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Abstract One of the most efficient interior-point methods for somesés of primal
block-angular problems solves the normal equations by eéamation of Cholesky
factorizations and preconditioned conjugate gradientré&spectively, the block and
linking constraints. Its efficiency depends on the specadius—in|[0, 1)— of a cer-
tain matrix in the definition of the preconditioner. Spettealius close to 1 degrade
the performance of the approach. The purpose of this workad#old. First, to show
that a separable quadratic regularization term in the tilsggeceduces the spectral
radius, significantly improving the overall performancesome classes of instances.
Second, to consider a regularization term which decreaghbshe barrier function,
thus with no need for an extra parameter. Computationalresqee with some pri-
mal block-angular problems confirms the efficiency of theutadgzed approach. In
particular, for some difficult problems, the solution tirseéduced by a factor of two
to ten by the regularization term, outperforming statehaf-art commercial solvers.

Keywords interior-point methods primal block-angular problemsmulticommod-
ity network flows- preconditioned conjugate gradientgularizations large-scale
computational optimization
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1 Introduction

Many real-world problems exhibit a primal-block angulausture. Among them we
find multicommodity network flow problems, extensively usethe linear program-
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Table 1 CPU time ratio CPLEX/IPM for some linear and quadratic multicordityoinstances (from12])

Instance n m LPratio QP ratio
PDS1 4167 1450 0.3 1.2
PDS10 53526 16192 15 2.9
M128-64-12 75804 8988 4.2 8.6
M128-128-12 155044 17188 9.7 7.5

Table 2 Results for some quadratic multicommodity instances from &ttatl data protection problem
(from [13])

CPLEX IPM
Instance n m it. CPU' it PCG CPU
CTA-100-50-100 500000 20000 8 885 9 1.6 6
CTA-100-100-25 250000 15000 8 179 11 2.4 5
CTA-100-100-50 500000 20000 8 866 9 1.9 8
CTA-100-100-100 1000000 30000 * 9 1.6 16

* Not enough memory
T CPU times on a laptop with a 1.8GHz Pentium Mobile and 512 MB RAM

ming literature. There have been many attempts to develepiajzed implemen-
tations of linear or network optimization solvers for mattmmodity problems1[5,
27]. Over the years the approach &t based on an interior-point method has proved
to be very efficient. This approach was recently applied heoprimal block-angular
problems 14]. It solved normal equations by a sensible combination obl€sky
factorizations for the block constraints and precond#boonjugate gradient (PCG)
iterations for the linking constraints (the procedure Wil outlined in Sectior2).
This was recognized as the most efficient interior-pointrapgh for some classes
of multicommodity flows 8]. For some linear multicommodity flow problems it is
known to outperform simplex implementatiorisl]. For separable convex quadratic
multicommodity flows this approach is far more efficient thygmeral interior-point
solvers [L2]. Although this specialized procedure makes use of the RG&signif-
icantly different from other interior-point algorithms$xed on PCG which solve the
full set of equations of either the augmented syst&jrof normal equations2g],
instead of only those associated to linking constrainis.dtso remarkably different,
and for some instances more efficient, than systems basedrttioped Cholesky
factorizations 20]. The purpose of the specialized procedure is to elimirfstebm-
plicating linking constraints, making the problem blockarble rather than solving
the full (normal equations) system using an iterative solve

This work was motivated by the much better behaviour of tleeghzed interior-
point algorithm for separable quadratic than for lineatanses. This is illustrated in
Tables1-2, and Figurel. Tablel reports the ratio between the barrier CPLEX algo-
rithm and the specialized interior-point approach (nanfd)lfor some well-known
multicommodity instances (i.e., some P &nd Mnetgen ]] instances). Both the
original linear instances and quadratic variants of themewensidered in the study
[12]. Columnsn andm report the number of variables and constraints. From this ta
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Fig. 1 Number of interior-point and PCG iterations for some Mnetgebjems

ble we conclude that in most cases (but for M128-128-12) #réopmance of IPM
improves for quadratic problems. This is also confirmed blld&, which shows
results in the solution of a statistical data protectionbfgm in three-dimensional
tables; this problem is modeled as quadratic multicommyofititvs with equality
linking constraints 13]. Columnsn andm are as before, column “it.” provides the
number of interior-point iterations, and columRCG” provides the average number
of PCG iterations required by the specialized approach et aderior-point itera-
tion. Such good results (e.g., solving a one million vaestand 30000 constraints
guadratic multicommodity flows problem in 16 seconds —on solawvith a 1.8GHz
Pentium) have not been observed for linear problems. Athpin general, interior-
point methods behave better for separable quadratic thalintar problems, the
guadratic objective clearly improves the preconditioer. fThis is observed in Fig-
urel (from [12]), which plots for some linear and quadratic Mnetgen insésnthe
number of interior-point iterations (left figure) and oMeRCG iterations (right fig-
ure). The quadratic term decreases both, but the reducioruch more significant
for PCG iterations: between one and two orders of magnitude.

The main purpose of this work is thus to reproduce the goodwetr of the
specialized interior-point algorithm for quadratic prefis in linear ones by adding
a separable quadratic regularization term to the objediete that the focus is re-
stricted to the separable convex quadratic case. It willtmsva that the regulariza-
tion term effectively decreases the spectral radiug@jd)) of a certain matrix in
the definition of the preconditioner (up to now only empitiesults were available).
This is the most instrumental factor for the performancéhefdpecialized approach.
A general result for any primal block-angular problem wil presented. A second
goal is to consider a regularization embedded in the bdtretion, which decreases
with the barrier parameter (unlike other approaches bdsehstance, on proximal
terms). This will allow us to show that, for bounded probleths resulting barrier is
self-concordant, preserving some of the good propertiggtefior-point algorithms.
The computational results show the effectiveness of theoaigh. For some difficult
problems in the literature (for which the specialized apptowas already known to
be more efficient than both simplex and interior-point vatsaof state-of-the art com-
mercial solvers such as CPLEX), the regularized varianiaed the solution time by
a factor of two to ten.



Regularization techniques for interior-point methodsenvaliready considered in
the seminal book of Fiacco and McCormick7]. They suggested to slack the con-
straints by a factor that depended on the barrier paramdteah vanished as optimal-
ity was approached. Other regularization approaches aedban proximal points.
The proximal point algorithm, developed in a general contérinimizing a convex
function, added a strong convex quadratic term to the adlgetinction:

: &
X =minf () + 5 X — X ||%.

In this form the proximal point algorithm has the same ditfiguhan the original
problem. Rockafellar48] showed that the requirement for exact minimization at
each iteration of the proximal point algorithm can be rethx®@etiono B0] used this
proximal term in an interior-point approach for linear pragnming to get a better
conditioned Newton system.

Several regularization approaches in interior-point atgms considered the aug-
mented system form of Newton equations. This indefiniteesydiecomes quasidefi-
nite and strongly factorizable with the regularizatiommgB1]. Gondzio and Altman
[2] considered the following regularization for the augmerggstem of an infeasible
primal-dual path-following interior-point algorithm:

—-DAT n —-Rp, O

A O 0 Ry’
where diagonal positive semidefinite matriégsandRy were updated dynamically.
They could be interpreted as adding proximal terms to thegrand dual objectives,

respectively. This approach was in practice more flexikda the one of Saunders and
Tomlin [29], which considered the regularized problem

min c"x+ 3 [lyx|[*+ 2 || p||? (1)
s.to Ax+dp=Db, x>0

with fixed dandy parameters, giving rise to the regularized augmentedsystatrix

—(D+y?In) AT
A 2l |”

The main differences of our approach with respect to the almmes are: (1) Al-
though a proximal term could have been used, we considergliarization term in
the barrier function, which vanishes with the barrier pagan (2) Our concern is not
to improve the numerical stability of Cholesky factoripais, but the quality of the
preconditioner of the combined Cholesky-PCG approach fiznad block-angular
problems. As it will be shown in the computational resulke humber of PCG it-
erations is significantly reduced by the regularizatiommtén most cases. (3) Our
approach solves the normal equations instead of the augohegstem. The recent
interior-point approach of4] for nonnegative least-squares problems also consid-
ers regularizations for improving the quality of a precaiodier, but, unlike ours, it
solves the augmented system instead of normal equations.



Regularizations based on proximal terms have also beeredpplthe proximal
analytic center cutting plane method (proximal-ACCPM) rimulticommodity flows
[3]. However, unlike our approach, the proximal term did nopiove the perfor-
mance of proximal-ACCPM, but just simplified the tuning of p@eters with respect
to ACCPM. In addition, our approach is not restricted to molthmodity flows, but
it can deal with more general primal block-angular problefen for multicom-
modity flow problems, it can efficiently solve instances wh€r) demands for com-
modities are not restricted to a single origin and a singktidation (i.e., ACCPM
subproblems are no longer shortest-path ones); and (2jabgoin of active linking
constraints is large (e.g., as in instances of Tablehere linking constraints were all
equalities).

This paper is organized as follows. Secti®moutlines the specialized interior-
point approach for primal block-angular problems. SecBoemalyzes the spectral
properties of the preconditioner when a quadratic termdeddo the objective func-
tion. Sectiord introduces and studies the main features of the quadratitargzation
considered, providing computational results for genénalr problems. Finally, Sec-
tion 5 reports computational results for the solution of a set ohal block-angular
problems, showing the benefits of the regularization terrembombined with an
iterative solver.

2 Outline of the interior-point algorithm for primal block- angular problems

The primal block-angular formulation dealt with by the aigfam is

k

min Z)(ciTxi +XTQX)

N1 xt bt
. N> X2 b2
subject to ' _ _ (2)
Nk Xk bk
Ly Lo ... Ll | [ xO (o
0<x<u i=0,....k

MatricesN; € R™*™ andL; € R"™",i=1,... k, respectively define the block-diagonal
and linking constraints being the number of blocks. Vectoxse R™,i = 1,... Kk,

are the variables for each block® € R' are the slacks of the linking constraints.
b e R™,i =1,...,k is the right-hand-side vector for each block of constsint
whereash® € R' is for the linking constraints. The upper bounds for eachugrof
variables are defined hy,i = 0,...,k. This formulation considers the general form
of linking constraint$® — u® < ¥, Lix < b°. If needed, equality constraints may be
defined with this formulation by imposing (close to) zero eppounds on the slacks.
As it will be shown in Sectior8, slacks improve the performance of the specialized
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approach, as in the approach €], see (). ¢ € R" andQ; e R"*" i =1,... k, de-
fine the linear and quadratic costs for each group of varsable also consider linear
and quadratic cost® € R' andQp € R'*! for the slacks. We restrict our considera-
tions to the separable case whé€}ei = 0,...,k, are diagonal positive semidefinite
matrices.

Problem @) can be written as

min c"x+ 3xTQx
Ax=b )
u>x>0

wherec,x,u € R", Ae R™" Q € R™" andb € R™ Replacing inequalities in3j
by a logarithmic barrier with parametgr > 0, the KKT conditions for the barrier
problem become3?2):

AXx = b,
ATy —Qx+z—w=c,
XZe= pe, 4)
(U—-X)We= pe,

(zzw) >0 u>x>0;

ec R"is a vector of 1's, matriceX,Z,U,W € R"™" are diagonal matrices made up
of vectorsx, z,u,w, andS (to be used later) is defined &= U — X. The first two
sets of equations offf impose, respectively, primal and dual feasibility; thst lavo
impose complementarity.

The normal equations for the Newton directi@hx, Ay, Az) of (4) reduce to (see
[14] for detalls):

(AOATAy = g (5)
0 =(Q+U-X)"'W+Xx'2)™, (6)
for some right-hand-sidg. For linear (i.e.Q = 0) or separable quadratic problems

© is a positive diagonal matrix and can be easily computedldiiug the structure
of Aand@ in (2) the matrix of §) can be recast as

[N OINT NiOiL] ]
AGAT — NGNS NGkl
7
| LiIGIN] ... Lk&N] |Go+ 5K LioL] |
[BC
~|CTD)”

Be R™™M (M=K m),CecR™! andD ¢ R'*! being the blocks oAOAT, and@;,
i =0,...,k, the submatrices @ associated with the+ 1 groups of variables ir2j,
.0 =(Q+§ W+X1z)



Appropriately partitioningg andAy in (5), the normal equations can be written

25][82-[2)

By eliminatingAy; from the first group of equations a8), we obtain
(D—-C'B™'C)Ayz = (g2~ C"B 'q1) ©)
BAy1 = (g1 —CAy). (10)

System L0) is solved a Cholesky factorization for each diagonal bisigk NiT,i =
1...k, of B. The system with matri® — CTB~1C, the Schur complement o8} is
solved by a PCG. The dimension of this systerh iwhich is the number of linking
constraints. In10] it was proved that, under some conditions, which are gueeah
in our setting, the inverse ¢D — CTB~1C) can be computed as

(b—-C™B ')t = (ZO(D‘l(CTB‘1C))i> DL (11)
=

The preconditioneM 1, an approximation ofD — CTB~*C)~1, is thus obtained by

truncating the infinite power serietl) at some terni. The more the terms included,
the better the preconditioner will be, at the expense okiasing the execution time
of each PCG iteration. However, in genettak= 0 or h = 1 are reasonable choices,
which in practice yield

M-1=D"1 if h=0,
M~ =(1+D}C™BIC))Dtifh=1

This preconditioner, initially developed for multicommtydflows [10] can be ap-
plied to any primal block-angular problerh4].

The effectiveness of the preconditioner depends on thdrspeadius of matrix
D~-1(CTB~1C), which is always in0,1) [10, Theorem 1]. The farther away from 1
is the spectral radius @~*(CTBC) the better is the quality of the approximation
of (11) obtained by truncation with = 0 orh = 1. Although the particular behaviour
of the spectral radius value is problem dependent, in gériecames closer to 1 as
we approach the optimal solution, because of the ill-comaiihg of the® matrix. As
stated in Sectiod, in practice it was observed that when a quadratic term isgmte
the spectral radius tends to be smaller than that obtainggkisimplified linear for-
mulation obtained by removing this quadratic objectiventeand the preconditioner
become more efficient. This behaviour is explained in nectice.

3 Quadratic terms improve the preconditioner ...

The general cas€) i.e.,N; € R™*" andL; e R"" i =1,... k is first considered.
Next result provides a bound for the spectral radiuBot(C"B~1C) for any primal
block-angular problem, either with linear or separabledyatic objective function.
This result will be specialized in Subsecti8ri for a particularly important class of
problems.



Theorem 1 Let A be the constraint matrix of problei2)(with full row rank matrices
Ni € RM*Ni j =1, ... k, and at least one full row rank matrix £ R'*", i=1,... k.
Let© be the symmetric diagonal matrix defined @, @nd Be R™™ (M= X ; m),
C e R™! and De R'*! the submatrices of ®AT defined in 7). Then, the spectral
radiusp of D-1(CTB~1C) is bounded by

0<p < rrlaxl} +
e{1,.., uj
() e

where u is the eigenvector (or one of the eigenvectors)dfO" B~1C) for p; Vi i =
1,....,I,andV=[V;...V|], are respectively the eigenvalues and matrix of columnwise
eigenvectors ofz}‘:l LiGLT; v=VTu; and, abusing of notation, we assume that for
Vi =0, (Uj/V})? = +oo.

<1, (12)

Proof Eigenvaluer of D~1(CTB~!C) satisfies(C"B~1C)u = A Du for some eigen-
vectoru. From the definition oB,C,D in (7) we have

K k
LoaNT (NaNT) 'NaL Ju=2 @+ LiG).LiT> u,

)

(1-2) (eo+_iu@.L?> u= <eo+iue.L?> u— (iLiaNF (Nie.NF)‘lNie.L?> u,
Y

1/2

k k
(1— A" <90+ ZL@LI) u=u"Gpu+ ZuTLie,“z (l —0°NT (NielNiT)_lNi@,l/z) o’LTu.
i= i=

(13)
PR=1— il/z N (Ni@.NiT)*l N; @il/z, i=1,...,k is a projection operator onto the null

space of\; Oil/z, i.e.,B = Pi2 andw’ Rw > 0 for any vectom. Definingwi = Oil/zLiTu
in (13), we have

k
uT@u+ Yy w' Rw
0 i; I UT@0U

1-A= >

K = K
u’ <OO+ ZL@.LF) u ueu+u’ <ZLi@|LiT> u

k
u’ <_ZLie.LiT> u
A< = > .
u"eou+u’ (ZL@,L?) u
i=

and therefore

(14)
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Fig. 2 Spectral radius and boundig) for first iterations of problem PDS1

Sincezik:1 LiO.LiT eR™ s symmetric and positive definite (because at leastlgne
was assumed to be full row rank), their eigenvalygswith corresponding eigen-
vectorsVj, j = 1,...,1, are real and positive. Defining = diag(y1,..., %), V =
Vi M, v=VTu, Z={je{l,... 1} :vj£0}, £°={1,...,1}\ &, and using
sk LOL =VIVT, (14) can be recast as

. S W S wv
< v' v je¥ < je¥
= UTOuUVT IV (U5 OoJ Y ) UZQOJ. = U\ 2 :
&3 () o)
€Y J
(15)
Denotinga? = (( ) @oj+yj)v for j € .#, in (15), we obtain
Yi 2 Yi 2
N2 aj 5222( N2 aj
= (5) @ty U (@) ey v
As J 2 = = = a2 J
a a Ie Y
je¥ . je¥ : (Vi) @0'(:—6))/]

If, abusing of notation, we assume fgr=0, (u; /v;)? +ooandthu3/,/(< ) Oo,+y,)

0, sinceA > 0 this particularj can not provide the maximum and thel) is equiv-
alentto (L2). O

For instance, Figur2 shows the evolution of the spectral radiugof*(C"B~1C) and
the bound 12) for the first 11 interior-point iterations of a regularizeersion (see
Section4) of problem PDS1 of Tablé. After this iteration, both the spectral radius
and the bound approach 1, significantly increasing the nuwfieCG iterations per
interior-point iteration.
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Table 3 Results for a large (10 million variables, 210000 constgjistatistical data protection problem
instance, with quadratic objective functiémT Qx, for differentQ = Sl

CPLEX-11 IPM
Instance B it. CPU itt. PCG CPU f*
CTA-100-100-1000 0.01 7 29939 10 36 66 -2.6715e+08
CTA-100-100-1000 0.1 7 31328 9 40 61 -2.6715e+09
CTA-100-100-1000 1 8 33367 8 38 56 -2.6715e+10
CTA-100-100-1000 10 9 35220 7 37 51 -2.6715e+11

Using Theoreni we next show that the spectral radius tends to 0 wQgn =
1,...,k, (i.e., the quadratic costs of variables, excluding slatdsds to infinity.

Proposition 1 Let assume the hypotheses of Theoteffhen
lim p=0. a7)

Qj—+0
i=1,..k
Proof At any interior-point iteration, there exists a constanvhere O< £ < 1, such
thate <5 <1l/e, e <w <1l/g, e<x <1l/eande <z < 1/¢ [21]. Therefore,
from (6), for someS W, X andz, limg 4. & = 0. Then, limy, = ¥ ; LiGLT =0
i= k

1.

and its eigenvalues satisfy lign-+- y; =0, j = 1,...,I. From (15), whereA is an
eigenvalue oD~ 1(CTB~1C), II':Il;kdiag(yl,...,w), and considering unit vectors
andvj, j=1,...,1, (and thuss =V Tuis also a unit vector), we have
. . v v
?Z!Igf’;/\ = f;illmoko uTGu+vinv
SinceA € [0,1), (17) holds. |
Proposition1 means that adding large enou@h, i = 1,...,k, to a linear prob-

lem, it is possible to reduce (actually to approach 0) thetspkradius of matrix
D~1(CTB~1C), and thus to improve the quality of the preconditioner. Hoakx-
plains the good behaviour of the specialized interior-paiethod in instances of
Table 2: since that is a quadratic problem, without linear term,nairg%xTQx=
arg min%xT(BQ)x for any positive3 € R; therefore, the spectral radius is effec-
tively reduced, and PCG is able to sol@ (n very few iterations, independently
of the scaling factof3. This is shown in Tabl&, which reports results for instance
CTA-100-100-1000, using four different scaling factfrandQ = | (see [L3,14] for

a description of the underlying statistical three-dimenal tabular data protection
problem). The resulting primal block-angular problem ha®@0,000 variables, and
210,000 constraints. This instance has not been attemptiedebin the literature.
Column “it.” provides the number of interior-point iteratis, and column “PCG”
provides the overall number of PCG iterations required leysthecialized approach.
Column “CPU” gives the CPU time in seconds, on a Dell PoweeE6850 server
with four dual core AMD Opteron 8222 3.0 GHZ processors (otthexploitation
of parallelism capabilities) and 64 GB of RAM. Columh*” provides the optimal
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objectives found, which are consistent with the scalingdiadhe tolerance for the
PCG solution (i.e., solution 0B}) was set to 102 for all the interior-point iterations.
From Table3 we see that the number of PCG iterations is independent ¢3 flae-
tor. The specialized interior-point approach was not onlycinmore efficient than
CPLEX-11 in terms of CPU time, but also in memory requireraeittneeded 1.2
GB of RAM, while CPLEX-11 required 15 GB. Both codes succetgfsolved the
problem, with relative differences in the objective fuoatiof about 1011,

For linear problems, however, the addition of quadratimgewith largeQ;, i =
1,...,k, is meaningless, and only small regularizations are usguaatice P,29].
Propositior2 below shows that, under some conditions, the boa&ygn the spectral
radius for a linear problem is reduced by adding (even smalidratic costg), | =
1,...,k. Since both the bound and the spectral radius approach & iashiterations
of the interior-point method, a reduction in the bound alssans a reduction in the
spectral radius. We first prove the auxiliary Lemfhdt states that the eigenvalues
of Z!‘:l LioL;T are reduced if we add a quadratic term w@hdiagonal and positive
definite to a linear cost function.

Lemmal Lety; andyj, j=1,...,1, be the j-th largest eigenvalues szl LoLT
and z!;l LiGiL;T for, respectively, a linear and a quadratic problem (i.e.=@® in
O, and Q - 0and diagonal, i=1,...,k, in©, O defined as in§)). Then,y; > y;.

Proof SinceQ; > 0 is diagonal we have by6f and (/) thaté. = @ + E for all
i=1,...,k whereE; is diagonal and

E=006Q=(Q+S™W+X'Z) (g™W+X'Z)'Q ~0.
Indeed, note that
E=06Q=06Q+6'1-6Y)=0b601-6H=4-0a.
Therefore

k k k
zlLie.LiT = ZL@.LH ZLiEiLiT. (18)
i= i= i=

The Courant-Fischer minimax theorem (see, for instari@ Theorem 8.1.2]) states
that for a symmetric matri¥ its j-th largest eigenvalu; is equal to

-
Aj = max min y :\/Iy. (19)
dim(§)=j 0O#yes Y'Y

. . . " . T(z}(::LLiéiLiT)y
Since the three matrices ib&) are positive definite, we have that, fory@lly—yﬁ >
T(<k 1.01.T
Mi:;'{f'l'i')y. Therefore, by19), y; > ;. O
The strong assumptiam /V; < u;/v; of next proposition depends on the sensitivity
of u (the eigenvector ob~*(CTB~1C) for p) andVj, j = 1,...,1, (eigenvectors of
sk, LieLT) against small changes i@ induced byQ > 0,i = 1,...,k. We are
aware that in the general case such an assumption cannotitiedvie practice, but
as we will show later in Subsectidhl, for some important class of problems such
an inequality does hold.
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Fig. 3 Evolution of spectral radius for first iterations of a quairaersion of problem PDS1 using differ-
entQ matrices

Proposition 2 Let assume the hypotheses of Theoteand consider a linear prob-
lem and a quadratic one obtained by adding (likely small)dpatic costs Q> 0,
i=1,...,k. Assumdi;/V; < uj/vj, j =1,...,l, where “hatted” and “non-hatted”
terms refer, respectively, to the linear and quadratic peohs, and u and v are de-
fined as in Theorerh. Then bound¥?2) is smaller for the quadratic than for the linear
problem.

Proof By (12), the spectral radiup of D~1(CTB~1C) after addition of quadratic
costsQ; = 0 is bounded by

y; being thej-th eigenvalue oizikzl LiGL;T. Denoting byy; the j-th eigenvalue of
Zik:1 LiGL;" corresponding to the linear problem, we have by Lemmp=y; —&j,
for somee; > 0. Sinceuj/Vj < uj/vj, then

ZVj > ZVJ 2VJ—SJ
(%) ei+i () e+i () eni+ii-s

>

N2
forall j=1,...,1, where last inequality holds becau(séjl) Opjegj > 0. O

It is noteworthy that Propositiod states that (i) the bound on the spectral radius
is reduced, but not the spectral radius; (ii) and this isedd by adding quadratic
costsQ;, i = 1,....k, to block variables, but not slacks co$ps. When the spec-
tral radius is close to 1, a reduction in the bound means actietuof the spec-
tral radius (i.e., the preconditioner is improved). But whee spectral radius is
far from 1 it may not be reduced for all diagor@l> 0, and anyA, X,z s,w. For
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instance, for a problem with no upper bounds (i.e., withsnand w variables),

k=1,L;1=15N; = B i g é 352} ,Xo=1[4.65 0704 Q7206 35957 38952T,X1:

[1.8289 78537 02577 4074 90643T, z1=%=[1111 ]1T, Q=diag(]1.108
0.0111 1747 Q0122 00182) the spectral radius @~*(C"B~1C) is 0.8484 when
Q1 =Qp =0, whereas fof; = Qy = Qwe obtain 08763, and foQ; = QandQy =0

we get 08632. However, the difficult and interesting case is whersfiectral radius
approaches 1, where just a small reduction can mean theseff@dlution by PCG.
In practice, even when we are far from 1, a quadratic term redyae the spectral
radius, as observed in FiguBe It plots the evolution of the spectral radius for the
first 11 iterations of a quadratic version of problem PDS1aifl&€1 using different

Q = dl matrices,0 € R and nonnegativeQ = 0 corresponds to the standard linear
PDS1 problem. It is shown that the spectral radius is redasédncreases.

3.1 The case of weighted GUB constraints

Problems with weighted generalized upper bounds (GUB) graricular case of
the primal block-angular problen®) for Lj = Gj, G; € R™", i =1,...,k, being a

diagonal positive semidefinite matrix (note tmat=n=1,i =1,... , kbecausés; are
square matrices with the same number of rows). W&ge#a: | we have the standard
non-weighted GUB constraints. If in additid, for alli = 1,...,k, is the node-arc

incidence matrix of a graph, we obtain a multicommaodity flowlgem. However,
we consider in this Subsection thdtis anyR™ *" matrix.

If Li = Gj, theny ¥, LiGL is diagonal, and its eigenvalues aje= 5¥ ; G; Gﬁ ,
with eigenvector®; = gj, j=1,....n,i.e.,V = |. Thereforey = VTu = u, the ratio
uj/vj in Theoremlis 1 for all j = 1,...,n, and the boundl@) has the simple and

computable form:
k
Zieli Gj
i=
k

G+ Y @G
2,9

<1 (20)

In addition, the strong assumptien/V; < u;/v; of Proposition2 is satisfied, since
uj/vj = G;j/¥; = 1. Therefore bound2(Q) is effectively reduced by adding even a
small quadratic tern@; > 0,i = 1,...,k, to a linear problem. Note that if GUB con-
straints have to be imposed only for a subgétC {1,...,n} of the variables, we just
have to defingjj =0 forall j € ¢, and @0) remains valid.

It is noteworthy that if, in addition th; = G;, we havel\;, i = 1,... Kk, are square
nonsingular matrices, theg@(@) is not an upper bound, but it is actually the true spec-
tral radius. This is because, under the above assumptions,

(D*CTBI0)) = (@+ 5K, LiaL) " (Tk, LONT (NONT) *NaLT)
= (Go+3f4LiO) ) (g LioL’),
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-1
which is equal to a diagonal matrix whofé component is{@oj +5K.,0; Gﬁ ) (2};1@.,- Gizj ) .
Although this result is not of practical interest (congitanatrix is square, with a
unique feasible point), it shows how tight is the bound imaitlisituation.

4 ...then we add a quadratic regularization

Given the linear programming problem

min ¢"x
s.to Ax=Db (22)
0<x<u,

the associated primal logarithmic barrier problem is

min B(x, 1) £ c"x+ u <_'i|nXi - .iln(ui _Xi)> (22)

s.to Ax=b,

u being the barrier parametet,c,u € R", b € R™, andA € R™". In the interior
point context, regularizations based on proximal pointgeha@ready been used in
other approaches. They considered the alternative regediiunction:

Bp(X, 1) £ ¢C x+1(x X) " Qp(x— >6+u< lenx| Zln —x.), (23)

Qp being the identity matrix in30], and a diagonal positive definite matrix with
small entries—dynamically updated at each interior-pd@reition—in pJ; andxthe
current point obtained by the interior-point algorithm eféfore the definition of the
barrier function changes at each iteration according tatheent point, and it does
not fit the general theory of structural optimization forarnor-point methods 042,
23]. However, it is worth noting that, in practice, the proximpaint regularization of
[2] has an excellent behaviour.

Instead, we suggest the alternative regularization

Bo(x, 1) £ c"x+ pFg(x) (24)

Fo(x) = ;xTQX—ilnxi —'iln(ui =X, (25)

Q being a diagonal positive semidefinite matrix, @win fp = {x: 0 <x < u}. Some
properties oBg(x, u) are:

where

1. Barrier functionFg(x) is strictly convex in{x: 0 < x < u} (OFg(x) = QX—
X~le4 (U —X)"te, O%Fg(x) = Q+ X2+ (U —X)2 - 0).

2. Bo(x, 1) does not depend on the current point, unkiein (23).

3. The reduction to zero of the regularizatiQmmatrix is governed by, the stan-
dard barrier parameter &(x, 1) in (22).
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4. This regularized barrier function fits the classical iiiaiepoint approach of Fi-
acco and McCormickl[7] (see SubsectioA.1below).

5. Fo(x) is a self-concordant barrier ifx : 0 < x < u}, and then it fits the structural
optimization framework of22,23]. As it will be shown in Subsectiod.1, for
small enough regularizations, it is even possible to follbe/central path at high
speed.

Note that, using eitheB, Bp, or Bg only changes the dual feasibility of KKT
conditions 4), and matrix® defined in ). Dual feasibility becomes

Aly+z—w=c for B, (26)
ATy+z—w=c+Qp(Xx—X) for Bp, and (27)
ATy+z—w=c+ uQx for Bg. (28)

Evaluating at current poink(= x), (27) is equivalent to 26). (28) is also equivalent
to (26) whenpu tends to zero. Th® matrices are

0= (U=X)"'wXx"1z2)71 for B, (29)
0 =(Qp+ (U -X)"Wwx12)"1 for Bp, and (30)
O =(uQ+ (U —-X)"w4x-1z)71 for By. (31)

The main difference betweeB8@) and (1) is thatuQ tends to zero withu and there-
fore (31) approximatesZ9) better than30). The remaining linear algebra of interior-
point methods is the same for the three variants.

4.1 Self-concordancy dfg(X)

We first show that regularized barrigg(x) (defined in g5)) fits the classical interior-
point (or sequential unconstrained minimization) apphazfd=iacco and McCormick.
Rewriting 25) as

Fo(x) = _iBoi (9+Bu(x), Bo(x) = a0 —Inx, By (x)=—In(ui—x),

Bo (x) and By, (x) being the barrier for, respectivelgg (x) = x > 0 andg, (X) =
ui —% > 0, andg; > 0 being the diagonal terms ¢, we have that: (1) botBg (x)
andBy, (x) are continuous in, respectivelfx : go, (x) > 0} and{x: g (x) > 0}; and
(2), Bg (X) — +00 andBy; (X) — + when, respectivelygy, (X) — 0 andgy, () — O.
Then:

— The sequence of minima &q(x, 1) = c"x+ UFo(X) converges to the compact
set of minima of 21) [17, Theorem 8].

— Let assume barrief3y, (go,) andBy, (9y;) satisfy these additional two conditions:
(1) they are twice-differentiable functions of respedivgy, andgy; (2) if go, >0
andgy, > 0 then ()dBo, (do;) /o, < 0,9By, (9y;) /99y < O; (ii) 9B, (do;) /9, >
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0, 9?By;(9u /093 > 0; and (iii) 9?Bo, (9o, ) /g5, andd?By, (gy;)/dg3 are mono-
tonically decreasing functions of respectivgly andg,, . Then there exists an iso-
lated once-differentiable trajectory of miniméu) of Bo(x, 1) = c"x+ pFg(x)
converging tax*, solution of 1) [17, Theorem 12]. Conditions (i)-(iii) hold for
By (9y)- Conditions (ii)-(iii) also hold forBg, (go,): 92By, (goi)/ﬁg(zJi = 1/95i +

0 > 0 and it is a monotonically decreasing functionggf. Condition (i) means
0Bo, (o) /0o, = —1/9o, +Gido, <O, i.e.,q < 1/g5 = 1/x?. Sincex; < u, this
condition is satisfied fog; < 1/u?. As seen below, such a small regularization
term is also needed to guaranteg(x) is a self-concordant barrier with parame-
terv=n.

Making use of the structural optimization theory, as dématiin P2], it can be
seen thatqg(X) is a self-concordant barrier, and for small enough regzagions,
it has a small parameter. (We recall that self-concordamttfons guarantee the ef-
ficiency of Newton’s method, while self-concordant bagiethopefully with small
parameters—guarantee the efficiency of a path-followingrétyn [22].) For this
purpose, consider the linear problefi), and rewrite its barrieffg(x) as

Fo(x) = ini (xi), where Fg(x)= %qixiz —Inx —In(u; — %), (32)

g > 0 being the diagonal terms &). Since the sum of self-concordant functions
and self-concordant barriers is respectively a self-coertt function 2, Theorem
4.1.1] and a self-concordant barri&¥2[ Theorem 4.2.2] for the intersection of do-
mains, we consider a particullg (x;). By definition,Fq (x) : (0,uj)) — R is a self-
concordant barrier for its domain if: (1) it is a self-condant function, i.e., there
exists a constam?'lpqi such that

3/2
IR (%)h%) < M, (R (%)h?) /

for all x; of domain of/; andh € R; and (2), there exists a valug, called the
parameter of the barrier, such that

sup 2Fg (% )h—Fg (x)h* < v, (33)
heR

or equivalently,
R/ ()]~ (F (%)) < v (34)
for all x; of domain off;. We first show thaFg (x;) is self-concordant function.

Lemma 2 Fq (X ), defined in 82), is a self-concordant function in its doma{w; :
0< X <Ut.

Proof Let us partitionF; in three terms
Fo (%) = F1(x) + F2(%) + Fa(xi),

where 1
Fu(x) = S0, Fa(x) = —Inx, Fa(x) = —In(u —x).
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The domains of (X ), F2(x) andFs(x) are, respectivelyR, {x; : X, > 0} and{x; :

Xi < Ui}. It is known that the convex quadratic functi&f(x;) and the logarithmic
barriersF,(x;) and F3(x;) are self-concordant functions (see, e.@2]] with con-
stantsMr, = 0, Mg, = Mg, = 2. By [22, Theorem 4.1.1] we have that the sum of
self-concordant functions is self-concordant with constgual to the maximum of
the constants for all the functions. Therefog,(x;) is self-concordant function in
domF NndomRNndomFs = {x:0 <X < Uuj} andMFqi =max{0,2,2} = 2. O

Lemma3 showsFg (%) is a self-concordant barrier, and provides an upper bound
for its parameter. It makes use of the fact that the logaiithoarrier
Fi(%) = —Inx —In(u — ) (39)
for the set O< x < y; is self-concordant with parameter 1. This is easily seen by
noting that, from 84),
1 1
(F00)? _ Cxtas)?® w—x)2@ (2 —u)?
Froa) sty W—x)¢ (U—x)2+x (36)
= (26— )% — (U — %)% +x2) = 2% (% — Uj) < 0.
Lemma 3 Fq (X)) is a self-concordant barrier in its domaifx; : 0 < x; < u; }, with
parameten; < qiu? + 1.

Proof By (35), we haveF (%) = 30X+ Fi(X), Fg (%) = aix +F'(x) andFy/ (%) =
g +F”(x). Then, by 83) and (36),

max 2R (x)h— Fg (x)h? = max 2(gx; + F'(4))h— (c +F"(x))h*
< max (2gxh—qih?)+max (2F'h—F"(x)h?) < gx?+1<qu’+1.
heR heR
0

Next Lemma shows that it is possible to obtain a parameteFfdk;) smaller
than the one provided by Lemn3a

Lemma 4 The parameter of the self-concordant barrigy (& ) in its domain{x; :
O<xi<u}lis
vi=1 if quigl/uiz,

vi=qu? i i > 1/u. (37)

Proof From 34), it has to be proven that

(Gi% — &+ 525 )?
Ti ) — F// ; -1 F/. i 2: Xi Ui—X 38
(%) = [Fq )] (Fg (%)) Qi+%+<u:xi> (38)

is upper bounded by; for 0 < x; < u;. Consider first the case g < 1/u?. Since
~1<qgx?—1<0,then

2
2(0i% — £ + )2 X2 — 1+ —X)2 max{(qixfl)z, = }
TI(Xl)_Xi(qX Xi+ui_xi) —(qXI +Ui;;i) < Ezu X') -1

T 2(q o L 1 - —
X(a+ 5 + (Ui—Xi)Z) gixf + 1+ (Ui—x)2 gxt+1+ (Ui—x)2
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For the second casg, > 1/u?, defining

1
qi:a?m(zl, and X =pu, 0< B <1, (39)

the inequalityT; () < gju? is proven by noting that

2
af 1 1
(@% — 5 +5x)° (Ti By T rl—ﬁ))

) 1 1 T a 1 1
R T N v T o
(5 )
_ ptap
- 1 1
ety

At ht gL, (1-BPR
__(@@-pp+2p-1* _ .,
T a(l-_pPp2i2pz_2p+1 M TE
where for first inequality we used that> 1 and 0< 3 < 1. We will show that the
last inequality holds. Since the denominatdrl — 8)232 + 232 — 23 + 1 is positive
(becausex (1— B)?B? > 0 and the minimum of @2 — 23 + 1 is 1/2 at minimizer

B=1/2),

o drn) ap

(a(1-B)B+2B—-1)
a(1—B)2B2+2B2—28+1- ¢ (40)
is equivalent to

(a(1-P)B+2B-1?=0a*1-B)?f*+2a(1-B)B(2B~1)+(2B-1)* <
a(a(l-p)*p?+2B*~2B+1) = a*(1-B)*p*+a(2p*— 2B +1).

Simplifying the above inequality we obtain the equivalenéo
a(2B?~2p+1)~2a(1-B)B(2B 1)~ (2B~ 1)*=a(4B°-4B*+1) - (2 -1)* > 0.
Since 42 — 42 + 1 is positive for 0< B < 1, anda > 1,

a(4p®—4B°+1)— (2B - 1)* > 4% - 4% +1- (28 - 1)* = 4B(B~1)* =0,
and thus 40) holds. O

Figure4 plots (38) for u; = 1000, andy = 1/u?-0.9 (left figure) andy = 1/u? - 1000
(right figure). It can be observed how tight are bourig.(

By Lemma4 and Theorem 4.2.2 oRP], barrier Fo(X) is self-concordant in the
domain{x: 0 < x < u}, with parametev = ¥ ; v;. In view of Theorem 4.2.9 of
[22] the path-following algorithm terminates in a number ofdtilonsO(/vInl/e),
€ being the accuracy of the solution.gf< 1/ui2 foralli=1,...,n,thenv =n. This
is the same parameter of the standard (non-regularizedyitbmic barrier, which
is also the lowest possible value for any self-concordantdyg22, Lemma 4.3.1].
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Fig. 4 Plot of (38) for u = 1000, andy; = 1/u? - 0.9 (left figure) andy = 1/u? - 1000 (right figure)

Therefore, for small enouglp,i = 1,...,n, the regularized interior-point approach is
as efficient as the standard one in number of iterations. ©attrer hand, i > 1/u?

the method is no longer strongly polynomial, and it dependspper bounds, ac-
cording tov. However, in the tests performed, it has been observed libat s a
significant wide range of valuggthat preserves a small number of interior-point iter-
ations. This is also the usual behaviour of interior-polgbathms, which in practice
need no more than 100 iterations, far from the number predliby the theoreti-
cal complexityO(y/nIn1/¢). Next Subsection empirically shows that the number of
interior-point iterations significantly increases for ptdrge regularization terms.

A barrier similar toFg(x) was name@ugmented barriein [24]. For any positive
semidefiniteQ matrix, it was shown to be a self-concordant function, butanself-
concordant barrier when its domain is a cone (kez, 0). In our cas& is (positive
semidefinite) diagonal, and its domain is defined by box caimts 0< x < u. This
allowed us to prove thatg(x) is self-concordant barrier, though for very large reg-
ularizations it may increase the number of interior-pdietdtions. Note that, unless
the problem is unbounded, there always exists a (possitgg)a such that 6< x < u
are valid box constraints. According t87), a small complexity bound is only guar-
anteed ifg; < 1/u?, which for very largeu can result in a negligible regularization
term. However, as stated in next Subsection, it has beemwaus¢hat in practice
regularization terms significantly larger thapiu can be effectively used, without
increasing the number of interior-point iterations. Adliog to [24], it is even possi-
ble, at least theoretically, to trace the central path &dirspeed by using augmented
barriers for convex cones, though they don't fit the standsetior-point theory 23].

4.2 Implementation and computational results for lineabpgms

Although our purpose is to regularize the specialized iotgroint method for pri-
mal block-angular problems, we made a preliminary test w&iteneral algorithm
for linear problems. The primal regularized logarithmicriexr problemBg(x, i) of
(24) has been included in a home-made primal-dual path-foligvwdode for linear
programming. This code solves the normal equations usiag\-Peyton sparse
Cholesky package2p]. It also includes the second-order Merohtra’s heurisiiead
tion [32]. It is similar to the well-known PCx codel f].
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Table 4 Results for Netlib problems, for both regularized and nayutarized variants

Instance n m iter. IP iter. R-IP q *
Adlittle 138 56 15 14 4.98e-03 2.25e+05
Afiro 51 27 10 10 2.3e-05 -4.65E+02
Agg 615 488 30 29 8.4e-11  -3.60e+07
Bandm 472 305 21 20 4.5e-04 -1.59E+02
Beaconfd 295 173 13 13 1.7e-05 3.36E+04
Blend 114 74 15 14 3.4e-02 -3.08E+01
Bore3d 333 233 16 16 3.4e-06 1.37E+03
Brandy 303 182 24 20 6.6e-05 1.52E+03
Degen3 2604 1503 22 22 6.1e-05  -9.87e+02
E226 472 223 24 22 4.5e-02 -1.88E+01
Etamacro 734 400 28 27 4.8e-08 -7.56E+02
Fit2d 10524 25 24 24 4.5e-05 -6.85E+04
Growl5 645 300 19 19 2.7e-11  -1.07E+08
Kb2 68 43 19 19 1.0e-06 -1.75E+03
Maros-r7 9408 3136 18 18 1.0e-07 1.50E+06
Recipe 178 87 11 11 1.0e-03 -2.67E+02
Scl105 163 104 12 11 6.1e-05 -5.22E+01
Wood1lp 2595 244 24 20 0.3854 1.44E+00

Table 5 Number of iterations for different regularizations and amtes “Bore3d” and “Agg”

] 101 102 103 104 10° 10% 107 108 107 O
Bore3d 53 19 17 16 16 16 16 16 16 16
Agg >100 >100 >100 >100 >100 55 31 30 29 30

Heuristically, the regularizatio® matrix was computed & = gl, whereq € R
is

_ [ Sille |>
=0 ==+ ]. 41
f ( X @D

d > 0 is a adjustable scalar parameter afids the initial primal point. 41) guar-
antees that, fod = 1, both the linear and quadratic terms are of the same order of
magnitude ak®. We solved a subset of Netlib collection. Each problem wégeso
considering 13 differend, from 10 to 1012, Table4 shows the best execution of
the regularized variant. For each problem, the table reghea number of variables

(n) and constraintsf), the number of iterations performed by the standard algori
(“iter. IP") and the regularized variant (“iter. R-IP"), éhscalarq for the definition

of Q associated to the bedt and the optimal objective functiorf{() found by both
methods. Tuningy, the regularized variant was as fast (in number of iteraji@as

the standard algorithm. In general, the regularized ambrisasimilar to the standard
one, but it takes more iterations for significantly laggeThis is observed in Table

5 which reports the number of iterations for two particulastances and different

J values (cas® = 0 corresponds to the non-regularized method). A similaeexp
ment was performed for the multicommodity instance PDS labid1 (also of Table

6). It was solved using the simplest regularization t&re- dl, for differentd val-

ues. Ford € {0,1074,10°2,10°2,10 %, 1,10} the overall number of interior-point
iterations for solving the problem was about 40=£ 0 corresponds to the standard
non-regularized PDS1 linear problem). These values amg@réhan the theoretical
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value /u?, which for many variables was of 10. For § = 10? and & = 10° the
algorithm required about 50 and 60 interior-point iterasiprespectively; and more
than 120 iterations were needed = 10°. Therefore, only large regularizations
significantly increased the number of interior-point iteras.

The above results are consistent with Subsectidnsignificantly large regular-
izations increase the number of interior-point iteratidda the other hand, the reg-
ularization provides a better condition€matrix (31), and, most important, would
improve the preconditioner of the specialized approacloraiicg to Sectior8. As
observed in next section, in spite of this tradeoff betweemlmer of iterations and
time per iteration, in general, the regularization termriaves the overall solution
time for some primal block-angular problems.

5 Computational results for primal block-angular problems

Two primal block-angular problems have been consideredicommodity network
flows, and the minimum congestion (or maximum concurrent )flpvoblem [7].
They were solved with the specialized interior-point meitfar primal block-angular
problems updated with a regularized function. Both regeddions @3) and @4)
were implemented. For multicommodity flows we extended theeclPM of [L0],
mainly implemented in C, but for the Ng-Peyton Cholesky @aygkp5] for factor-
izations, which is coded in Fortran. For the minimum conigesproblem we ex-
tended the code PRBLOCK® of [14] for general primal-block angular problems.
PRBLOCKIP is implemented under the MATLAB environment, with Chddg$ac-
torizations through external precompiled routines of tlgePé¢yton Cholesky pack-
age. All runs were carried out on a SUN Fire V20Z server with 8D Opteron
2.46 GHZ processors (without exploiting parallelism caliiéds) and 8 GB of RAM.
Results are provided in next two subsections.

5.1 Multicommodity flow problems

Multicommodity flow problems match the primal block-angularmulation @) for
Li =1 andN; being a node-arc incidence matrix. Blocks are related tonsodities
in this problem.

We considered three kind of instances. The first one correlpto the PDS
ones P]. These problems arise from a logistic model for evacuagiatients from
a place of military conflict. Each instance depends on a pat@rh that denotes
the planning horizon under study (in number of days). The sizthe network in-
creases with, whereas the number of commodities is always 11. Problertasnauol
with this generator are denoted as RDEhe PDS instances can be retrieved from
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

The second type of instances was obtained with the Mnetgeargr [1]. It
can be retrieved from the above URL. These instances willdmotd as M-k-d,
wheren? is the number of nodeg, the number of commodities, antlis related to
the density of the network; the largetthe denser is the network. In those instances,
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Table 6 Characteristics of multicommodity instances

Instance k nl n’ n m fr
PDS1 11 126 372 4464 1758 2.908e10
PDS5 11 686 2325 27900 9871 2.805e10
PDS10 11 1399 4792 57504 20181 2.673e10
PDS15 11 2125 7756 93072 31131 2.518e10
PDS20 11 2857 10858 130296 42285 2.832e10
PDS25 11 3554 13580 162960 52674 2.262e10
PDS30 11 4223 16148 193776 62601 2.139e10
PDS40 11 5652 22059 264708 84231 1.8886€e10
PDS50 11 7031 27668 332036 105009 1.6603el0
PDS60 11 8423 33388 400656 126041 1.4265e10
PDS70 11 9750 38396 460752 145646 1.2241el0
PDS80 11 10989 42472 509664 163351 1.1469el0
PDS90 11 12186 46161 553932 180207 1.1087el0
M32-32-12 32 32 486 16038 1510 8.056e5
M64-64-12 64 64 511 33215 4607 4.624e6

M128-64-12 64 128 1171 76115 9363 1.927e7

M128-128-12 128 128 1204 155316 17588 4.014e7
M256-256-12 256 256 2204 566428 67740 3.979e8
M512-128-12 128 512 4786 617394 70322 8.280e8
M512-256-12 256 512 4810 1236170 135882 1.649e9
M512-512-12 512 512 4786 2455218 266930 3.488e9
M768-128-6 128 768 2317 298893 100621 2.118e9
M768-256-6 256 768 2370 609090 198978 4.249e9

tripartl 16 192 2096 35632 5168 6.348e7
tripart2 16 768 8432 143344 20720 3.870e8
tripart3 20 1200 16380 343980 40380 2.694e8
tripart4 35 1050 24815 893340 61565 1.775e7
gridgenl 320 1025 3072 986112 331072 622e12

80% of the arcs have mutual capacities (potential actiid@rign constraints), 90%
have individual capacities (upper bounds per commodityl, 20% of the arcs have
a high cost18].

The last set of instances was obtained with the Tripartiteeggor and with a
variation for multicommodity flows of the Gridgen generafbiney are known to be
difficult linear programming instances, and interior-gaitgorithms outperformed
simplex variants on then®[11]. Five such test examples are available. They can be
obtained fromhttp://www-eio.upc.es/~jcastro/mmcnf_data.html.

Table 6 shows the main characteristics of these instances: nunfilmemnamodi-
ties/blocks k), number of nodesnf) and arcs 1), number of variablesnj and
constraints i), and optimal objective valuef{). Table7 shows the results for the
specialized interior-point approach (columns “IPM”), tlegyularized version based
on (24) (columns “RIPM”), and the proximal-point regularizatidbrased on Z3)
(columns “PIPM”). For each variant we show the number ofrintepoint iterations
(columns “it."), overall number of PCG iterations (colum&CG”) and CPU time
(columns “CPU"). CPU time of the fastest execution is marketoldface. For all
the instances (but “gridgenl” that was tuned to get a bettailt), the regularization
Q matrix in (25) was heuristically computed &3 =t/u°- diagx0/%,...,x3/2A),
wheret is the iteration counte? is the initial barrier parameter, anfl and2° are


http://www-eio.upc.es/~jcastro/mmcnf_data.html
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Table 7 Results with IPM, RIPM and PIPM for multicommodity instances

IPM RIPM PIPM
Instance it. PCG CPU it. PCG CPU it. PCG CPU
PDS1 41 513  0.09 36 342  0.07 35 303 0.06
PDS5 62 1093  1.66 54 669 1.29 55 784  1.37
PDS10 78 1647 7.25 73 1373 6.8 7 1720 7.35
PDS15 90 2696  21.9 80 1674 15.9 86 2321 184
PDS20 107 4718  56.5 94 3273 43.6 112 6534  66.8
PDS25 114 3648 74.6 118 3348 67.0 103 232148.3
PDS30 119 4063 111 108 2839 89.4 111 3511 100
PDS40 136 7241 313 129 5031 255 128 5769 258
PDS50 140 10037 586 136 6433 446 128 6091395
PDS60 137 6719 639 133 5278 546 134 7005 711
PDS70 143 5799 864 142 6044 894 142 7149 1030
PDS80 148 8239 1340 141 61921140 144 8718 1460
PDS90 158 12021 2270 144 61121330 149 8570 2220
M32-32-12 39 1300 0.44 30 940 0.35 33 938 0.36
M64-64-12 59 1387 171 50 722 1.2 55 909 1.43
M128-64-12 75 3543 9.62 66 2756  9.62 68 3760 13.2
M128-128-12 97 3839 26.6 82 2165 17.7 92 3722 25.8
M256-256-12 121 5182 203 112 3720 162 115 3621161
M512-128-12 117 6164 377 124 5799 366 119 64150 394
M512-256-12 139 6945 872 139 6545 842 149 7241 925
M512-512-12 179 12074 2780 183 13167 2960 158 22180 4690
M768-128-6 130 26149 581 137 9248 233 134 116927 277
M768-256-6 128 10710 561 155 26446 1250 Too many iterations
tripartl 58 1976 17 89 721 1.57 76 1546 1.78
tripart2 87 4092  17.3 97 1562 10.2 80 2576 12.8
tripart3 90 6978 62.4 106 3178 36.4 108 9238 74.0
tripart4 133 14660 265 136 4947 128 125 8321 171
gridgenl 242 96877 7400 219 5703 618 133 19977 1530

the initial primal and dual slack variables. No particubaterm was needed, unlike
(42). The effect ot is to avoid a too quick reduction of the regularization tesyua
approaches zero. The effect ofii° is to make the regularization terpQ relative to

u®. Several other regularization variants were also testéusimilar results. Results
might have been improved (specially in instances “PDS7M512-512-12" and
“M768-256-6") by tuningQ for each particular instance. However, using the same
problem independent choice confirms the robustness of fh@agph. As said above,
tuning was only performed for instance “gridgenl”. Using #bove default regular-
ization, “RIPM” columns “it", “PCG” and “CPU” of Tabléer for instance “gridgenl”
would have been 212, 13381 and 1150, respectively.

It is observed that, in general, RIPM is more effective thathdPM and PIPM.
Since the spectral radius Bf-*(CTB~1C) is lower in RIPM and PIPM than IPM, the
number of PCG iterations is effectively decreased by thelegzation term, as we
see from columns “PCG”. This is observed in Figtenvhich shows the evolution
of spectral radius oD~%(C"B~1C) for instance M32-32-12 with IPM, RIPM and
PIPM. For the difficult Tripartite and Gridgen instancesPRI always outperformed
IPM and PIPM. In instance “gridgenl”, RIPM significantly textd the number of
PCG iterations and was ten times faster than IPM.
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Fig. 5 Spectral radius for first iterations of problem M32-32-1&, iPM, RIPM and PIPM

Table 8 Results with CPLEX-11 for multicommodity instances

barrier primal simplex dual simplex

Instance it. CPU it. CPU it. CPU
PDS1 15 0.02 567 0.02 112 0.02
PDS5 36 1.35 3052 0.28 2170 0.27
PDS10 33 7.07 8409 0.94 5078 0.75
PDS15 39 30.76 32808 3.92 8963 1.97
PDS20 36 79.8 78508 15.77 16005 4.75
PDS25 38 123.76 147651 37.58 23209 7.54
PDS30 38 191.87 298932 105.38 27830 10.26
PDS40 38 297.66 451783 331.52 43295 18.75
PDS50 40 485.10 218455 339.26 56069 27.72
PDS60 38 645.24 700718 1138.37 63735 35.59
PDS70 40 719.63 764918 957.39 84593 54.73
PDS80 40 814.56 828482 1144.84 90133 62.56
PDS90 46  1050.53 864758 1378.26 93859 65.50
M32-32-12 14 1.75 17755 1.49 1682 0.12
M64-64-12 16 6.59 100575 26.72 8222 0.88
M128-64-12 20 59.7 275263 565.04 19857 8.37
M128-128-12 21 145.8 660643 2502.81 36483 15.32
M256-256-12 24 2149.5 2398575 14428.14 104108 42.62
M512-128-12 20 5594.1 3144031 21179.05 90977 45.57
M512-256-12 25 14330 not executed 165638 67.27
M512-512-12 failed not executed 314765 155.80
M768-128-6 22 627.7 161141 139.44 88387 18.52
M768-256-6 29 1436.1 419979 688.32 177854 61.72
tripartl 21 3.99 14679 1.30 4197 1.12
tripart2 25 36.01 216854 111.26 58316 106.97
tripart3 28 138.8 681575 1024.05 104800 382.47
tripart4 29  1323.2 1847046 3037.08 197726 1638.12
gridgenl 64 12288 1469625 51289.02 416875 16467.79
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Table 9 Characteristics of minimum congestion instances

Instance kK skm sKn [ n m f

xPDS1 13 1357 8928 1115 10043 2472 1.999629
xM32-32 34 992 32076 1457 33533 2449  0.1157906
xM64-64 66 4032 66430 1532 67962 5564 1.651421
xM128-64 66 8128 152230 3512 155742 11640 1.802644
xM128-128 130 16256 310632 3611 314243 19867 1.9436

For the purpose of comparison, TaBleeports the number of iterations (columns
“it.”) and CPU time (columns “CPU") with the three options GPLEX-11: barrier,
primal and dual simplex. As in previous table, CPU time of fdegtest execution is
marked in boldface. It is worth noting that IPM/RIPM are ag@anic codes, whereas
CPLEX-11 is a highly optimized package. In particular, RIRsES the Ng-Peyton
standard package for Cholesky factorization, and CPLEXgELialized linear alge-
bra routines. In spite of this, RIPM was always much more iefficthan the barrier
method of CPLEX-11. The dual simplex algorithm is known tovkey efficient for
the PDS and Mnetgen instancéq], and it outperforms both RIPM and PIPM. How-
ever, for the difficult Tripart and Gridgen instances IPM vkaswn to be the most
efficient solver to datel[l]. This still holds for CPLEX-11, RIPM being superior to
IPM.

5.2 Minimum congestion problems

The minimum congestion problem is equivalent to the maxinaamcurrent flow
problem. In the literature, both problems are usually seeon@, and denoted as the
maximum concurrent flow problen¥]. These problems arise in practical applica-
tions on telecommunications networks. They have provecktdifficult for simplex
algorithms p]. The minimum congestion problem, which is defined on anasilele
nonoriented multicommaodity network, finds the minimum of thaximum relative
increments in arc capacities, for each arc of the netwoek,rttakes the problem fea-
sible, i.e., all multicommodity flows can be sent from sogrt@ destinations. This
min-max model can be transformed to a linear program by imeditf auxiliary vari-
ables and constraints. The formulation considered in tloikws described inJ4].
The resulting model, which is no longer a nonoriented maitimodity flow prob-
lem, has primal block-angular structure.

Table9 shows the dimensions and objective function of the instacoasidered.
They were generated from some of the multicommodity insarmé Subsectiob.1,
increasing the supply and demand by a factor of two. For eastance, Tabl®
reports number of blockk), number of constraints and variables in diagonals blocks
(3K, m and ¥ ; ni), number of linking constraints, overall number of variables
and constraints of the linear problemgndm), and optimal objective functionf{).

Those instances were solved with the PRBLQEKcode [L4], which imple-
ments the specialized algorithm of Sect®for general primal-block angular prob-
lems. Tablel0 shows the results with that code, and two regularized vessiased
on (24) (columns “RPRBLOCKIP") and 23) (columns “PPRBLOCKIP"). The
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Table 10 Results with PRBLOCKIP, RPRBLOCKIP and PPRBLOCKIP for minimum congestion in-
stances

PRBLOCKIP RPRBLOCKIP PPRBLOCKIP
Instance it. PCG CPU itt PCG CPU it. PCG CPU
xPDS1 27 65 1.75 26 72 1.60 25 69 1.63
XxM32-32-12 24 156  4.88 24 170  3.53 26 202 5.23
XM64-64-12 27 113 1443 29 118 4.99 23 98 4.01
XM128-64-12 33 211 50.22 37 179 54.92 27  16540.74
xM128-128-12 31 176 52.82 31 188 58.32 30  14050.44

* CPU time spent on external precompiled Cholesky and incom@lletéesky routines
(M n is the number of interior-point iterations after switchingftll Cholesky for normal equations

Table 11 Results with CPLEX-11 for minimum congestion instances

barrier primal simplex dual simplex
Instance it. CPU it. CPU itt. CPU
xPDS1 13 20.4 54 0.24 4 0.24
xM32-32-12 11 89.4 21542 3.82 11910 1.71
xM64-64-12 12 233.8 20591 9.57 11463 16.6
xM128-64-12 11 690.3 77528 100.9 29582 186.6
xM128-128-12 11 14215 274873 673.5 72217 768.5

meaning of columns “it.”, “PCG” and “CPU” is the same as in\poas tables.
For these instances the regularizat@mmatrix was heuristically computed &=
&/u° - diag(x}/2,...,x8/2), & € R being a small positive scalar with values in
{1071,1072,103}. Note that in this case, unlike for multicommodity problems
adjusted as in 41).

CPU time of fastest execution is marked in boldface in TdlfleSince MAT-
LAB is an interpreted language, the overall execution tisieneaningless. As it
was done in 14], we only consider the execution time spent in the extermet p
compiled Ng-Peyton Cholesky routines (including minimuegcke ordering, sym-
bolic factorization, numerical factorization, and nunsatisolution). This time would
be a significant fraction (e.g., from 40% to 80%) of the oMeeakcution time in
a C implementation4]. As we approach an optimal point, systeB) pecomes
more ill-conditioned, and PCG may provide inaccurate $ohst \When this happens,
PRBLOCK.IP switches to the solution of normal equations by a Cholda&toriza-
tion, significantly increasing the solution time. We obsetthat, in instances “xM32-
32-12" and “xM64-64-12", regularization avoided this setiing to full Cholesky,
improving the performance when the factorization is expendt may also be ob-
served that either RPRBLOCHK? or PPRBLOCKIP always provided slightly better
executions. In general, the proximal point regularizatiatperformed RPRBLOCHP,
mainly for large instances. The improvement due to regzédion was, in general, not
as significant as for the multicommodity instances of Sutime®.1 This behaviour,
which is instance/problem dependent, can be explained therei(1) matriced;
of the minimum congestion problem are no longer diagonal,thns conditions of
Proposition2 may not be satisfied; (2) even if these conditions are satigfie re-
duction of bound 12) may be small or it may not significantly affect the real spec-
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tral radius. Finally, Tabld 1 shows the results obtained with the three algorithms of
CPLEX-11. As we see, the specialized algorithm outperfar@ELEX-11 in largest
instances.

6 Conclusions

From both the theoretical and computational results of Wosk it can be stated
that quadratic regularizations significantly improve tlefprmance of the special-
ized interior-point algorithm for some classes of primaddi-angular linear prob-
lems. Adding a regularization term, the specialized atbariwas able to outper-
form both simplex and interior-point variants of commeresiate-of-the-art solvers
in some significant difficult instances. However, this bebar can not be general-
ized to any problem, and it depends on the reduction of thetispeadius of matrix
D-1(CTB~IC) due to the particular linking constraints structure. We albserved
that for problems with box constraints the quadratic regzdgion fits the general
framework of interior-point algorithms. Among the futueesks to be performed we
find the automatic tuning of the regularization mai@Xor particular instances, and
the application to alternative problems. Some work alrestdsted along these lines,
applying the regularized specialized method to the salutibnonoriented convex
multicommodity flow problems for routing in data teleconeations networks.
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