 − s)u) ds dt

=

∫ 1

0

∫ t

0

(

σ
(k)
0 (x, u, s) + σ

(k)
1 (x, u, s) + (1− s)σ

(k)
2 (x, u, s) + s(1− s)σ

(k)
3 (x, u, s)

)

Hi(sx+ (1− s)u) ds dt

+ gk(x)

∫ 1

0

∫ t

0

sHi(sx+ (1 − s)u) ds dt+ gk(u)

∫ 1

0

∫ t

0

(1− s)Hi(sx+ (1− s)u) ds dt

=H
(k)
0 (x, u) + gk(x)H

(k)
1 (x, u) + gk(u)H

(k)
2 (x, u)

for some sos matrices H
(k)
0 (x, u), H

(k)
1 (x, u), H

(k)
2 (x, u) (see Lemma 3.1 in [6]). So f(x) is q-module convex

over D.
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Second, when ∇2f(x) belongs to the preordering generated by g1(x), · · · , gm(x), i.e.,

∇2f(x) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)Hν(x)

for some sos matrices Hν(x), a similar argument as above shows f(x) is preordering convex over D.

Second, consider the special case that D = Rn
+ and the polynomial f(x) is cubic.

Theorem 2.5. Let Rn
+ = {x : x1 ≥ 0, · · · , xn ≥ 0} be the domain. If f(x) is a cubic polynomial concave

over R
n
+, then SRn

+
(f) = L

R
n
+

qmod(f).

Proof. By Theorem 2.3, it suffices to prove f(x) is q-module concave over Rn
+. Since f(x) is cubic, we have

−∇2f(x) = A0 + x1A1 + · · ·+ xnAn

for some symmetric matrices Ai. When f(x) is concave over R
n
+, −∇2f(x) � 0 for all x ≥ 0. Hence all

Ai must be positive semidefinite. This means that −∇2f(x) belongs to the quadratic module generated by
x1, · · · , xn. By Theorem 2.4, f(x) is q-module concave over Rn

+.

Example 2.6. The convex set SR2
+
(f) with f(x) = 1− (x3

1 + x2
1x2 + x1x

2
2 + x3

2) equals L
R

2
+

qmod(f):







































(x1, x2) : ∃ yij , s.t.

1 ≥ y30 + y21 + y12 + y03
















1 x1 x2 y20 y11 y02
x1 y20 y11 y30 y21 y12
x2 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

















� 0,





x1 y20 y11
y20 y30 y21
y11 y21 y12



 � 0





x2 y11 y02
y11 y21 y12
y02 y12 y03



 � 0







































.

This is because f(x) is q-mod concave over R2
+ (see Example 2.1).

Third, consider the special case of univariate polynomials. When D = R, a univariate polynomial is
convex if and only if it is sos-convex, which holds if and only if it is first order sos convex. When D = I is an
interval, we will see that a univariate polynomial is convex over I if and only if it is q-module convex over I.

Proposition 2.7. Let f(x) be a univariate polynomial, and I be an interval like [a, b], (−∞, b] or [a,∞).
Then f(x) is convex over I if and only if it is q-module convex over I.

Proof. First suppose I = [a, b] is finite. f(x) is convex over [a, b] if and only if f ′′(x) ≥ 0 for all x ∈ [a, b],
which is true if and only if

f ′′(x) = σ0(x) + (x− a)σ1(x) + (b − x)σ2(x)

for some sos polynomials σ0, σ1, σ2 with degrees at most 2⌈deg(f)/2⌉ (see Powers and Reznick [15]). In other
words, f(x) is convex over [a, b] if and only if its Hessian belongs to the quadratic module generated by
polynomials x− a, b− x. Then the conclusion can be implied by Theorem 2.4.

The proof is similar for the case (−∞, b] or [a,∞).

2.3.2 Epigraph of polynomial functions

For a given convex domain D ⊆ Rn, f(x) is convex over D if and only if its epigraph

epi(f) := {(x, t) ∈ D × R : f(x) ≤ t}

is convex. Note that epi(f) is defined by the inequality t− f(x) ≥ 0. If we consider t− f(x) as a polynomial
in x with coefficients in t, then LD

qmod(t − f) and LD
pre(t − f) are both linear in (x, t). Therefore, if f(x) is

q-module (resp. preordering) convex over D, LD
qmod(t−f) (resp. LD

pre(t−f)) presents an SDP representation
for epi(f).

By Proposition 2.7, when f(x) is a univariate polynomial convex over an interval I, we know its epigraph
epi(f) is SDP representable and LI

qmod(t− f) is one SDP representation.
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3 Convex sets defined by rational functions

In this section, we discuss the SDP representation of convex set SD(f) when f(x) is a rational function while
the domain D = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is still defined by polynomials gi. Let f(x) be a
rational function of the form

f(x) =
1

fden(x)

∑

α∈Nn: |α|≤2d

fαx
α.

Here fden(x) is the denominator of f(x). We assume that f(x) is concave over the domain D. So f(x) can
not have poles in the interior int(D) of D. Without loss of generality, assume fden(x) is positive over int(D).
Note that f(x) is not defined on the boundary ∂D where fden(x) vanishes. If this happens, we think of
SD(f) as the closure of {x ∈ int(D) : f(x) ≥ 0}.

3.1. The q-module or preordering convexity of rational functions

We now introduce some types of definitions about convexity/concavity for rational functions. Let
p(x), q(x) be two given polynomials which are positive in int(D). We say f(x) is q-module convex over
D with respect to (p, q) if the identity

p(x)q(u) · Rf (x, u) =

m
∑

i=0

gi(x)





m
∑

j=0

gj(u)σij(x, u)



 (3.7)

holds for some sos polynomials σij(x, u). Then define f(x) to be q-module concave over D with respect to
(p, q) if −f(x) is q-module convex over D with respect to (p, q). We say f(x) is preordering convex over D
with respect to (p, q) if the identity

p(x)q(u) ·Rf (x, u) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)





∑

µ∈{0,1}m

gµ1

1 (u) · · · gµm
m (u)σν,µ(x, u)



 (3.8)

holds for some sos polynomials σν,µ(x, u). Similarly, f(x) is called preordering concave over D with respect
to (p, q) if −f(x) is preordering convex over D with respect to (p, q). We point out that the definition of
q-module or preordering convexity/concavity over D for rational functions assumes a certain set of defining
polynomials gi(x) for D is clear in the context.

In identities (3.7) or (3.8), there is no information on how to find polynomials p, q. However, since
Rf (x, u) has denominator fden(x)f

2
den(u), a possible choice for (p, q) is

p(x) = fden(x), q(u) = f2
den(u). (3.9)

If the choice (p, q) in (3.9) makes the identity (3.7) (resp. (3.8)) holds, we say f(x) is q-module (resp.
preordering) convex over D with respect to p(x), or just simply say f(x) is q-module (resp. preordering)
convex over D if the denominator fden(x) is clear in the context.

In the special case D = Rn, the definitions of q-module and preordering convexity over D coincide with
each other, and then is called first order sos convexity when (p, q) is given by (3.9), as consistent with the
definition of first order sos convexity in Section 2. First order sos concavity is defined similarly.

Example 3.1. (i) The rational function
x2
2

x1
is convex over the domain R+ × R. It is also q-module convex

over R+ × R with respect to the denominator x1, which is due to that

x2
2

x1
−

u2
2

u1
−

(

−
u2
2

u2
1

(x1 − u1) +
2u2

u1
(x2 − u2)

)

=
1

x1u2
1

(x1u2 − x2u1)
2.

(ii) The rational function f(x) =
x4
1+x2

1x
2
2+x4

2

x2
1+x2

2
is convex over the domain R2. It can be verified that

(f(x)− f(u)−∇f(u)(x − u)) =
f2
1 + f2

2 + 1
2 (f

2
3 + f2

4 + f2
5 + f2

6 ) + f2
7 + f2

8 + f2
9

(x2
1 + x2

2)(u
2
1 + u2

2)
2

9



where the polynomials fi are given as below

f1 = −u1u2x
2
2 − u1u2x

2
1 + u1u

2
2x2 + u2

1u2x1, f6 = −u2
2x

2
2 + u3

2x2 − u2
1x

2
1 + u3

1x1,
f2 = −u1u2x

2
2 + u1u2x

2
1 + u1u

2
2x2 − u2

1u2x1, f7 = −2u1u2x1x2 + u1u
2
2x1 + u2

1u2x2,
f3 = −u2

2x1x2 + u3
2x1 − u2

1x1x2 + u3
1x2, f8 = u2

2x
2
1 − u2

1x
2
2,

f4 = u2
2x1x2 − u3

2x1 − u2
1x1x2 + u3

1x2, f9 = −u1u
2
2x1 + u2

1u2x2.
f5 = u2

2x
2
2 − u3

2x2 − u2
1x

2
1 + u3

1x1,

So the f(x) given above is first order sos convex.

Obviously, the q-module convexity implies preordering convexity, which then implies the convexity, but
the converse might not be true. For instance, 1

x1x2
is convex over R2

+, but it is neither q-module nor

preordering convex over R2
+ with respect to the denominator x1x2. Note that for f(x) = 1

x1x2
it holds

u2
1u

2
2x1x2Rf (x, u) = u2

1u
2
2 + x2

1x2u2 + x1x
2
2u1 − 3x1x2u1u2.

There are no sos polynomials σν,µ(x, u) such that

u2
1u

2
2x1x2Rf (x, u) =

∑

ν∈{0,1}2,µ∈{0,1}2

xν1
1 xν2

2 uµ1

1 uµ2

2 σν,µ(x, u).

Otherwise, if they exist, we replace (x1, x2, u1, u2) by (x2
1, x

2
2, 1, 1) and then get the dehomogenized Motzkin’s

polynomial 1 + x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 is sos, which is impossible (see Reznick [17]).

Proposition 3.2. Let CQp,q(D) (resp. CPp,q(D)) be the set of all q-module (resp. preordering) convex
rational functions over D with respect to (p, q). Then they have the properties:

(i) Both CQp,q(D) and CPp,q(D) are convex cones.

(ii) If f(x) ∈ CQp,q(D) (resp. f(x) ∈ CPp,q(D)), then f(Az+b) ∈ CQp̃,q̃(D̃) (resp. f(Az+b) ∈ CPp̃,q̃(D̃)),

where D̃ = {z : Az + b ∈ D} and p̃(z) = p(Az + b), q̃(z) = q(Az + b). That is, the q-module convexity
or preordering convexity is preserved under linear transformations.

Proof. The item (i) can be verified explicitly, and item (ii) can be obtained by substituting Az+ b for x and
noting the chain rule of derivatives.

3.2. SDP representations

Now we turn to the construction of SDP representations for SD(f). Recall g0(x) ≡ 1. Throughout this
subsection, we assume the polynomials f(x) and gi(x) are either all q-module concave or all preordering
concave over D with respect to (p, q). Thus for any h(x) from {f(x), g1(x), · · · , gm(x)}, we have either

−p(x)q(u)Rh(x, u) =

m
∑

i=0

gi(x)





m
∑

j=0

gj(u)σ
h
ij(x, u)





for some sos polynomials σh
ij(x, u), or

−p(x)q(u)Rh(x, u) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)





∑

µ∈{0,1}m

gµ1

1 (u) · · · gµm
m (u)σh

ν,µ(x, u)





for some sos polynomials σh
ν,µ(x, u). Let

d
(R)
qmod = max

h∈{f,g1,··· ,gm}
max

0≤i,j≤m
⌈ 1
2 degx(giσ

h
ij)⌉,

d
(R)
pre = max

h∈{f,g1,··· ,gm}
max

ν∈{0,1}m,µ∈{0,1}m
⌈ 1
2 degx(g

ν1
1 · · · gνmm σh

ν,µ)⌉.
(3.10)
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Then set d = d
(R)
qmod (resp. d = d

(R)
pre) when f(x) and gi(x) are all q-module (resp. preordering) concave over

D with respect to (p, q).

Define matrices P
(i)
α , P

(ν)
α , Q

(i)
α , Q

(ν)
α such that

gi(x)
p(x) md−di

(x)md−di
(x)T =

∑

α∈Nn:|α|+|LE(p)|≤2d

Q
(i)
α xα +

∑

β∈Nn:β<LE(p)

P
(i)
α

xβ

p(x) , 0 ≤ i ≤ m,

g
ν1
1 ···gνm

m

p(x) md−dν
(x)md−dν

(x)T =
∑

α∈Nn:|α|+|LE(p)|≤2d

Q
(ν)
α xα +

∑

β∈Nn:β<LE(p)

P
(ν)
α

xβ

p(x) , ν ∈ {0, 1}m.

(3.11)
Here LE(p) denotes the exponent of the leading monomial of p(x) under the lexicographical ordering (x1 >
x2 > · · · > xn). Note that the union

{

xα : α ∈ N
n, |α|+ |LE(p)| ≤ 2d

}

∪
{ xβ

p(x)
: β ∈ N

n, β < LE(p)
}

is a set of polynomials and rational functions that are linearly independent.
Let y be a vector indexed by α ∈ Nn such that |α|+ |LE(p)| ≤ 2d, and z be a vector indexed by β ∈ Nn

such that β < LE(p). Then define

Qi(y, z) =
∑

α∈Nn:|α|+|LE(p)|≤2d

Q
(i)
α yα +

∑

β∈Nn:β<LE(p)

P
(i)
α zβ , 0 ≤ i ≤ m,

Qν(y, z) =
∑

α∈Nn:|α|+|LE(p)|≤2d

Q
(ν)
α yα +

∑

β∈Nn:β<LE(p)

P
(ν)
α zβ , ν ∈ {0, 1}m.

(3.12)

Suppose the rational function f(x) is given in the form

f(x) =
∑

α∈Nn:|α|+|LE(p)|≤2d

f (1)
α xα +

∑

β∈Nn:β<LE(p)

f
(2)
β

xβ

p(x)
,

then define vectors f (1), f (2) such that

(f (1))T y + (f (2))T z =
∑

α∈Nn:|α|+|LE(p)|≤2d

f (1)
α yα +

∑

β∈Nn:β<LE(p)

f
(2)
β zβ.

Define two SDP representable sets

RD
qmod(f) =

{

(y, z) : y0 = 1,

[

f (1)

f (2)

]T [

y
z

]

≥ 0, Qi(y, z) � 0, ∀ 0 ≤ i ≤ m

}

, (3.13)

RD
pre(f) =

{

(y, z) : y0 = 1,

[

f (1)

f (2)

]T [

y
z

]

≥ 0, Qν(y, z) � 0, ∀ ν ∈ {0, 1}m

}

. (3.14)

We say SD(f) equals RD
qmod(f) (resp. R

D
pre(f)) if SD(f) equals the image of RD

qmod(f) (resp. R
D
pre(f)) under

the projection ρ(y, z) = (y10...0, y010...0, . . . , y00...01). Similarly, we say x ∈ RD
qmod(f) (resp. x ∈ RD

pre(f))

if there exists (y, z) ∈ RD
qmod(f) (resp. (y, z) ∈ RD

pre(f)) such that x = ρ(y, z).

Lemma 3.3. Assume D and SD(f) are both convex and have nonempty interior. Let {x ∈ Rn : aTx = b} be
a supporting hyperplane of SD(f) such that aTx ≥ b for all x ∈ SD(f) and aTu = b for some point u ∈ SD(f)
such that q(u) > 0, and either f(u) > 0 or fden(u) > 0.

(i) If f(x) and every gi(x) are q-module concave over D with respect to (p, q), then

p(x) · (aTx− b− λf(x)) =

m
∑

i=0

gi(x)σi(x)

for some scalar λ ≥ 0 and sos polynomials σi(x) such that deg(giσi) ≤ 2d
(R)
qmod.
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(ii) If f(x) and every gi(x) are preordering concave over D with respect to (p, q), then

p(x) · (aTx− b − λf(x)) =
∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)σν (x)

for some scalar λ ≥ 0 and sos polynomials σi(x) such that deg(gν11 · · · gνmm σν) ≤ 2d
(R)
pre.

Proof. Since SD(f) has nonempty interior, the first order optimality condition holds at u for convex opti-
mization problem (u is one minimizer)

min
x

aTx subject to f(x) ≥ 0, gi(x) ≥ 0, i = 1, . . . ,m.

If f(u) > 0, the constraint f(x) ≥ 0 is inactive. If fden(u) > 0, f(x) is differential at u. Hence, in either
case, there exist Lagrange multipliers λ ≥ 0, λ1 ≥ 0, . . . , λm ≥ 0 such that

a = λ∇f(u) +
m
∑

i=1

λi∇gi(u), λf(u) = λ1g1(u) = · · · = λmgm(u) = 0.

Hence we get the identity

aTx− b− λf(x) −
m
∑

i=1

λigi(x) =

λ
(

f(u) +∇f(u)T (x− u)− f(x)
)

+

m
∑

i=1

λi

(

gi(u) +∇gi(u)
T (x− u)− gi(x)

)

.

Therefore, the claims (i) and (ii) can be implied immediately by the definition of q-module concavity or
preordering concavity of f and gi, and plugging the value of u.

Theorem 3.4. Assume D and SD(f) are both convex and have nonempty interior. Let (p, q) be given in
(3.7) or (3.8). Suppose dim(Z(f) ∩ Z(fden) ∩ ∂SD(f)) < n− 1 and dim(Z(q) ∩ ∂SD(f)) < n− 1.

(i) If f(x) and every gi(x) are q-module concave over D with respect to (p, q), then SD(f) = RD
qmod(f).

(ii) If f(x) and every gi(x) are preordering concave over D with respect to (p, q), then SD(f) = RD
pre(f).

Proof. (i) Since SD(f) is contained in the projection of RD
qmod(f), we only need prove SD(f) ⊇ RD

qmod(f).

For a contradiction, suppose there exists some (ŷ, ẑ) ∈ RD
qmod(f) such that x̂ = ρ(ŷ) /∈ SD(f). By the

convexity of SD(f), it holds

SD(f) =
⋂

{aT x=b} is a
supporting hyperplane

{

x ∈ R
n : aTx ≥ b

}

.

If x̂ /∈ SD(f), then there exists one supporting hyperplane {aTx = b} of SD(f) with tangent point u ∈ ∂SD(f)
such that aT x̂ < b. Since dim(Z(f) ∩ Z(p) ∩ ∂SD(f)) < n− 1 and dim(Z(q) ∩ ∂SD) < n− 1, by continuity,
we can choose {aTx = b} such that either f(u) > 0 or p(u) > 0, and q(u) > 0. By Lemma 3.3, we have

aTx− b = λf(x) +

m
∑

i=0

gi(x)

p(x)
σi(x) (3.15)

for some sos polynomials σi(x) such that deg(giσi) ≤ 2d
(R)
qmod. Note that d = d

(R)
qmod. Then write σi(x) as

σi(x) = md−di
(x)TWimd−di

(x), i = 0, 1, . . . ,m

12
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Figure 1: The convex set defined by x2
1 + x2

2 ≥ x4
1 + x2

1x
2
2 + x4

2.

for some symmetric matrices Wi � 0. Then identity (3.15) becomes (noting (3.11))

aTx− b = λf(x) +

m
∑

i=0

(

gi(x)

p(x)
md−di

(x)md−di
(x)T

)

•Wi

= λf(x) +
m
∑

i=0





∑

α∈Nn:|α|+|LE(p)|≤2d

Q(i)
α xα +

∑

β∈Nn:β<LE(p)

P (i)
α

xβ

p(x)



 •Wi.

In the above identity, if we replace each xα by ŷα and xβ

p(x) by ẑβ, then we get the contradiction

aT x̂− b = (f (1))T ŷ + (f (2))T ẑ +

m
∑

i=0

Qi(ŷ, ẑ) •Wi ≥ 0.

(ii) The proof is almost the same as for (i). The only difference is that

aTx− γ = λf(x) +
∑

ν∈{0,1}m

gν11 · · · gνmm
p(x)

σν(x)

for some sos polynomials σν(x) such that deg(giσi) ≤ 2d
(R)
pre . Note that d = d

(R)
pre . A similar contradiction

argument like in (i) can be applied to prove the claim.

Example 3.5. The convex set {x ∈ R2 : x2
1 + x2

2 ≥ x4
1 + x2

1x
2
2 + x4

2} can be defined as SR2(f) with rational

function f(x) = 1 − x4
1+x2

1x
2
2+x4

2

x2
1+x2

2
. The set SR2(f) is the shaded area bounded by a thick curve in Figure 1.

We have already seen that f(x) is first order sos concave. So SR2(f) = RR
2

qmod(f). A polynomial division

shows that 1
x2
1+x2

2
m2(x)m2(x)

T equals

2

6

6

6

6

6

6

4

0 0 0 1 0 0
0 1 0 x1 x2 0
0 0 0 x2 0 0
1 x1 x2 x2

1 − x2

2 x1x2 x2

2

0 x2 0 x1x2 x2

2 0
0 0 0 x2

2 0 0

3

7

7

7

7

7

7

5

+
1

p(x)

2

6

6

6

6

6

6

4

1 x1 x2 −x2

2 x1x2 x2

2

x1 −x2

2 x1x2 −x1x
2

2 −x3

2 x1x
2

2

x2 x1x2 x2

2 −x3

2 x1x
2

2 x3

2

−x2

2 −x1x
2

2 −x3

2 x4

2 −x1x
3

2 −x4

2

x1x2 −x3

2 x1x
2

2 −x1x
3

2 −x4

2 x1x
3

2

x2

2 x1x
2

2 x3

2 −x4

2 x1x
3

2 x4

2

3

7

7

7

7

7

7

5

.
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So we can see that SR2(f) = RR
2

qmod(f) can be represented as







































(x1, x2) ∈ R× R : ∃ yij , zij , s.t. 1 ≥ y20 + z04,
















0 0 0 1 0 0
0 1 0 x1 x2 0
0 0 0 x2 0 0
1 x1 x2 y20 − y02 y11 y02
0 x2 0 y11 y02 0
0 0 0 y02 0 0

















+

















z00 z10 z01 −z02 z11 z02
z10 −z02 z11 −z12 −z03 z12
z01 z11 z02 −z03 z12 z03
−z02 −z12 −z03 z04 −z13 −z04
z11 −z03 z12 −z13 −z04 z13
z02 z12 z03 −z04 z13 z04

















� 0







































.

The plot of the projection of the above coincides with the shaded area in Figure 1.

3.3. Some special cases

3.3.1 Epigraph of rational functions

The rational function f(x) is convex over the convex domain D if and only if its epigraph

epi(f) := {(x, t) ∈ D × R : f(x) ≤ t}

is convex. The LMI RD
qmod(t−f) and RD

pre(t−f) can be constructed by thinking of t−f(x) as a polynomial

in x with coefficients in t. So, if f(x) is q-module (resp. preordering) convex over D, RD
qmod(t − f) (resp.

RD
pre(t− f)) is an SDP representation for epi(f).

Now we consider the special case that f(x) = q(x)
p(x) is a univariate rational function convex over an interval

I = [a, b] and p(x) is positive over (a, b). Note that I = {x ∈ R : x − a ≥ 0, b − x ≥ 0} (x − a ≥ 0 is not
required if a = −∞, and similarly for b− x ≥ 0).

Theorem 3.6. Let f(x) = q(x)
p(x) be a univariate rational function and p(x) is a polynomial nonnegative over

an interval I. If f(x) is convex over I, then its epigraph epi(f) = RI
qmod(f).

Proof. First assume I = [a, b] is finite. Since R
[a,b]
qmod(f) is linear in t, it suffices to show for any fixed t

{x ∈ [a, b] : ∃y, z, s.t., x = y1, (y, z, t) ∈ R
[a,b]
qmod(f)} = {x ∈ [a, b] : f(x) ≤ t}.

In the above the right hand side is contained in the left hand side. Now we prove the converse. For a

contradiction, suppose there exists a tuple (ŷ, ẑ, t) ∈ R
[a,b]
qmod(f) such that and x̂ = ŷ1 does not belong to the

convex set {x ∈ [a, b] : f(x) ≤ t}. Then there exists an affine function c0 + c1x such that

c0 + c1x̂ < 0, c0 + c1x ≥ 0, ∀x ∈ [a, b] : f(x) ≤ t.

Since f(x) is convex over [a,b], by optimality condition, there exists λ ≥ 0 such that

c0 + c1x− λ(t− f(x)) =
(c0 + c1x− λt)p(x) + λq(x)

p(x)
≥ 0, ∀x ∈ [a, b].

Then we can see that (c0 + c1x − λt)p(x) + λq(x) is a univariate polynomial nonnegative on [a, b]. So
there exist sos polynomials s0(x), s1(x), s2(x) of degrees at most 2d, 2d − 2, 2d − 2 respectively (assume
deg(p) + 1, deg(q) ≤ 2d and see Powers and Reznick [15]) such that

(c0 + c1x− λt)p(x) + λq(x) = s0(x) + (x− a)s1(x) + (b− a)s2(x)

and hence then

c0 + c1x = λ(t− f(x)) +
s0(x) + (x− a)s1(x) + (b− a)s2(x)

p(x)
.
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Write s0(x), s1(x), s2(x) as

s0(x) = md(x)
TW0md(x), s1(x) = md−1(x)

TW1md−1(x), s2(x) = md−1(x)
TW2md−1(x)

for some symmetric W0,W1,W2 � 0. Then we have (noting g0 = 1, g1 = x− a, g2 = b− x and (3.11))

aTx− b = λ(t − f(x)) +

2
∑

i=0

(

gi(x)

p(x)
md−di

(x)md−di
(x)T

)

•Wi (d0 = 0, d1 = d2 = 1)

= λ(t − f(x)) +

2
∑

i=0





∑

α∈N:|α|+|LE(p)|≤2d

Q(i)
α xα +

∑

β∈N:β<LE(p)

P (i)
α

xβ

p(x)



 •Wi.

In the above identity, if we replace each xα by ŷα and xβ

p(x) by ẑβ, then get the contradiction

aT x̂− b = λ(t − (f (1))T ŷ − (f (2))T ẑ) +
2
∑

i=0

Qi(ŷ, ẑ) •Wi ≥ 0.

Therefore we get epi(f) = R
[a,b]
qmod(f).

When I is an infinite interval of the form [a,∞) = {x : x − a ≥ 0}, (−∞, b] = {x : b − x ≥ 0} or
(−∞,∞) = {x : 1 ≥ 0}, a similar argument can be applied to prove epi(f) = RI

qmod(f).

3.3.2 Convex sets defined by structured rational functions

For the convenience of discussion, we define some basic convex sets (r ≤ s)

Kr,s = {(w, v) ∈ R
r
+ × R+ : w1 · · ·wr ≥ vs} (3.16)

which are all SDP representable (see §3.3 in [1]).
First, consider epigraphs of rational functions of the form

f(x) =

∑P
i=1(qi(x))

si

p1(x) · · · pr(x)
(3.17)

where qi(x), pj(x) are polynomials nonnegative over D and the integer si ≥ r + 1. Then

epi(f) =

{

(x, t) ∈ D × R :

P
∑

i=1

(qi(x))
si ≤ p1(x) · · · pr(x)t

}

.

The epigraph epi(f) can be equivalently presented as

epi(f) =

{

(x, t) ∈ D × R : ∃ui, wi,
P
∑

i=1

usi
i

w1 · · ·wr

≤ t, qi(x) ≤ ui, wi ≤ pi(x), i = 1, . . . , P

}

.

Note that
qi(x) ≤ ui ⇐⇒ (x, ui) ∈ epi(qi), wi ≤ pi(x) ⇐⇒ (x,−wi) ∈ epi(−pi),

P
∑

i=1

usi
i

w1 · · ·wr

≤ t ⇐⇒ ∃v1, · · · , vP ≥ 0, v1 + · · ·+ vP ≤ t, (w1, · · · , wr, vi, ui) ∈ Kr+1,si.

Hence we obtain that

epi(f) =
{

(x, t) ∈ D × R : ∃ui, wi, vi,

P
∑

i=1

vi ≤ t, (w1, · · · , wr, vi, ui) ∈ Kr+1,si,

(x, ui) ∈ epi(qi), (x,−wi) ∈ epi(−pi), i = 1, . . . , P
}

.

When qi(x) are q-module (resp. preordering) convex over D, we know epi(qi) = LD
qmod(ui − qi) (resp.

epi(qi) = LD
pre(ui − qi)), and similarly for −pi(x). Thus, we get the theorem:
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Theorem 3.7. Suppose f(x) is given in the form (3.17) and all qi(x), pj(x) there are nonnegative over D.

(i) If all qi(x),−pj(x) are q-module convex over D, then

epi(f) =
{

(x, t) : ∃ui, wi, vi, x ∈
P
⋂

i=1

LD
qmod(ui − qi)

P
⋂

j=1

LD
qmod(pj − wj),

P
∑

i=1

vi ≤ t, (w1, · · · , wr, vi, ui) ∈ Kr+1,si

}

.

(ii) If all qi(x),−pj(x) are preordering convex over D, then

epi(f) =
{

(x, t) : ∃ui, wi, vi, x ∈
P
⋂

i=1

LD
pre(ui − qi)

P
⋂

j=1

LD
pre(pj − wj),

P
∑

i=1

vi ≤ t, (w1, · · · , wr , vi, ui) ∈ Kr+1,si

}

.

Example 3.8. (i) Consider the epigraph
{

(x1, x2, t) ∈ R+ × R× R : t ≥ (1+x2
2)

2

x1

}

. The rational function

here is given in the form (3.17). By Theorem 3.7, its epigraph can be represented as

{

(x1, x2, t) : ∃u,

[

t u
u x1

]

� 0,

[

u− 1 x2

x2 1

]

� 0

}

.

(ii) Consider the epigraph
{

(x, t) ∈ B(0, 1)× R : t ≥
(
P

i
x2
i )

n+1

(1−x2
1)···(1−x2

n)

}

. The rational function here is given in

the form (3.17). By Theorem 3.7, its epigraph can be represented as

{

(x, t) : ∃u, vi, wi, s.t.,
n
∑

i=1

vi ≤ t,

[

1− wi xi

xi 1

]

� 0,

[

u xT

x In

]

� 0, (u,w1, . . . , wn, u) ∈ Kn+1,n+1

}

.

Second, consider epigraphs of rational functions of the form

h(x) =

L
∑

k=1

(fk(x))
bk (3.18)

where fk(x) are rational functions given in form (3.17) and bk ≥ 1. Then the epigraph epi(h) = {(x, t) ∈
D × R : h(x) ≤ t} can be presented as

epi(h) =

{

(x, t) : ∃ηk, τk,
L
∑

k=1

τk ≤ t, (x, ηk) ∈ epi(fk), (τk, ηk) ∈ K1,bk , k = 1, · · · , L

}

.

Once the SDP representation for each epi(fk) is available, one SDP representation for epi(h) can be obtained
consequently from the above.

Example 3.9. Consider the epigraph

{

(x1, x2, t) ∈ R+ × R+ × R : t ≥
(

1+x2
2

x1

)2
}

. From the above discus-

sion, we know it can be represented as







(x1, x2, t) : ∃u,

[

t u
u 1

]

� 0,





x1 0 1
0 x1 x2

1 x2 u



 � 0







.
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Third, consider the convex sets given in the form

T =

{

x ∈ D : a(x) ≥
J
∑

k=1

hk(x)

}

(3.19)

where a(x) is a polynomial and every hk(x) is given in the form (3.18). Then

T =

{

x : ∃t, θ1, · · · , θJ , t ≥
J
∑

k=1

θk, (x,−t) ∈ epi(−a(x)), (x, θk) ∈ epi(hk(x)), k = 1, . . . , J

}

.

When a(x) is q-module or preordering concave over D, epi(−a(x)) is representable by LD
qmod(a(x) − t) or

LD
pre(a(x) − t). Once the SDP representations for epi(−a(x)) and all epi(hk(x)) are available, an SDP

representation for T can be obtained consequently.

Example 3.10. (i) Consider the convex set T =
{

(x1, x2) ∈ R+ × R : 1− 3x2
2 ≥ (1+x2

2)
2

x1

}

. It is given in

the form (3.19) with D = R+ × R. From the above discussion, we have

T =

{

(x1, x2) : ∃u,w,

[

1− u x2

x2
1
3

]

� 0,

[

w − 1 x2

x2 1

]

� 0, (u, x1, w) ∈ K2,2

}

.

Note that (u, x1, w) ∈ K2,2 has the representation

[

u w
w x1

]

� 0.

(ii) Consider the convex set T =
{

(x1, x2) ∈ R+ × R : 1− x2
2 ≥

(1+x2
2)

2

x2
1

}

. It is given in the form (3.19) with

D = R+ × R. From the above discussion, we know it can be represented as







(x1, x2) : ∃u,

[

1 + u x2

x2 1− u

]

� 0,





x1 0 1
0 x1 x2

1 x2 u



 � 0







.

4 Convex sets with singularities

Let SD(f) = {x ∈ D : f(x) ≥ 0} be a convex set defined by a polynomial or rational function f(x). Here
D = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} is still a convex domain defined by polynomials. Suppose the
origin belongs to SD(f) and is a singular point of the hypersurface Z(f) = {x ∈ Cn : f(x) = 0}, i.e.,

f(0, 0) = 0, ∇f(0, 0) = 0.

We are interested in finding SDP representability conditions for SD(f).
As we have seen in Introduction, one natural approach to getting an SDP representation for SD(f) is to

find a “nicer” defining function (possibly a concave rational function). Let p(x) be a polynomial or rational
function positive in int(D). Then we can see SD(f) is the closure of the set

{

x ∈ int(D) :
f(x)

p(x)
≥ 0

}

.

If f(x)
p(x) has nice properties, e.g., f(x)

p(x) has special structures discussed in Section 3, or it is q-module or

preordering concave over D, then an explicit SDP representation for SD(f) can be obtained. For instance,
consider the convex set

{(x1, x2) ∈ R
2
+ : −x3

1 + 3x1x
2
2 − (x2

1 + x2
2)

2 ≥ 0}.

The origin is a singular point on its boundary. If we choose p(x) = x2
2, then it can be presented as

{

(x1, x2) ∈ R
2
+ : 3x1 ≥ 2x2

1 + x2
2 +

x3
1

x2
2

+
x4
1

x2
2

}

.
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Then this set can be represented as

{

(x1, x2) ∈ R
2
+ : ∃u1, u2, u3, u4, s.t., 3x1 ≥ 2u1 + u2 + u3 + u4, (u1, x1) ∈ K1,2,

(u2, x2) ∈ K1,2, (u3, x2, x2, x1) ∈ K3,3, (u4, x2, x2, x1) ∈ K3,4

}

.

However, there is no general procedure to find such a nice function p(x). In convex analysis, there is a
technique called perspective transformation which might be very useful now. Generally, we can assume

SD(f) ⊂ R+ × R
n−1, int(SD(f)) 6= ∅.

Define the perspective transformation p as

p(x1, x2, · · · , xn) = (1/x1, x2/x1, · · · , xn/x1).

The image of SD(f) under the perspective transformation p is

{

(1/x1, x2/x1, · · · , xn/x1) : x ∈ SD(f)
}

⊂ R+ × R
n−1,

which is also convex (see §2.3 in [2]). Define new coordinates

x̃1 =
1

x1
, x̃2 =

x2

x1
, · · · , x̃n =

xn

x1
.

Denote ˜̃x = (x̃2, · · · , x̃n). Suppose f(x) has Laurent expansion around the origin

f(x) = fb(x)− fb+1(x) − · · · − fd(x)

where every fk(x) is a homogeneous part of degree k. Let

f̃(x̃) := f̃0(˜̃x)−
f̃1(˜̃x)

x̃1
− · · · −

f̃d−b(˜̃x)

x̃d−b
1

where f̃i(x̃2, · · · , x̃n) := xb+i
1 fb+i(x̃). Define a new domain D̃ as

D̃ = {x̃ ∈ R
n : g̃1(x̃) ≥ 0, · · · , g̃m(x̃) ≥ 0}

where g̃i(x̃) =
gi(x)

x
deg(gi)
1

. Note that D̃ is convex if and only if D is convex (see §2.3 in [2]). Therefore, under

the perspective transformation p, the set SD(f) can be equivalently defined as

SD̃(f̃) = {x̃ ∈ D̃ : f̃(x̃) ≥ 0}.

Proposition 4.1. If SD(f) is convex, then f̃0(˜̃x) ≥ 0 for any x̃ = (x̃1, ˜̃x) ∈ SD̃(f̃).

Proof. Fix x = (x1, · · · , xn) ∈ SD(f) and x̃ = (x̃1, · · · , x̃n) ∈ SD̃(f̃) such that x̃ = p(x1, x2, · · · , xn). By the
convexity of SD(f), the line segment {tx : 0 ≤ t ≤ 1} belongs to SD(f). Thus its image

p(tx1, tx2, · · · , txn) = (
1

t
x̃1, x̃2, · · · , x̃n)

belongs to SD̃(f̃). Now let t → 0. Then f̃(1
t
x̃1, x̃2, · · · , x̃n) ≥ 0 implies f̃0(˜̃x) ≥ 0.

4.1. The case of structured f̃k(˜̃x)

In this subsection, we assume f̃k(˜̃x) have special structures. Then the methods in Subsection 3.3.2 can
be applied to construct SDP representations for SD̃(f̃).
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Theorem 4.2. Suppose every f̃k(˜̃x) (k = 1, · · · , d− b) is given in the form

f̃k(˜̃x) =

Lk
∑

i=1

(qk,i(˜̃x))
rk,i +

Rk
∑

j=1

(

Qk,j
∑

ℓ=1

(pk,j,ℓ(˜̃x))
sk,j,ℓ

)k

for some polynomials qk,i(˜̃x), pk,j,ℓ(˜̃x) which are nonnegative over D̃ and integers rk,i ≥ k + 1, sk,j,ℓ ≥ 2

(pk,j(˜̃x) can be any affine polynomial when sk,j,ℓ is even). Then SD̃(f̃) can be represented as











x̃ : ∃u, uk,i, vk,j,ℓ, u ≥
d−b
∑

k=1







Lk
∑

i=1

(uk,i)
rk,i

x̃k
1

+

Rk
∑

j=1





Qk,j
∑

ℓ=1

(vk,j,ℓ)
sk,j,ℓ

x̃1





k





,

(˜̃x,−u) ∈ epi(−f̃0), (˜̃x, uk,i) ∈ epi(qk,i), (˜̃x, vk,j,ℓ) ∈ epi(pk,j,ℓ)
}

.

Furthermore, if −f̃0(˜̃x) and all qk,j(˜̃x), pk,j,ℓ(˜̃x) are q-module or preordering convex over D̃, then SD̃(f̃) is
SDP representable.

Proof. The first conclusion is obvious by introducing new variables u, uk,i, vk,j,ℓ. Note that

u ≥
d−b
∑

k=1

(

Lk
∑

i=1

(uk,i)
rk,i

x̃k
1

+

Rk
∑

j=1

(

Qk,j
∑

ℓ=1

(vk,j,ℓ)
sk,j,ℓ

x̃1

)k)

is equivalent to

u ≥
d−b
∑

k=1

(

Lk
∑

i=1

ηk,i +

Rk
∑

j=1

ξk

)

, (x̃1, · · · , x̃1, ηk,i, uk,i) ∈ Kk+1,rk,i
,

(ξk, ζk) ∈ K1,k, (ζk, x̃1, vk,j,ℓ) ∈ K2,sk,j,ℓ
.

When −f̃0(˜̃x) is q-module (resp. preordering) convex over D̃, (˜̃x,−u) ∈ epi(−f̃0) is representable by

LD̃
qmod(u − f̃0) (resp. LD̃

pre(u − f̃0)). Similar results hold for qk,j(˜̃x), pk,j,ℓ(˜̃x). Once the SDP representa-

tions for epigraphs of −f̃0(˜̃x), qk,j(˜̃x) and pk,j,ℓ(˜̃x) are all available, we can get an SDP representation for

SD̃(f̃) consequently.

Now we show some examples on how to apply Theorem 4.2.

Example 4.3. (a) Consider convex set S = {(x1, x2) ∈ R+ ×R : x2
1 − x3

1 − x2
2 ≥ 0}. Its boundary is a cubic

curve and the origin is a singular node. This convex set is the shaded area bounded by a thick curve in
Figure 2(a). The thin curves are other branches of this cubic curve. After the perspective transformation,
we get

S̃ =

{

(x̃1, x̃2) ∈ R+ × R : 1− x̃2
2 −

1

x̃1
≥ 0

}

which can be represented as

{

(x̃1, x̃2) : ∃u, s.t.,

[

1− u x̃2

x̃2 1

]

� 0,

[

u 1
1 x̃1

]

� 0

}

.

After the inverse perspective transformation, we get

S =

{

(x1, x2) : ∃u, s.t.,

[

x1 − u x2

x2 x11

]

� 0,

[

u x1

x1 x1

]

� 0

}

.

The plot of the projection of the above coincides with the shaded area in Figure 2(a).
(b) Consider convex set S = {(x1, x2) ∈ R+ ×R : x2

1 − x4
2 − x4

2 ≥ 0}. The origin is a singular tacnode on the
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Figure 2: Four singular convex sets discussed in Example 4.3
.

boundary. This convex set is the shaded area bounded by a thick curve in Figure 2(b). The thin curve is
the other branch of the singular curve x2

1 − x4
2 − x4

2 = 0. After the perspective transformation, we get

S̃ =

{

(x̃1, x̃2) ∈ R+ × R : 1 ≥
1 + x̃4

2

x̃2
1

}

which can be represented as
{

(x̃1, x̃2) : ∃u1, u2, s.t.,

[

1− u1 u2

u2 1 + u1

]

� 0,

[

u1 1
1 x̃1

]

� 0,

[

u2 x̃2

x̃2 x̃1

]

� 0

}

.

After the inverse perspective transformation, we get

S =

{

(x1, x2) : ∃u1, u2, s.t.,

[

x1 − u1 u2

u2 x1 + u1

]

� 0,

[

u1 x1

x1 1

]

� 0,

[

u2 x2

x2 1

]

� 0

}

.

The plot of the projection of the above coincides with the shaded area in Figure 2(b).
(c) Consider convex set S = {(x1, x2) ∈ R+ × R : x3

1 − 3x1x
2
2 − (x2

1 + x2
2)

2 ≥ 0}. The origin is a singular
point on the boundary. This convex set is the shaded area bounded by a thick curve in Figure 2(c). The
thin curves are other branches of the singular curve x3

1 − 3x1x
2
2 − (x2

1 + x2
2)

2 = 0. After the perspective
transformation, we get

S̃ =

{

(x̃1, x̃2) ∈ R+ × R : 1− 3x̃2
2 −

(1 + x̃2
2)

2

x̃1
≥ 0

}
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which can be represented as

{

(x̃1, x̃2) : ∃u,w, s.t.,

[

1− u x̃2

x̃2
1
3

]

� 0,

[

u w
w x̃1

]

� 0,

[

w − 1 x̃2

x̃2 1

]

� 0

}

.

After the inverse perspective transformation, we get

S =

{

(x1, x2) : ∃u,w, s.t.,

[

x1 − u x2

x2
1
3x1

]

� 0,

[

u w
w 1

]

� 0,

[

w − x1 x2

x2 x1

]

� 0

}

.

The plot of the projection of the above coincides with the shaded area in Figure 2(c).
(d) Consider convex set S = {(x1, x2) ∈ R+ × R : x2

1 − x2
2 − (x2

1 + x2
2)

2 ≥ 0}. The origin is a singular point
on the boundary which is one branch of the lemniscate curve x2

1 − x2
2 − (x2

1 + x2
2)

2 = 0. This convex set is
the shaded area bounded a thick lemniscate curve in Figure 2(d). The thin curve is the other branch of the
lemniscate curve. After the perspective transformation, we get

S̃ =

{

(x̃1, x̃2) ∈ R+ × R : (1− x̃2
2) ≥

(

1 + x̃2
2

x̃1

)2
}

which can be represented as







(x̃1, x̃2) : ∃u,w, s.t.

[

1 + u x̃2

x̃2 1− u

]

� 0,





u 1 x̃2

1 x̃1 0
x̃2 0 x̃1



 � 0







.

After the inverse perspective transformation, we get

S =







(x1, x2) : ∃u, s.t.

[

x1 + u x2

x2 x1 − u

]

� 0,





u x1 x2

x1 1 0
x2 0 1



 � 0







.

The plot of the projection of the above coincides with the shaded area in Figure 2(d).

4.2. The case of two consecutive homogeneous parts

In this subsection, we consider the special case that f(x) = fb(x) − fb+1(x) having two consecutive
homogeneous parts. Then, after perspective transformation, we get

SD̃(f̃) =

{

x̃ ∈ D̃ : f̃0(˜̃x)−
f̃1(˜̃x)

x̃1
≥ 0

}

.

By Proposition 4.1, for any x̃ ∈ D̃, we have f0(˜̃x) ≥ 0. Let D′ be the intersection of {˜̃x : f0(˜̃x) ≥ 0} and the
projection of D ⊂ R+ × Rn−1 into Rn−1. Then we get

SD̃(f̃) =
{

(˜̃x, x̃1) ∈ D′ × R+ : x̃1 ≥ h(˜̃x)
}

, h(˜̃x) :=
f̃1(˜̃x)

f̃0(˜̃x)
.

Then SD̃(f̃) is the epigraph epi(h) of the rational function h(˜̃x) over D′. Note that h(˜̃x) is convex over the

domain D′ if and only if SD̃(f̃) is convex, which then holds if and only if SD(f) is convex. So, if h(˜̃x) is

q-module or preordering convex over D′, then RD′

qmod(x̃1 − h) or RD′

pre(x̃1 − h) is an SDP representation for
epi(h), and then one can be obtained for SD(h) after the inverse perspective transformation.

A very interesting case is n = 2. Then D′ must be an interval I of the real line.

Theorem 4.4. Let n = 2 and D′ = I be an interval as above. If SD(f) is convex, then SD̃(f̃) = RI
qmod(x̃1−

h), and hence SD(f) = p−1(RI
qmod(x̃1 − h)).
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Proof. When n = 2, f(˜̃x) is a univariate rational function. When SD(f) is convex, SD̃(f̃) is also convex.

Since SD̃(f̃) is the epigraph of f(˜̃x), f(˜̃x) must be a univariate rational function convex over the interval I.

By Theorem 3.6, its epigraph is representable by RI
qmod(x̃1 − h). Thus SD̃(f̃) = RI

qmod(x̃1 − h). After the
inverse perspective transformation, we can get an SDP representation for SD(f).

Now we see some examples on how to find SDP representations for singular convex sets by applying
Theorem 4.4.

Example 4.5. (i) We revisit the singular convex set (a) in Example 4.3. After the perspective transforma-

tion, we get S̃ =
{

(x̃1, x̃2) ∈ R× [−1, 1] : x̃1 ≥ 1
1−x̃2

2

}

, which can be represented as























(x̃1, x̃2) :

∃ y2, y3, y4, z0, z1, x̃1 ≥ z0,

[

1− y2 x̃2 − y3
x̃2 − y3 y2 − y4

]

� 0,




1 x̃2 y2
x̃2 y2 y3
y2 y3 y4



 � 0,





z0 z1 −1 + z0
z1 −1 + z0 −x̃2 + z1

−1 + z0 −x̃2 + z1 −y2 − 1 + z0



 � 0























.

Applying the inverse perspective transformation, we get an SDP representation for S






















(x1, x2) :

∃ y2, y3, y4, z0, z1, 1 ≥ z0,

[

x1 − y2 x2 − y3
x2 − y3 y2 − y4

]

� 0,




x1 x2 y2
x2 y2 y3
y2 y3 y4



 � 0,





z0 z1 −x1 + z0
z1 −x1 + z0 −x2 + z1

−x1 + z0 −x2 + z1 −y2 − x1 + z0



 � 0























.

Interestingly but not surprisingly, the plot of the above coincides with the shaded area in Figure 2(a).
(ii) Revisit the singular convex set (c) in Example 4.3. After the perspective transformation, we get S̃ =
{

(x̃1, x̃2) ∈ R× 1√
3
[−1, 1] : x̃1 ≥ −x2

2

3 − 7
9 + 16

9(1−3x2
2)

}

, which equals























(x̃1, x̃2) :

∃ y2, y3, y4, z0, z1, x̃1 ≥ − 1
3y2 −

7
9 + 16

9 z0,

[

1− 3y2 x̃2 − 3y3
x̃2 − 3y3 y2 − 3y4

]

� 0,




1 x̃2 y2
x̃2 y2 y3
y2 y3 y4



 � 0,





z0 z1
1
3 (z0 − 1)

z1
1
3 (z0 − 1) 1

3 (z1 − x̃2)
1
3 (z0 − 1) 1

3 (z1 − x̃2) − 1
3y2 +

1
9 (z0 − 1)



 � 0























.

Applying the inverse perspective transformation, we get an SDP representation for S






















(x1, x2) :

∃ y2, y3, y4, z0, z1, 1 ≥ − 1
3y2 −

7
9x1 +

16
9 z0,

[

x1 − 3y2 x2 − 3y3
x2 − 3y3 y2 − 3y4

]

� 0,




x1 x2 y2
x2 y2 y3
y2 y3 y4



 � 0,





z0 z1
1
3 (z0 − x1)

z1
1
3 (z0 − x1)

1
3 (z1 − x2)

1
3 (z0 − x1)

1
3 (z1 − x2) − 1

3y2 +
1
9 (z0 − x1)



 � 0























.

Also interestingly but not surprisingly, the plot of the above also coincides with the shaded area in Figure 2(c).

Now let us conclude this subsection with an example such that Theorem 4.4 can be applied to get an
SDP representation for SD(f) while Theorem 4.2 can not.

Example 4.6. Consider the convex set S = {(x1, x2) ∈ R2 : x1(x
2
1 + x2

2)− x4
1 − x2

1x
2
2 − x4

2 ≥ 0}. The origin
is a singular point on the boundary ∂S which is a quartic bean curve. The picture of this convex set is
the shaded area bounded by the thick bean curve in Figure 3. After the perspective transformation, we get

S̃ =
{

(x̃1, x̃2) ∈ R
2 : x̃1 ≥ f(x̃2) := x̃2

2 +
1

1+x̃2
2

}

. f(x̃2) does not have structures required by Theorem 4.2.

Obviously D′ = (−∞,∞). We can check that f(x̃2) is convex over (−∞,∞), so its epigraph epi(f) =

R
(−∞,∞)
qmod (x̃1 − f) which can be represented as







(x̃1, x̃2) : ∃ y2, z0, z1, x̃1 ≥ y2 + z0,





z0 z1 1− z0
z1 1− z0 x̃2 − z1

1− z0 x̃2 − z1 y2 − 1 + z0



 � 0







.
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A direct SDP representation of S can be obtained by applying the inverse perspective transformation






(x1, x2) : ∃ y2, z0, z1, 1 ≥ y2 + z0,





z0 z1 x1 − z0
z1 x1 − z0 x2 − z1

x1 − z0 x2 − z1 y2 − x1 + z0



 � 0







.

In the above, y2 + z0 can be placed by one parameter. The plot of the above coincides with the shaded area
in Figure 3.

4.3. General case

For the general case, we have the following result by applying Theorem 3.4.

Theorem 4.7. Assume D̃ and SD̃(f̃) are both convex and have nonempty interior, and dim({x̃1 = 0} ∩

∂SD̃(f̃)) < n− 1.

(i) If f̃(x̃) and every g̃i(x̃) are q-module concave over D̃ with respect to x̃d−b
1 , then SD̃(f̃) = RD̃

qmod(f̃).

(ii) If f̃(x̃) and every g̃i(x̃) are preordering concave over D̃ with respect to x̃d−b
1 , then SD̃(f̃) = RD̃

pre(f̃).

After one perspective transformation p, the singular point in SD(f) is mapped to one point at infinity of
SD̃(f̃), i.e., SD̃(f̃) itself does not have a point which is the image p(0). And the mapping p is smooth when
x1 > 0. At any point x ∈ SD(f) with x1 > 0, the mapping p will preserve the singularity or nonsingularity
at x. In this sense, the perspective transformation p will remove one or more singular points. Of course, the
new convex set SD̃(f̃) might have singularity somewhere else. In this case, we can apply some coordinate
transformation to shift one singular point to the origin and then apply the perspective transformation again.
So a sequence of perspective transformations might be applied. If there are finitely many singular points on
the boundary, a finite number of perspective transformations can be applied to remove all the singularities.
However, this approach might not work if there are infinitely many singular points, i.e., the singular locus is
positively dimensional. For instance, the convex set

{x ∈ R
3 : (1− (x1 − 1)2 − x2

2)
3 − x4

3 ≥ 0},

has a singular locus of dimension one. In this case, a finite number of perspective transformations is usually
not able to remove all the singularies.
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5 Some discussions

We conclude this paper with some discussions and open questions.

More general convex sets It is very natural to consider general convex sets of the form

SD(f1, · · · , fk) = {x ∈ D : f1(x) ≥ 0, · · · , fk(x) ≥ 0},

where f1(x), . . . , fk(x) are given polynomials or rational functions concave over the convex domain D = {x ∈
Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} defined by polynomials g1(x), · · · , gm(x). Note that

SD(f1, · · · , fk) = SD(f1) ∩ · · · ∩ SD(fk).

So it suffices to consider each individual SD(fi) separately.
One interesting but unaddressed case is that the defining polynomials fi are concave in some neighborhood

of SD(f1, · · · , fk) but neither q-module nor prepordering concave over the domain D. In this situation, is
it always possible to find another domain D′ ⊃ SD(f1, · · · , fk) such that the fi is q-module or prepordering
concave over D′ with respect to some other (p′, q′)? Or is it always possible to find a different set of defining
polynomials for D = {x ∈ Rn : ĝ1(x) ≥ 0, · · · , ĝm′(x) ≥ 0} such that fi is q-module or prepordering concave
over D using new defining polynomials with respect to some different (p̂, q̂)? This is an interesting future
research topic.

The separability in Positivestellensatz The rational function f(x) is concave over D if and only if

f(u) +∇f(u)T (x− u)− f(x) ≥ 0, ∀x, u ∈ D.

By Positivestellensatz of Stengle [20], the above is true if and only if

η(x, u) · fden(x)f
2
den(u) · (f(u) +∇f(u)T (x− u)− f(x)) =

∑

ν∈{0,1}m

gν11 (x) · · · gνmm (x)





∑

µ∈{0,1}m

gµ1

1 (u) · · · gµm
m (u)σν,µ(x, u)





for some sos polynomials η(x, u), σν,µ(x, u). Here fden is the denominator of f(x) which is nonnegative over
D. When η(x, u) = η1(x)η2(u) is separable, we can choose p(x) = η1(x)fden(x) and q = η2(u)f

2
den(u), and

then get an SDP representation for SD(f) by following the approach in Section 3. However, in general case,
is it always possible to find a factor η(x, u) that is separable? Or what conditions make the factor η(x, u) to
be separable? This is an interesting future research topic.

Resolution of singularities In algebraic geometry [5], a well known result is that any singular algebraic
variety (over a ground field with characteristic zero) is birational to a nonsingular algebraic variety. But
the convexity might not be preserved by this birational transformation. Given a convex semialgebraic set
in R

n with singular boundary, is it is birational to a convex semialgebraic set with nonsingular boundary?
Or is every convex semialgebraic set in Rn equal to the projection of some higher dimensional convex
semialgebraic set with nonsingular boundary? To the best knowledge of the author, all such questions are
open. An interesting future work is to discuss how to remove the singular locus of convex semilagebraic sets
while preserving the convexity.

Acknowledgement The author would like to thank Bill Helton for fruitful discussions.
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