
Quadratic regularizations in an interior-point
method for primal block-angular problems

Jordi Castro Jordi Cuesta
Dept. of Stat. and Operations Research Dept. of Chemical Engineering
Universitat Polit̀ecnica de Catalunya Universitat Rovira i Virgili

jordi.castro@upc.edu jordi.cuesta@urv.cat

Research Report UPC-DEIO DR 2008-07
July 2008, updated June 2009

Report available fromhttp://www-eio.upc.es/~jcastro





Quadratic regularizations in an interior-point method for
primal block-angular problems

Jordi Castro · Jordi Cuesta

the date of receipt and acceptance should be inserted later

Abstract One of the most efficient interior-point methods for some classes of primal
block-angular problems solves the normal equations by a combination of Cholesky
factorizations and preconditioned conjugate gradient for, respectively, the block and
linking constraints. Its efficiency depends on the spectralradius—in[0,1)— of a cer-
tain matrix in the definition of the preconditioner. Spectral radius close to 1 degrade
the performance of the approach. The purpose of this work is twofold. First, to show
that a separable quadratic regularization term in the objective reduces the spectral
radius, significantly improving the overall performance insome classes of instances.
Second, to consider a regularization term which decreases with the barrier function,
thus with no need for an extra parameter. Computational experience with some pri-
mal block-angular problems confirms the efficiency of the regularized approach. In
particular, for some difficult problems, the solution time is reduced by a factor of two
to ten by the regularization term, outperforming state-of-the-art commercial solvers.

Keywords interior-point methods· primal block-angular problems· multicommod-
ity network flows· preconditioned conjugate gradient· regularizations· large-scale
computational optimization
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1 Introduction

Many real-world problems exhibit a primal-block angular structure. Among them we
find multicommodity network flow problems, extensively usedin the linear program-

Jordi Castro⋆

Dept. of Statistics and Operations Research, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034
Barcelona, Catalonia, Spain. E-mail: jordi.castro@upc.edu, http://www-eio.upc.es/~jcastro

Jordi Cuesta
Statistics and Operations Research unit, Dept. of Chemical Engineering, Universitat Rovira i Virgili, Avda.
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Table 1 CPU time ratio CPLEX/IPM for some linear and quadratic multicommodity instances (from [12])

Instance n m LP ratio QP ratio
PDS1 4167 1450 0.3 1.2
PDS10 53526 16192 1.5 2.9
M128-64-12 75804 8988 4.2 8.6
M128-128-12 155044 17188 9.7 7.5

Table 2 Results for some quadratic multicommodity instances from a statistical data protection problem
(from [13])

CPLEX IPM

Instance n m it. CPU† it. PCG CPU†

CTA-100-50-100 500000 20000 8 885 9 1.6 6
CTA-100-100-25 250000 15000 8 179 11 2.4 5
CTA-100-100-50 500000 20000 8 866 9 1.9 8
CTA-100-100-100 1000000 30000 ∗ ∗ 9 1.6 16
∗ Not enough memory
† CPU times on a laptop with a 1.8GHz Pentium Mobile and 512 MB RAM

ming literature. There have been many attempts to develop specialized implemen-
tations of linear or network optimization solvers for multicommodity problems [15,
27]. Over the years the approach of [10] based on an interior-point method has proved
to be very efficient. This approach was recently applied to other primal block-angular
problems [14]. It solved normal equations by a sensible combination of Cholesky
factorizations for the block constraints and preconditioned conjugate gradient (PCG)
iterations for the linking constraints (the procedure willbe outlined in Section2).
This was recognized as the most efficient interior-point approach for some classes
of multicommodity flows [8]. For some linear multicommodity flow problems it is
known to outperform simplex implementations [11]. For separable convex quadratic
multicommodity flows this approach is far more efficient thangeneral interior-point
solvers [12]. Although this specialized procedure makes use of the PCG,it is signif-
icantly different from other interior-point algorithms based on PCG which solve the
full set of equations of either the augmented system [5] or normal equations [26],
instead of only those associated to linking constraints. Itis also remarkably different,
and for some instances more efficient, than systems based on partitioned Cholesky
factorizations [20]. The purpose of the specialized procedure is to eliminate the com-
plicating linking constraints, making the problem block separable rather than solving
the full (normal equations) system using an iterative solver.

This work was motivated by the much better behaviour of the specialized interior-
point algorithm for separable quadratic than for linear instances. This is illustrated in
Tables1–2, and Figure1. Table1 reports the ratio between the barrier CPLEX algo-
rithm and the specialized interior-point approach (named IPM) for some well-known
multicommodity instances (i.e., some PDS [9] and Mnetgen [1] instances). Both the
original linear instances and quadratic variants of them were considered in the study
[12]. Columnsn andm report the number of variables and constraints. From this ta-
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Fig. 1 Number of interior-point and PCG iterations for some Mnetgen problems

ble we conclude that in most cases (but for M128-128-12) the performance of IPM
improves for quadratic problems. This is also confirmed by Table 2, which shows
results in the solution of a statistical data protection problem in three-dimensional
tables; this problem is modeled as quadratic multicommodity flows with equality
linking constraints [13]. Columnsn andm are as before, column “it.” provides the
number of interior-point iterations, and column “PCG” provides the average number
of PCG iterations required by the specialized approach at each interior-point itera-
tion. Such good results (e.g., solving a one million variables and 30000 constraints
quadratic multicommodity flows problem in 16 seconds —on a laptop with a 1.8GHz
Pentium) have not been observed for linear problems. Although, in general, interior-
point methods behave better for separable quadratic than for linear problems, the
quadratic objective clearly improves the preconditioner too. This is observed in Fig-
ure1 (from [12]), which plots for some linear and quadratic Mnetgen instances the
number of interior-point iterations (left figure) and overall PCG iterations (right fig-
ure). The quadratic term decreases both, but the reduction is much more significant
for PCG iterations: between one and two orders of magnitude.

The main purpose of this work is thus to reproduce the good behaviour of the
specialized interior-point algorithm for quadratic problems in linear ones by adding
a separable quadratic regularization term to the objective. Note that the focus is re-
stricted to the separable convex quadratic case. It will be shown that the regulariza-
tion term effectively decreases the spectral radius (in[0,1)) of a certain matrix in
the definition of the preconditioner (up to now only empirical results were available).
This is the most instrumental factor for the performance of the specialized approach.
A general result for any primal block-angular problem will be presented. A second
goal is to consider a regularization embedded in the barrierfunction, which decreases
with the barrier parameter (unlike other approaches based,for instance, on proximal
terms). This will allow us to show that, for bounded problems, the resulting barrier is
self-concordant, preserving some of the good properties ofinterior-point algorithms.
The computational results show the effectiveness of the approach. For some difficult
problems in the literature (for which the specialized approach was already known to
be more efficient than both simplex and interior-point variants of state-of-the art com-
mercial solvers such as CPLEX), the regularized variant reduced the solution time by
a factor of two to ten.
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Regularization techniques for interior-point methods were already considered in
the seminal book of Fiacco and McCormick [17]. They suggested to slack the con-
straints by a factor that depended on the barrier parameter,which vanished as optimal-
ity was approached. Other regularization approaches are based on proximal points.
The proximal point algorithm, developed in a general context of minimizing a convex
function, added a strong convex quadratic term to the objective function:

xk+1 = min
x

f (x)+
δk

2
‖x−xk‖2 .

In this form the proximal point algorithm has the same difficulty than the original
problem. Rockafellar [28] showed that the requirement for exact minimization at
each iteration of the proximal point algorithm can be relaxed. Setiono [30] used this
proximal term in an interior-point approach for linear programming to get a better
conditioned Newton system.

Several regularization approaches in interior-point algorithms considered the aug-
mented system form of Newton equations. This indefinite system becomes quasidefi-
nite and strongly factorizable with the regularization term [31]. Gondzio and Altman
[2] considered the following regularization for the augmented system of an infeasible
primal-dual path-following interior-point algorithm:

[

−D AT

A 0

]

+

[

−Rp 0
0 Rd

]

,

where diagonal positive semidefinite matricesRp andRd were updated dynamically.
They could be interpreted as adding proximal terms to the primal and dual objectives,
respectively. This approach was in practice more flexible than the one of Saunders and
Tomlin [29], which considered the regularized problem

min cTx+ 1
2 ‖γx‖2 + 1

2 ‖p‖2

s. to Ax+δ p = b, x≥ 0
(1)

with fixedδandγ parameters, giving rise to the regularized augmented system matrix
[

−(D+ γ2In) AT

A δ 2Im

]

.

The main differences of our approach with respect to the above ones are: (1) Al-
though a proximal term could have been used, we considered a regularization term in
the barrier function, which vanishes with the barrier parameter. (2) Our concern is not
to improve the numerical stability of Cholesky factorizations, but the quality of the
preconditioner of the combined Cholesky-PCG approach for primal block-angular
problems. As it will be shown in the computational results, the number of PCG it-
erations is significantly reduced by the regularization term in most cases. (3) Our
approach solves the normal equations instead of the augmented system. The recent
interior-point approach of [4] for nonnegative least-squares problems also consid-
ers regularizations for improving the quality of a preconditioner, but, unlike ours, it
solves the augmented system instead of normal equations.
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Regularizations based on proximal terms have also been applied in the proximal
analytic center cutting plane method (proximal-ACCPM) formulticommodity flows
[3]. However, unlike our approach, the proximal term did not improve the perfor-
mance of proximal-ACCPM, but just simplified the tuning of parameters with respect
to ACCPM. In addition, our approach is not restricted to multicommodity flows, but
it can deal with more general primal block-angular problems. Even for multicom-
modity flow problems, it can efficiently solve instances where (1) demands for com-
modities are not restricted to a single origin and a single destination (i.e., ACCPM
subproblems are no longer shortest-path ones); and (2) the fraction of active linking
constraints is large (e.g., as in instances of Table2, where linking constraints were all
equalities).

This paper is organized as follows. Section2 outlines the specialized interior-
point approach for primal block-angular problems. Section3 analyzes the spectral
properties of the preconditioner when a quadratic term is added to the objective func-
tion. Section4 introduces and studies the main features of the quadratic regularization
considered, providing computational results for general linear problems. Finally, Sec-
tion 5 reports computational results for the solution of a set of primal block-angular
problems, showing the benefits of the regularization term when combined with an
iterative solver.

2 Outline of the interior-point algorithm for primal block- angular problems

The primal block-angular formulation dealt with by the algorithm is

min
k

∑
i=0

(ciTxi +xiTQix
i)

subject to
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
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0≤ xi ≤ ui i = 0, . . . ,k.

(2)

MatricesNi ∈R
mi×ni andLi ∈R

l×ni , i = 1, . . . ,k, respectively define the block-diagonal
and linking constraints,k being the number of blocks. Vectorsxi ∈ R

ni , i = 1, . . . ,k,
are the variables for each block.x0 ∈ R

l are the slacks of the linking constraints.
bi ∈ R

mi , i = 1, . . . ,k, is the right-hand-side vector for each block of constraints,
whereasb0 ∈ R

l is for the linking constraints. The upper bounds for each group of
variables are defined byui , i = 0, . . . ,k. This formulation considers the general form
of linking constraintsb0−u0 ≤ ∑k

i=1Lixi ≤ b0. If needed, equality constraints may be
defined with this formulation by imposing (close to) zero upper bounds on the slacks.
As it will be shown in Section3, slacks improve the performance of the specialized
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approach, as in the approach of [29], see (1). ci ∈R
ni andQi ∈R

ni×ni , i = 1, . . . ,k, de-
fine the linear and quadratic costs for each group of variables. We also consider linear
and quadratic costsc0 ∈ R

l andQ0 ∈ R
l×l for the slacks. We restrict our considera-

tions to the separable case whereQi , i = 0, . . . ,k, are diagonal positive semidefinite
matrices.

Problem (2) can be written as

min cTx+ 1
2xTQx

Ax= b
u≥ x≥ 0

(3)

wherec,x,u ∈ R
n, A ∈ R

m×n, Q ∈ R
n×n andb ∈ R

m. Replacing inequalities in (3)
by a logarithmic barrier with parameterµ > 0, the KKT conditions for the barrier
problem become [32]:

Ax = b,
ATy−Qx+z−w = c,

XZe= µe,
(U −X)We= µe,

(z,w) > 0 u > x > 0;

(4)

e∈ R
n is a vector of 1’s, matricesX,Z,U,W ∈ R

n×n are diagonal matrices made up
of vectorsx,z,u,w, andS (to be used later) is defined asS= U −X. The first two
sets of equations of (4) impose, respectively, primal and dual feasibility; the last two
impose complementarity.

The normal equations for the Newton direction(∆x,∆y,∆z) of (4) reduce to (see
[14] for details):

(AΘAT)∆y = g (5)

Θ = (Q+(U −X)−1W+X−1Z)−1, (6)

for some right-hand-sideg. For linear (i.e.,Q = 0) or separable quadratic problems
Θ is a positive diagonal matrix and can be easily computed. Exploiting the structure
of A andΘ in (2) the matrix of (5) can be recast as

AΘAT =



















N1Θ1NT
1 N1Θ1LT

1
. . .

...
NkΘkNT

k NkΘkLT
k

L1Θ1NT
1 . . . LkΘkNT

k Θ0 +∑k
i=1LiΘiLT

i



















=

[

B C
CT D

]

,

(7)

B∈ R
m̃×m̃ (m̃= ∑k

i=1mi), C∈ R
m̃×l andD ∈ R

l×l being the blocks ofAΘAT , andΘi ,
i = 0, . . . ,k, the submatrices ofΘ associated with thek+1 groups of variables in (2),
i.e.,Θi = (Qi +S−1

i Wi +X−1
i Zi)

−1.
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Appropriately partitioningg and∆y in (5), the normal equations can be written
as

[

B C
CT D

][

∆y1

∆y2

]

=

[

g1

g2

]

. (8)

By eliminating∆y1 from the first group of equations of (8), we obtain

(D−CTB−1C)∆y2 = (g2−CTB−1g1) (9)

B∆y1 = (g1−C∆y2). (10)

System (10) is solved a Cholesky factorization for each diagonal blockNiΘiNT
i , i =

1. . .k, of B. The system with matrixD−CTB−1C, the Schur complement of (8), is
solved by a PCG. The dimension of this system isl , which is the number of linking
constraints. In [10] it was proved that, under some conditions, which are guaranteed
in our setting, the inverse of(D−CTB−1C) can be computed as

(D−CTB−1C)−1 =

(

∞

∑
i=0

(D−1(CTB−1C))i

)

D−1. (11)

The preconditionerM−1, an approximation of(D−CTB−1C)−1, is thus obtained by
truncating the infinite power series (11) at some termh. The more the terms included,
the better the preconditioner will be, at the expense of increasing the execution time
of each PCG iteration. However, in general,h = 0 or h = 1 are reasonable choices,
which in practice yield

M−1 = D−1 if h = 0,
M−1 = (I +D−1(CTB−1C))D−1 if h = 1.

This preconditioner, initially developed for multicommodity flows [10] can be ap-
plied to any primal block-angular problem [14].

The effectiveness of the preconditioner depends on the spectral radius of matrix
D−1(CTB−1C), which is always in[0,1) [10, Theorem 1]. The farther away from 1
is the spectral radius ofD−1(CTB−1C) the better is the quality of the approximation
of (11) obtained by truncation withh= 0 orh= 1. Although the particular behaviour
of the spectral radius value is problem dependent, in general, it comes closer to 1 as
we approach the optimal solution, because of the ill-conditioning of theΘ matrix. As
stated in Section1, in practice it was observed that when a quadratic term is present
the spectral radius tends to be smaller than that obtained inthe simplified linear for-
mulation obtained by removing this quadratic objective term, and the preconditioner
become more efficient. This behaviour is explained in next section.

3 Quadratic terms improve the preconditioner . . .

The general case (2), i.e.,Ni ∈ R
mi×ni andLi ∈ R

l×ni , i = 1, . . . ,k, is first considered.
Next result provides a bound for the spectral radius ofD−1(CTB−1C) for any primal
block-angular problem, either with linear or separable quadratic objective function.
This result will be specialized in Subsection3.1 for a particularly important class of
problems.



8

Theorem 1 Let A be the constraint matrix of problem (2), with full row rank matrices
Ni ∈ R

mi×ni i = 1, . . . ,k, and at least one full row rank matrix Li ∈ R
l×ni , i = 1, . . . ,k.

LetΘ be the symmetric diagonal matrix defined in (6), and B∈ R
m̃×m̃ (m̃= ∑k

i=1mi),
C ∈ R

m̃×l and D∈ R
l×l the submatrices of AΘAT defined in (7). Then, the spectral

radiusρ of D−1(CTB−1C) is bounded by

0≤ ρ ≤ max
j∈{1,...,l}

γ j
(

u j
v j

)2
Θ0 j + γ j

< 1, (12)

where u is the eigenvector (or one of the eigenvectors) of D−1(CTB−1C) for ρ ; γ j , j =
1, . . . , l, and V= [V1 . . .Vl ], are respectively the eigenvalues and matrix of columnwise
eigenvectors of∑k

i=1LiΘiLi
T ; v = VTu; and, abusing of notation, we assume that for

v j = 0, (u j/v j)
2 = +∞.

Proof Eigenvalueλ of D−1(CTB−1C) satisfies(CTB−1C)u = λDu for some eigen-
vectoru. From the definition ofB,C,D in (7) we have

(

k

∑
i=1

LiΘiN
T
i

(

NiΘiN
T
i

)−1
NiΘiL

T
i

)

u = λ

(

Θ0 +
k

∑
i=1

LiΘiL
T
i

)

u,

m

(1−λ )

(

Θ0 +
k

∑
i=1

LiΘiL
T
i

)

u=

(

Θ0 +
k

∑
i=1

LiΘiL
T
i

)

u−
(

k

∑
i=1

LiΘiN
T
i

(

NiΘiN
T
i

)−1
NiΘiL

T
i

)

u,

⇓

(1−λ )uT

(

Θ0 +
k

∑
i=1

LiΘiL
T
i

)

u= uTΘ0u+
k

∑
i=1

uTLiΘ
1/2

i

(

I −Θ
1/2

i NT
i

(

NiΘiN
T
i

)−1
NiΘ

1/2

i

)

Θ
1/2

i LT
i u.

(13)
Pi = I −Θ 1/2

i NT
i

(

NiΘiNT
i

)−1
NiΘ

1/2

i , i = 1, . . . ,k, is a projection operator onto the null

space ofNiΘ
1/2
i , i.e.,Pi = P2

i andwTPiw≥ 0 for any vectorw. Definingwi =Θ 1/2

i LT
i u

in (13), we have

1−λ =

uTΘ0u+
k

∑
i=1

wiTPiw
i

uT

(

Θ0 +
k

∑
i=1

LiΘiL
T
i

)

u

≥ uTΘ0u

uTΘ0u+uT

(

k

∑
i=1

LiΘiL
T
i

)

u

and therefore

λ ≤
uT

(

k

∑
i=1

LiΘiL
T
i

)

u

uTΘ0u+uT

(

k

∑
i=1

LiΘiL
T
i

)

u

. (14)
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Fig. 2 Spectral radius and bound (12) for first iterations of problem PDS1

Since∑k
i=1LiΘiLT

i ∈ R
l×l is symmetric and positive definite (because at least oneLi

was assumed to be full row rank), their eigenvaluesγ j , with corresponding eigen-
vectorsVj , j = 1, . . . , l , are real and positive. DefiningΠ = diag(γ1, . . . ,γl ), V =
[V1 . . .Vl ], v = VTu, L = { j ∈ {1, . . . , l} : v j 6= 0}, L 0 = {1, . . . , l} \L , and using
∑k

i=1LiΘiLT
i = VΠVT , (14) can be recast as

λ ≤ vTΠv
uTΘ0u+vTΠv

=

∑
j∈L

γ jv
2
j

∑
j∈L

(

u2
jΘ0 j + γ jv

2
j

)

+ ∑
j∈L 0

u2
jΘ0 j

≤
∑
j∈L

γ jv
2
j

∑
j∈L

(

(

u j

v j

)2

Θ0 j + γ j

)

v2
j

.

(15)

Denotingα2
j =

(

(

u j
v j

)2
Θ0 j + γ j

)

v2
j , for j ∈ L , in (15), we obtain

λ ≤

∑
j∈L

γ j
(

u j
v j

)2
Θ0 j + γ j

α2
j

∑
j∈L

α2
j

≤

∑
j∈L






max
j∈L

γ j
(

u j
v j

)2
Θ0 j + γ j






α2

j

∑
j∈L

α2
j

= max
j∈L

γ j
(

u j
v j

)2
Θ0 j + γ j

.

(16)

If, abusing of notation, we assume forv j = 0,(u j/v j)
2 =+∞ and thusγ j/

(

(

u j
v j

)2
Θ0 j + γ j

)

=

0, sinceλ ≥ 0 this particularj can not provide the maximum and then (16) is equiv-
alent to (12). ⊓⊔

For instance, Figure2 shows the evolution of the spectral radius ofD−1(CTB−1C) and
the bound (12) for the first 11 interior-point iterations of a regularizedversion (see
Section4) of problem PDS1 of Table1. After this iteration, both the spectral radius
and the bound approach 1, significantly increasing the number of PCG iterations per
interior-point iteration.
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Table 3 Results for a large (10 million variables, 210000 constraints) statistical data protection problem
instance, with quadratic objective function1

2xTQx, for differentQ = β I

CPLEX-11 IPM

Instance β it. CPU it. PCG CPU f ∗

CTA-100-100-1000 0.01 7 29939 10 36 66 -2.6715e+08
CTA-100-100-1000 0.1 7 31328 9 40 61 -2.6715e+09
CTA-100-100-1000 1 8 33367 8 38 56 -2.6715e+10
CTA-100-100-1000 10 9 35220 7 37 51 -2.6715e+11

Using Theorem1 we next show that the spectral radius tends to 0 whenQi , i =
1, . . . ,k, (i.e., the quadratic costs of variables, excluding slacks) tends to infinity.

Proposition 1 Let assume the hypotheses of Theorem1. Then

lim
Qi→+∞
i=1,...,k

ρ = 0. (17)

Proof At any interior-point iteration, there exists a constantε, where 0< ε < 1, such
that ε < si < 1/ε, ε < wi < 1/ε, ε < xi < 1/ε andε < zi < 1/ε [21]. Therefore,
from (6), for someS, W, X andZ, limQi→+∞ Θi = 0. Then, limQi→+∞

i=1,...,k
∑k

i=1LiΘiLT
i = 0

and its eigenvalues satisfy limQi→+∞
i=1,...,k

γ j = 0, j = 1, . . . , l . From (15), whereλ is an

eigenvalue ofD−1(CTB−1C), Π = diag(γ1, . . . ,γl ), and considering unit vectorsu
andVj , j = 1, . . . , l , (and thusv = VTu is also a unit vector), we have

lim
Qi→+∞
i=1,...,k

λ ≤ lim
Qi→+∞
i=1,...,k

vTΠv
uTΘ0u+vTΠv

= 0.

Sinceλ ∈ [0,1), (17) holds. ⊓⊔

Proposition1 means that adding large enoughQi , i = 1, . . . ,k, to a linear prob-
lem, it is possible to reduce (actually to approach 0) the spectral radius of matrix
D−1(CTB−1C), and thus to improve the quality of the preconditioner. It also ex-
plains the good behaviour of the specialized interior-point method in instances of
Table 2: since that is a quadratic problem, without linear term, argmin 1

2xTQx =

argmin1
2xT(βQ)x for any positiveβ ∈ R; therefore, the spectral radius is effec-

tively reduced, and PCG is able to solve (9) in very few iterations, independently
of the scaling factorβ . This is shown in Table3, which reports results for instance
CTA-100-100-1000, using four different scaling factorsβ andQ = I (see [13,14] for
a description of the underlying statistical three-dimensional tabular data protection
problem). The resulting primal block-angular problem has 10,000,000 variables, and
210,000 constraints. This instance has not been attempted before in the literature.
Column “it.” provides the number of interior-point iterations, and column “PCG”
provides the overall number of PCG iterations required by the specialized approach.
Column “CPU” gives the CPU time in seconds, on a Dell PowerEdge 6950 server
with four dual core AMD Opteron 8222 3.0 GHZ processors (without exploitation
of parallelism capabilities) and 64 GB of RAM. Column “f ∗” provides the optimal



11

objectives found, which are consistent with the scaling factor. The tolerance for the
PCG solution (i.e., solution of (9)) was set to 10−8 for all the interior-point iterations.
From Table3 we see that the number of PCG iterations is independent of theβ fac-
tor. The specialized interior-point approach was not only much more efficient than
CPLEX-11 in terms of CPU time, but also in memory requirements: it needed 1.2
GB of RAM, while CPLEX-11 required 15 GB. Both codes successfully solved the
problem, with relative differences in the objective function of about 10−11.

For linear problems, however, the addition of quadratic terms with largeQi , i =
1, . . . ,k, is meaningless, and only small regularizations are used inpractice [2,29].
Proposition2below shows that, under some conditions, the bound (12) on the spectral
radius for a linear problem is reduced by adding (even small)quadratic costsQi , i =
1, . . . ,k. Since both the bound and the spectral radius approach 1 in the last iterations
of the interior-point method, a reduction in the bound also means a reduction in the
spectral radius. We first prove the auxiliary Lemma1. It states that the eigenvalues
of ∑k

i=1LiΘiLi
T are reduced if we add a quadratic term withQi diagonal and positive

definite to a linear cost function.

Lemma 1 Let γ̂ j andγ j , j = 1, . . . , l, be the j-th largest eigenvalues of∑k
i=1LiΘ̂iLi

T

and ∑k
i=1LiΘiLi

T for, respectively, a linear and a quadratic problem (i.e., Q= 0 in
Θ̂ , and Qi ≻ 0 and diagonal, i= 1, . . . ,k, inΘ , Θ defined as in (6)). Then,γ̂ j > γ j .

Proof SinceQi ≻ 0 is diagonal we have by (6) and (7) that Θ̂i = Θi + Ei for all
i = 1, . . . ,k, whereEi is diagonal and

Ei = ΘiΘ̂iQi = (Qi +S−1
i Wi +X−1

i Zi)
−1(S−1

i Wi +X−1
i Zi)

−1Qi ≻ 0.

Indeed, note that

Ei = ΘiΘ̂iQi = ΘiΘ̂i(Qi +Θ̂−1
i −Θ̂−1

i ) = ΘiΘ̂i(Θ−1−Θ̂−1
i ) = Θ̂i −Θi .

Therefore
k

∑
i=1

LiΘ̂iLi
T =

k

∑
i=1

LiΘiLi
T +

k

∑
i=1

LiEiLi
T . (18)

The Courant-Fischer minimax theorem (see, for instance, [19, Theorem 8.1.2]) states
that for a symmetric matrixM its j-th largest eigenvalueλ j is equal to

λ j = max
dim(S)= j

min
06=y∈S

yTMy
yTy

. (19)

Since the three matrices in (18) are positive definite, we have that, for ally,
yT(∑k

i=1 LiΘ̂iLi
T)y

yT y
>

yT(∑k
i=1 LiΘiLi

T)y

yTy
. Therefore, by (19), γ̂ j > γ j . ⊓⊔

The strong assumption ˆu j/v̂ j ≤ u j/v j of next proposition depends on the sensitivity
of u (the eigenvector ofD−1(CTB−1C) for ρ) andVj , j = 1, . . . , l , (eigenvectors of
∑k

i=1LiΘiLi
T ) against small changes inΘ induced byQi ≻ 0, i = 1, . . . ,k. We are

aware that in the general case such an assumption cannot be verified in practice, but
as we will show later in Subsection3.1, for some important class of problems such
an inequality does hold.
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Fig. 3 Evolution of spectral radius for first iterations of a quadratic version of problem PDS1 using differ-
entQ matrices

Proposition 2 Let assume the hypotheses of Theorem1, and consider a linear prob-
lem and a quadratic one obtained by adding (likely small) quadratic costs Qi ≻ 0,
i = 1, . . . ,k. Assumêu j/v̂ j ≤ u j/v j , j = 1, . . . , l, where “hatted” and “non-hatted”
terms refer, respectively, to the linear and quadratic problems, and u and v are de-
fined as in Theorem1. Then bound (12) is smaller for the quadratic than for the linear
problem.

Proof By (12), the spectral radiusρ of D−1(CTB−1C) after addition of quadratic
costsQi ≻ 0 is bounded by

ρ ≤ max
j∈{1,...,l}

γ j
(

u j
v j

)2
Θ0 j + γ j

< 1,

γ j being the j-th eigenvalue of∑k
i=1LiΘiLi

T . Denoting byγ̂ j the j-th eigenvalue of
∑k

i=1LiΘ̂iLi
T corresponding to the linear problem, we have by Lemma1 γ j = γ̂ j −ε j ,

for someε j > 0. Since ˆu j/v̂ j ≤ u j/v j , then

γ̂ j
(

û j
v̂ j

)2
Θ0 j + γ̂ j

≥ γ̂ j
(

u j
v j

)2
Θ0 j + γ̂ j

>
γ̂ j − ε j

(

u j
v j

)2
Θ0 j + γ̂ j − ε j

for all j = 1, . . . , l , where last inequality holds because
(

u j
v j

)2
Θ0 jε j > 0. ⊓⊔

It is noteworthy that Proposition2 states that (i) the bound on the spectral radius
is reduced, but not the spectral radius; (ii) and this is achieved by adding quadratic
costsQi , i = 1, . . . ,k, to block variables, but not slacks costsQ0. When the spec-
tral radius is close to 1, a reduction in the bound means a reduction of the spec-
tral radius (i.e., the preconditioner is improved). But when the spectral radius is
far from 1 it may not be reduced for all diagonalQ ≥ 0, and anyA,x,z,s,w. For
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instance, for a problem with no upper bounds (i.e., with nos and w variables),

k= 1,L1 = I5, N1 =

[

1 2 3 1 5
2 4 8 8 32

]

, x0 = [4.65 0.704 0.7206 3.5957 3.8952]T , x1 =

[1.8289 7.8537 0.2577 4.074 9.0643]T , z1 = z0 = [1 1 1 1 1]T , Q= diag([1.108
0.0111 1.747 0.0122 0.0182]) the spectral radius ofD−1(CTB−1C) is 0.8484 when
Q1 = Q0 = 0, whereas forQ1 = Q0 = Q we obtain 0.8763, and forQ1 = Q andQ0 = 0
we get 0.8632. However, the difficult and interesting case is when thespectral radius
approaches 1, where just a small reduction can mean the efficient solution by PCG.
In practice, even when we are far from 1, a quadratic term may reduce the spectral
radius, as observed in Figure3. It plots the evolution of the spectral radius for the
first 11 iterations of a quadratic version of problem PDS1 of Table1 using different
Q = δ I matrices,δ ∈ R and nonnegative.Q = 0 corresponds to the standard linear
PDS1 problem. It is shown that the spectral radius is reducedasδ increases.

3.1 The case of weighted GUB constraints

Problems with weighted generalized upper bounds (GUB) are aparticular case of
the primal block-angular problem (2) for Li = Gi , Gi ∈ R

n×n, i = 1, . . . ,k, being a
diagonal positive semidefinite matrix (note thatni = n= l , i = 1, . . . ,k becauseGi are
square matrices with the same number of rows). WhenGi = I we have the standard
non-weighted GUB constraints. If in additionNi , for all i = 1, . . . ,k, is the node-arc
incidence matrix of a graph, we obtain a multicommodity flow problem. However,
we consider in this Subsection thatNi is anyR

mi×n matrix.
If Li = Gi , then∑k

i=1LiΘiLT
i is diagonal, and its eigenvalues areγ j = ∑k

i=1Θi j G2
i j ,

with eigenvectorsVj = ej , j = 1, . . . ,n, i.e.,V = I . Therefore,v = VTu = u, the ratio
u j/v j in Theorem1 is 1 for all j = 1, . . . ,n, and the bound (12) has the simple and
computable form:

ρ ≤ max
j∈{1,...,n}

k

∑
i=1

Θi j G
2
i j

Θ0 j +
k

∑
i=1

Θi j G
2
i j

< 1. (20)

In addition, the strong assumption ˆu j/v̂ j ≤ u j/v j of Proposition2 is satisfied, since
u j/v j = û j/v̂ j = 1. Therefore bound (20) is effectively reduced by adding even a
small quadratic termQi ≻ 0, i = 1, . . . ,k, to a linear problem. Note that if GUB con-
straints have to be imposed only for a subsetJ ⊆ {1, . . . ,n} of the variables, we just
have to defineGi j = 0 for all j ∈ J , and (20) remains valid.

It is noteworthy that if, in addition toLi = Gi , we haveNi , i = 1, . . . ,k, are square
nonsingular matrices, then (20) is not an upper bound, but it is actually the true spec-
tral radius. This is because, under the above assumptions,

(D−1(CTB−1C)) =
(

Θ0 +∑k
i=1LiΘiLT

i

)−1
(

∑k
i=1LiΘiNT

i

(

NiΘiNT
i

)−1
NiΘiLT

i

)

=
(

Θ0 +∑k
i=1LiΘiLT

i

)−1(

∑k
i=1LiΘiLT

i

)

,
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which is equal to a diagonal matrix whosejth component is
(

Θ0 j +∑k
i=1Θi j G2

i j

)−1(

∑k
i=1Θi j G2

i j

)

.

Although this result is not of practical interest (constraint matrix is square, with a
unique feasible point), it shows how tight is the bound in a limit situation.

4 . . . then we add a quadratic regularization

Given the linear programming problem

min cTx
s. to Ax= b

0≤ x≤ u,
(21)

the associated primal logarithmic barrier problem is

min B(x,µ) , cTx+ µ

(

−
n

∑
i=1

lnxi −
n

∑
i=1

ln(ui −xi)

)

s. to Ax= b,

(22)

µ being the barrier parameter,x,c,u ∈ R
n, b ∈ R

m, andA ∈ R
m×n. In the interior

point context, regularizations based on proximal points have already been used in
other approaches. They considered the alternative regularized function:

BP(x,µ) , cTx+
1
2
(x− x̄)TQP(x− x̄)+ µ

(

−
n

∑
i=1

lnxi −
n

∑
i=1

ln(ui −xi)

)

, (23)

QP being the identity matrix in [30], and a diagonal positive definite matrix with
small entries—dynamically updated at each interior-point iteration—in [2]; andx̄ the
current point obtained by the interior-point algorithm. Therefore the definition of the
barrier function changes at each iteration according to thecurrent point, and it does
not fit the general theory of structural optimization for interior-point methods of [22,
23]. However, it is worth noting that, in practice, the proximal point regularization of
[2] has an excellent behaviour.

Instead, we suggest the alternative regularization

BQ(x,µ) , cTx+ µFQ(x) (24)

where

FQ(x) ,
1
2

xTQx−
n

∑
i=1

lnxi −
n

∑
i=1

ln(ui −xi), (25)

Q being a diagonal positive semidefinite matrix, anddom FQ = {x : 0< x< u}. Some
properties ofBQ(x,µ) are:

1. Barrier functionFQ(x) is strictly convex in{x : 0 < x < u} (∇FQ(x) = Qx−
X−1e+(U −X)−1e, ∇2FQ(x) = Q+X−2 +(U −X)−2 ≻ 0).

2. BQ(x,µ) does not depend on the current point, unlikeBP in (23).
3. The reduction to zero of the regularizationQ matrix is governed byµ , the stan-

dard barrier parameter ofB(x,µ) in (22).
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4. This regularized barrier function fits the classical interior-point approach of Fi-
acco and McCormick [17] (see Subsection4.1below).

5. FQ(x) is a self-concordant barrier in{x : 0 < x < u}, and then it fits the structural
optimization framework of [22,23]. As it will be shown in Subsection4.1, for
small enough regularizations, it is even possible to followthe central path at high
speed.

Note that, using eitherB, BP, or BQ only changes the dual feasibility of KKT
conditions (4), and matrixΘ defined in (6). Dual feasibility becomes

ATy+z−w =c for B, (26)

ATy+z−w =c+QP(x− x̄) for BP, and (27)

ATy+z−w =c+ µQx for BQ. (28)

Evaluating at current point (x = x̄), (27) is equivalent to (26). (28) is also equivalent
to (26) whenµ tends to zero. TheΘ matrices are

Θ = ((U −X)−1W+X−1Z)−1 for B, (29)

Θ =(QP +(U −X)−1W+X−1Z)−1 for BP, and (30)

Θ =(µQ+(U −X)−1W+X−1Z)−1 for BQ. (31)

The main difference between (30) and (31) is thatµQ tends to zero withµ and there-
fore (31) approximates (29) better than (30). The remaining linear algebra of interior-
point methods is the same for the three variants.

4.1 Self-concordancy ofFQ(x)

We first show that regularized barrierFQ(x) (defined in (25)) fits the classical interior-
point (or sequential unconstrained minimization) approach of Fiacco and McCormick.
Rewriting (25) as

FQ(x) =
n

∑
i=1

B0i (x)+Bui (x), B0i (x) =
1
2

qix
2
i − lnxi , Bui (x) = − ln(ui −xi),

B0i (x) and Bui (x) being the barrier for, respectively,g0i (x) = xi ≥ 0 andgui (x) =
ui − xi ≥ 0, andqi ≥ 0 being the diagonal terms ofQ, we have that: (1) bothB0i (x)
andBui (x) are continuous in, respectively,{x : g0i (x) > 0} and{x : gui (x) > 0}; and
(2), B0i (x) → +∞ andBui (x) → +∞ when, respectively,g0i (x) → 0 andgui (x) → 0.
Then:

– The sequence of minima ofBQ(x,µ) = cTx+ µFQ(x) converges to the compact
set of minima of (21) [17, Theorem 8].

– Let assume barriersB0i (g0i ) andBui (gui ) satisfy these additional two conditions:
(1) they are twice-differentiable functions of respectively g0i andgui ; (2) if g0i > 0
andgui > 0 then (i)∂B0i (g0i )/∂g0i < 0,∂Bui (gui )/∂gui < 0; (ii) ∂ 2B0i (g0i )/∂g2

0i
>
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0, ∂ 2Bui (gui )/∂g2
ui

> 0; and (iii) ∂ 2B0i (g0i )/∂g2
0i

and∂ 2Bui (gui )/∂g2
ui

are mono-
tonically decreasing functions of respectivelyg0i andgui . Then there exists an iso-
lated once-differentiable trajectory of minimax(µ) of BQ(x,µ) = cTx+ µFQ(x)
converging tox∗, solution of (21) [17, Theorem 12]. Conditions (i)-(iii) hold for
Bui (gui ). Conditions (ii)-(iii) also hold forB0i (g0i ): ∂ 2B0i (g0i )/∂g2

0i
= 1/g2

0i
+

qi > 0 and it is a monotonically decreasing function ofg0i . Condition (i) means
∂B0i (g0i )/∂g0i = −1/g0i + qig0i < 0, i.e.,qi < 1/g2

0i
= 1/x2

i . Sincexi < ui , this
condition is satisfied forqi ≤ 1/u2

i . As seen below, such a small regularization
term is also needed to guaranteeFQ(x) is a self-concordant barrier with parame-
ter ν = n.

Making use of the structural optimization theory, as described in [22], it can be
seen thatFQ(x) is a self-concordant barrier, and for small enough regularizations,
it has a small parameter. (We recall that self-concordant functions guarantee the ef-
ficiency of Newton’s method, while self-concordant barriers—hopefully with small
parameters—guarantee the efficiency of a path-following algorithm [22].) For this
purpose, consider the linear problem (21), and rewrite its barrierFQ(x) as

FQ(x) =
n

∑
i=1

Fqi (xi), where Fqi (xi) =
1
2

qix
2
i − lnxi − ln(ui −xi), (32)

qi ≥ 0 being the diagonal terms ofQ. Since the sum of self-concordant functions
and self-concordant barriers is respectively a self-concordant function [22, Theorem
4.1.1] and a self-concordant barrier [22, Theorem 4.2.2] for the intersection of do-
mains, we consider a particularFqi (xi). By definition,Fqi (xi) : (0,ui) → R is a self-
concordant barrier for its domain if: (1) it is a self-concordant function, i.e., there
exists a constantMFqi

such that

|F ′′′
qi

(xi)h
3| ≤ MFqi

(

F ′′
qi
(xi)h

2)3/2

for all xi of domain ofFqi and h ∈ R; and (2), there exists a valueνi , called the
parameter of the barrier, such that

sup
h∈R

2F ′
qi
(xi)h−F ′′

qi
(xi)h

2 ≤ νi , (33)

or equivalently,
[F ′′

qi
(xi)]

−1(

F ′
qi
(xi)

)2 ≤ νi (34)

for all xi of domain ofFqi . We first show thatFqi (xi) is self-concordant function.

Lemma 2 Fqi (xi), defined in (32), is a self-concordant function in its domain{xi :
0 < xi < ui}.

Proof Let us partitionFqi in three terms

Fqi (xi) = F1(xi)+F2(xi)+F3(xi),

where

F1(xi) =
1
2

qix
2
i , F2(xi) = − lnxi , F2(xi) = − ln(ui −xi).
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The domains ofF1(xi), F2(xi) andF3(xi) are, respectively,R, {xi : xi > 0} and{xi :
xi < ui}. It is known that the convex quadratic functionF1(xi) and the logarithmic
barriersF2(xi) and F3(xi) are self-concordant functions (see, e.g., [22]) with con-
stantsMF1 = 0, MF2 = MF3 = 2. By [22, Theorem 4.1.1] we have that the sum of
self-concordant functions is self-concordant with constant equal to the maximum of
the constants for all the functions. Therefore,Fqi (xi) is self-concordant function in
domF1∩domF2∩domF3 = {xi : 0 < xi < ui} andMFqi

= max{0,2,2} = 2. ⊓⊔
Lemma3 showsFqi (xi) is a self-concordant barrier, and provides an upper bound

for its parameter. It makes use of the fact that the logarithmic barrier

Fi(xi) = − lnxi − ln(ui −xi) (35)

for the set 0< xi < ui is self-concordant with parameter 1. This is easily seen by
noting that, from (34),

(F ′
i (xi))

2

F ′′
i (xi)

=
(− 1

xi
+ 1

ui−xi
)2

1
x2
i
+ 1

(ui−xi)2

· (ui −xi)
2x2

i

(ui −xi)2x2
i

=
(2xi −ui)

2

(ui −xi)2 +x2
i

≤ 1

⇐⇒ (2xi −ui)
2− ((ui −xi)

2 +x2
i ) = 2xi(xi −ui) ≤ 0.

(36)

Lemma 3 Fqi (xi) is a self-concordant barrier in its domain{xi : 0 < xi < ui}, with
parameterνi ≤ qiu2

i +1.

Proof By (35), we haveFqi (xi) = 1
2qix2

i +Fi(xi), F ′
qi
(xi) = qixi +F ′

i (xi) andF ′′
qi
(xi) =

qi +F ′′
i (xi). Then, by (33) and (36),

max
h∈R

2F ′
qi
(xi)h−F ′′

qi
(xi)h

2 = max
h∈R

2(qixi +F ′
i (xi))h− (qi +F ′′

i (xi))h
2

≤ max
h∈R

(2qixih−qih
2)+max

h∈R

(2F ′
i h−F ′′

i (xi)h
2) ≤ qix

2
i +1≤ qiu

2
i +1.

⊓⊔
Next Lemma shows that it is possible to obtain a parameter forFqi (xi) smaller

than the one provided by Lemma3.

Lemma 4 The parameter of the self-concordant barrier Fqi (xi) in its domain{xi :
0 < xi < ui} is

νi = 1 if 0≤ qi ≤ 1/u2
i ,

νi = qiu2
i if qi ≥ 1/u2

i .
(37)

Proof From (34), it has to be proven that

Ti(xi) = [F ′′
qi
(xi)]

−1(

F ′
qi
(xi)

)2
=

(qixi − 1
xi

+ 1
ui−xi

)2

qi +
1
x2
i
+ 1

(ui−xi)2

(38)

is upper bounded byνi for 0 < xi < ui . Consider first the case 0≤ qi ≤ 1/u2
i . Since

−1≤ qix2
i −1≤ 0, then

Ti(xi)=
x2

i (qixi − 1
xi

+ 1
ui−xi

)2

x2
i (qi +

1
x2
i
+ 1

(ui−xi)2 )
=

(qix2
i −1+ xi

ui−xi
)2

qix2
i +1+

x2
i

(ui−xi)2

≤
max

{

(qix2
i −1)2,

(

xi
ui−xi

)2
}

qix2
i +1+

x2
i

(ui−xi)2

< 1.
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For the second case,qi ≥ 1/u2
i , defining

qi = α
1

u2
i

, α ≥ 1, and xi = βui , 0 < β < 1, (39)

the inequalityTi(xi) ≤ qiu2
i is proven by noting that

(qixi − 1
xi

+ 1
ui−xi

)2

qi +
1
x2
i
+ 1

(ui−xi)2

=

(

αβ
ui

− 1
βui

+ 1
ui(1−β )

)2

α
u2

i
+ 1

u2
i β 2 + 1

u2
i (1−β )2

=

(

αβ − 1
β + 1

(1−β )

)2

α + 1
β 2 + 1

(1−β )2

≤

(

α − 1
β + 1

(1−β )

)2

α + 1
β 2 + 1

(1−β )2

· (1−β )2β 2

(1−β )2β 2

=
(α(1−β )β +2β −1)2

α(1−β )2β 2 +2β 2−2β +1
≤ qiu

2
i = α,

where for first inequality we used thatα ≥ 1 and 0< β < 1. We will show that the
last inequality holds. Since the denominatorα(1−β )2β 2 +2β 2−2β +1 is positive
(becauseα(1− β )2β 2 > 0 and the minimum of 2β 2 − 2β + 1 is 1/2 at minimizer
β = 1/2),

(α(1−β )β +2β −1)2

α(1−β )2β 2 +2β 2−2β +1
≤ α (40)

is equivalent to

(α(1−β )β +2β −1)2 = α2(1−β )2β 2 +2α(1−β )β (2β −1)+(2β −1)2 ≤
α

(

α(1−β )2β 2 +2β 2−2β +1
)

= α2(1−β )2β 2 +α(2β 2−2β +1).

Simplifying the above inequality we obtain the equivalent one

α(2β 2−2β +1)−2α(1−β )β (2β −1)−(2β −1)2 = α(4β 3−4β 2+1)−(2β −1)2≥0.

Since 4β 3−4β 2 +1 is positive for 0< β < 1, andα ≥ 1,

α(4β 3−4β 2 +1)− (2β −1)2 ≥ 4β 3−4β 2 +1− (2β −1)2 = 4β (β −1)2 ≥ 0,

and thus (40) holds. ⊓⊔

Figure4 plots (38) for ui = 1000, andqi = 1/u2
i ·0.9 (left figure) andqi = 1/u2

i ·1000
(right figure). It can be observed how tight are bounds (37).

By Lemma4 and Theorem 4.2.2 of [22], barrierFQ(x) is self-concordant in the
domain{x : 0 < x < u}, with parameterν = ∑n

i=1 νi . In view of Theorem 4.2.9 of
[22] the path-following algorithm terminates in a number of iterationsO(

√
ν ln1/ε),

ε being the accuracy of the solution. Ifqi ≤ 1/u2
i for all i = 1, . . . ,n, thenν = n. This

is the same parameter of the standard (non-regularized) logarithmic barrier, which
is also the lowest possible value for any self-concordant barrier [22, Lemma 4.3.1].
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Fig. 4 Plot of (38) for ui = 1000, andqi = 1/u2
i ·0.9 (left figure) andqi = 1/u2

i ·1000 (right figure)

Therefore, for small enoughqi , i = 1, . . . ,n, the regularized interior-point approach is
as efficient as the standard one in number of iterations. On the other hand, ifqi > 1/u2

i
the method is no longer strongly polynomial, and it depends on upper boundsu, ac-
cording toν . However, in the tests performed, it has been observed that there is a
significant wide range of valuesqi that preserves a small number of interior-point iter-
ations. This is also the usual behaviour of interior-point algorithms, which in practice
need no more than 100 iterations, far from the number predicted by the theoreti-
cal complexityO(

√
nln1/ε). Next Subsection empirically shows that the number of

interior-point iterations significantly increases for only large regularization terms.
A barrier similar toFQ(x) was namedaugmented barrierin [24]. For any positive

semidefiniteQ matrix, it was shown to be a self-concordant function, but not a self-
concordant barrier when its domain is a cone (i.e.,x≥ 0). In our caseQ is (positive
semidefinite) diagonal, and its domain is defined by box constraints 0≤ x≤ u. This
allowed us to prove thatFQ(x) is self-concordant barrier, though for very large reg-
ularizations it may increase the number of interior-point iterations. Note that, unless
the problem is unbounded, there always exists a (possibly large)u such that 0≤ x≤ u
are valid box constraints. According to (37), a small complexity bound is only guar-
anteed ifqi ≤ 1/u2

i , which for very largeu can result in a negligible regularization
term. However, as stated in next Subsection, it has been observed that in practice
regularization terms significantly larger than 1/u2

i can be effectively used, without
increasing the number of interior-point iterations. According to [24], it is even possi-
ble, at least theoretically, to trace the central path at linear speed by using augmented
barriers for convex cones, though they don’t fit the standardinterior-point theory [23].

4.2 Implementation and computational results for linear problems

Although our purpose is to regularize the specialized interior-point method for pri-
mal block-angular problems, we made a preliminary test witha general algorithm
for linear problems. The primal regularized logarithmic barrier problemBQ(x,µ) of
(24) has been included in a home-made primal-dual path-following code for linear
programming. This code solves the normal equations using the Ng-Peyton sparse
Cholesky package [25]. It also includes the second-order Merohtra’s heuristic direc-
tion [32]. It is similar to the well-known PCx code [16].
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Table 4 Results for Netlib problems, for both regularized and non-regularized variants

Instance n m iter. IP iter. R-IP q f∗

Adlittle 138 56 15 14 4.98e-03 2.25e+05
Afiro 51 27 10 10 2.3e-05 -4.65E+02
Agg 615 488 30 29 8.4e-11 -3.60e+07
Bandm 472 305 21 20 4.5e-04 -1.59E+02
Beaconfd 295 173 13 13 1.7e-05 3.36E+04
Blend 114 74 15 14 3.4e-02 -3.08E+01
Bore3d 333 233 16 16 3.4e-06 1.37E+03
Brandy 303 182 24 20 6.6e-05 1.52E+03
Degen3 2604 1503 22 22 6.1e-05 -9.87e+02
E226 472 223 24 22 4.5e-02 -1.88E+01
Etamacro 734 400 28 27 4.8e-08 -7.56E+02
Fit2d 10524 25 24 24 4.5e-05 -6.85E+04
Grow15 645 300 19 19 2.7e-11 -1.07E+08
Kb2 68 43 19 19 1.0e-06 -1.75E+03
Maros-r7 9408 3136 18 18 1.0e-07 1.50E+06
Recipe 178 87 11 11 1.0e-03 -2.67E+02
Sc105 163 104 12 11 6.1e-05 -5.22E+01
Wood1p 2595 244 24 20 0.3854 1.44E+00

Table 5 Number of iterations for different regularizations and instances “Bore3d” and “Agg”

δ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 0
Bore3d 53 19 17 16 16 16 16 16 16 16
Agg > 100 > 100 > 100 > 100 > 100 55 31 30 29 30

Heuristically, the regularizationQ matrix was computed asQ = qI, whereq∈ R

is

q = δ
(

∑n
i=1 |ci |

∑n
i=1x0

i

)

. (41)

δ > 0 is a adjustable scalar parameter andx0 is the initial primal point. (41) guar-
antees that, forδ = 1, both the linear and quadratic terms are of the same order of
magnitude atx0. We solved a subset of Netlib collection. Each problem was solved
considering 13 differentδ , from 100 to 10−12. Table4 shows the best execution of
the regularized variant. For each problem, the table reports the number of variables
(n) and constraints (m), the number of iterations performed by the standard algorithm
(“iter. IP”) and the regularized variant (“iter. R-IP”), the scalarq for the definition
of Q associated to the bestδ , and the optimal objective function (f ∗) found by both
methods. Tuningq, the regularized variant was as fast (in number of iterations) as
the standard algorithm. In general, the regularized approach is similar to the standard
one, but it takes more iterations for significantly largeq. This is observed in Table
5 which reports the number of iterations for two particular instances and different
δ values (caseδ = 0 corresponds to the non-regularized method). A similar experi-
ment was performed for the multicommodity instance PDS1 of Table1 (also of Table
6). It was solved using the simplest regularization termQ = δ I , for differentδ val-
ues. Forδ ∈ {0,10−4,10−3,10−2,10−1,1,101} the overall number of interior-point
iterations for solving the problem was about 40 (δ = 0 corresponds to the standard
non-regularized PDS1 linear problem). These values are greater than the theoretical
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value 1/u2
i , which for many variables was of 10−7. For δ = 102 and δ = 103 the

algorithm required about 50 and 60 interior-point iterations, respectively; and more
than 120 iterations were needed forδ = 103. Therefore, only large regularizations
significantly increased the number of interior-point iterations.

The above results are consistent with Subsection4.1: significantly large regular-
izations increase the number of interior-point iterations. On the other hand, the reg-
ularization provides a better conditionedΘ matrix (31), and, most important, would
improve the preconditioner of the specialized approach according to Section3. As
observed in next section, in spite of this tradeoff between number of iterations and
time per iteration, in general, the regularization term improves the overall solution
time for some primal block-angular problems.

5 Computational results for primal block-angular problems

Two primal block-angular problems have been considered: multicommodity network
flows, and the minimum congestion (or maximum concurrent flow) problem [7].
They were solved with the specialized interior-point method for primal block-angular
problems updated with a regularized function. Both regularizations (23) and (24)
were implemented. For multicommodity flows we extended the code IPM of [10],
mainly implemented in C, but for the Ng-Peyton Cholesky package [25] for factor-
izations, which is coded in Fortran. For the minimum congestion problem we ex-
tended the code PRBLOCKIP of [14] for general primal-block angular problems.
PRBLOCK IP is implemented under the MATLAB environment, with Cholesky fac-
torizations through external precompiled routines of the Ng-Peyton Cholesky pack-
age. All runs were carried out on a SUN Fire V20Z server with two AMD Opteron
2.46 GHZ processors (without exploiting parallelism capabilities) and 8 GB of RAM.
Results are provided in next two subsections.

5.1 Multicommodity flow problems

Multicommodity flow problems match the primal block-angular formulation (2) for
Li = I andNi being a node-arc incidence matrix. Blocks are related to commodities
in this problem.

We considered three kind of instances. The first one corresponds to the PDS
ones [9]. These problems arise from a logistic model for evacuatingpatients from
a place of military conflict. Each instance depends on a parameter t that denotes
the planning horizon under study (in number of days). The size of the network in-
creases witht, whereas the number of commodities is always 11. Problems obtained
with this generator are denoted as PDSt. The PDS instances can be retrieved from
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

The second type of instances was obtained with the Mnetgen generator [1]. It
can be retrieved from the above URL. These instances will be denoted as Mm′-k-d,
wherem′ is the number of nodes,k the number of commodities, andd is related to
the density of the network; the largerd the denser is the network. In those instances,

http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html
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Table 6 Characteristics of multicommodity instances

Instance k m′ n′ n m f∗

PDS1 11 126 372 4464 1758 2.908e10
PDS5 11 686 2325 27900 9871 2.805e10
PDS10 11 1399 4792 57504 20181 2.673e10
PDS15 11 2125 7756 93072 31131 2.518e10
PDS20 11 2857 10858 130296 42285 2.832e10
PDS25 11 3554 13580 162960 52674 2.262e10
PDS30 11 4223 16148 193776 62601 2.139e10
PDS40 11 5652 22059 264708 84231 1.8886e10
PDS50 11 7031 27668 332036 105009 1.6603e10
PDS60 11 8423 33388 400656 126041 1.4265e10
PDS70 11 9750 38396 460752 145646 1.2241e10
PDS80 11 10989 42472 509664 163351 1.1469e10
PDS90 11 12186 46161 553932 180207 1.1087e10
M32-32-12 32 32 486 16038 1510 8.056e5
M64-64-12 64 64 511 33215 4607 4.624e6
M128-64-12 64 128 1171 76115 9363 1.927e7
M128-128-12 128 128 1204 155316 17588 4.014e7
M256-256-12 256 256 2204 566428 67740 3.979e8
M512-128-12 128 512 4786 617394 70322 8.280e8
M512-256-12 256 512 4810 1236170 135882 1.649e9
M512-512-12 512 512 4786 2455218 266930 3.488e9
M768-128-6 128 768 2317 298893 100621 2.118e9
M768-256-6 256 768 2370 609090 198978 4.249e9
tripart1 16 192 2096 35632 5168 6.348e7
tripart2 16 768 8432 143344 20720 3.870e8
tripart3 20 1200 16380 343980 40380 2.694e8
tripart4 35 1050 24815 893340 61565 1.775e7
gridgen1 320 1025 3072 986112 331072 622e12

80% of the arcs have mutual capacities (potential active linking constraints), 90%
have individual capacities (upper bounds per commodity), and 30% of the arcs have
a high cost [18].

The last set of instances was obtained with the Tripartite generator and with a
variation for multicommodity flows of the Gridgen generator. They are known to be
difficult linear programming instances, and interior-point algorithms outperformed
simplex variants on them [6,11]. Five such test examples are available. They can be
obtained fromhttp://www-eio.upc.es/~jcastro/mmcnf_data.html.

Table6 shows the main characteristics of these instances: number of commodi-
ties/blocks (k), number of nodes (m′) and arcs (n′), number of variables (n) and
constraints (m), and optimal objective value (f ∗). Table7 shows the results for the
specialized interior-point approach (columns “IPM”), theregularized version based
on (24) (columns “RIPM”), and the proximal-point regularizationbased on (23)
(columns “PIPM”). For each variant we show the number of interior-point iterations
(columns “it.”), overall number of PCG iterations (columns“PCG”) and CPU time
(columns “CPU”). CPU time of the fastest execution is markedin boldface. For all
the instances (but “gridgen1” that was tuned to get a better result), the regularization
Q matrix in (25) was heuristically computed asQt = t/µ0 · diag(x0

1/z0
1, . . . ,x

0
n/z0

n),
wheret is the iteration counter,µ0 is the initial barrier parameter, andx0 andz0 are

http://www-eio.upc.es/~jcastro/mmcnf_data.html
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Table 7 Results with IPM, RIPM and PIPM for multicommodity instances

IPM RIPM PIPM

Instance it. PCG CPU it. PCG CPU it. PCG CPU

PDS1 41 513 0.09 36 342 0.07 35 303 0.06
PDS5 62 1093 1.66 54 669 1.29 55 784 1.37
PDS10 78 1647 7.25 73 1373 6.8 77 1720 7.35
PDS15 90 2696 21.9 80 1674 15.9 86 2321 18.4
PDS20 107 4718 56.5 94 3273 43.6 112 6534 66.8
PDS25 114 3648 74.6 118 3348 67.0 103 232148.3
PDS30 119 4063 111 108 2839 89.4 111 3511 100
PDS40 136 7241 313 129 5031 255 128 5769 258
PDS50 140 10037 586 136 6433 446 128 6091395
PDS60 137 6719 639 133 5278 546 134 7005 711
PDS70 143 5799 864 142 6044 894 142 7149 1030
PDS80 148 8239 1340 141 6192 1140 144 8718 1460
PDS90 158 12021 2270 144 61121330 149 8570 2220
M32-32-12 39 1300 0.44 30 940 0.35 33 938 0.36
M64-64-12 59 1387 1.71 50 722 1.2 55 909 1.43
M128-64-12 75 3543 9.62 66 2756 9.62 68 3760 13.2
M128-128-12 97 3839 26.6 82 2165 17.7 92 3722 25.8
M256-256-12 121 5182 203 112 3720 162 115 3621161
M512-128-12 117 6164 377 124 5799 366 119 64150 394
M512-256-12 139 6945 872 139 6545 842 149 7241 925
M512-512-12 179 12074 2780 183 13167 2960 158 22180 4690
M768-128-6 130 26149 581 137 9248 233 134 116927 277
M768-256-6 128 10710 561 155 26446 1250 Too many iterations
tripart1 58 1976 1.7 89 721 1.57 76 1546 1.78
tripart2 87 4092 17.3 97 1562 10.2 80 2576 12.8
tripart3 90 6978 62.4 106 3178 36.4 108 9238 74.0
tripart4 133 14660 265 136 4947 128 125 8321 171
gridgen1 242 96877 7400 219 5703 618 133 19977 1530

the initial primal and dual slack variables. No particularδ term was needed, unlike
(41). The effect oft is to avoid a too quick reduction of the regularization term as µ
approaches zero. The effect of 1/µ0 is to make the regularization termµQ relative to
µ0. Several other regularization variants were also tested with similar results. Results
might have been improved (specially in instances “PDS70”, “M512-512-12” and
“M768-256-6”) by tuningQ for each particular instance. However, using the same
problem independent choice confirms the robustness of the approach. As said above,
tuning was only performed for instance “gridgen1”. Using the above default regular-
ization, “RIPM” columns “it”, “PCG” and “CPU” of Table7 for instance “gridgen1”
would have been 212, 13381 and 1150, respectively.

It is observed that, in general, RIPM is more effective than both IPM and PIPM.
Since the spectral radius ofD−1(CTB−1C) is lower in RIPM and PIPM than IPM, the
number of PCG iterations is effectively decreased by the regularization term, as we
see from columns “PCG”. This is observed in Figure5, which shows the evolution
of spectral radius ofD−1(CTB−1C) for instance M32-32-12 with IPM, RIPM and
PIPM. For the difficult Tripartite and Gridgen instances, RIPM always outperformed
IPM and PIPM. In instance “gridgen1”, RIPM significantly reduced the number of
PCG iterations and was ten times faster than IPM.
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Fig. 5 Spectral radius for first iterations of problem M32-32-12, for IPM, RIPM and PIPM

Table 8 Results with CPLEX-11 for multicommodity instances

barrier primal simplex dual simplex
Instance it. CPU it. CPU it. CPU
PDS1 15 0.02 567 0.02 112 0.02
PDS5 36 1.35 3052 0.28 2170 0.27
PDS10 33 7.07 8409 0.94 5078 0.75
PDS15 39 30.76 32808 3.92 8963 1.97
PDS20 36 79.8 78508 15.77 16005 4.75
PDS25 38 123.76 147651 37.58 23209 7.54
PDS30 38 191.87 298932 105.38 27830 10.26
PDS40 38 297.66 451783 331.52 43295 18.75
PDS50 40 485.10 218455 339.26 56069 27.72
PDS60 38 645.24 700718 1138.37 63735 35.59
PDS70 40 719.63 764918 957.39 84593 54.73
PDS80 40 814.56 828482 1144.84 90133 62.56
PDS90 46 1050.53 864758 1378.26 93859 65.50
M32-32-12 14 1.75 17755 1.49 1682 0.12
M64-64-12 16 6.59 100575 26.72 8222 0.88
M128-64-12 20 59.7 275263 565.04 19857 8.37
M128-128-12 21 145.8 660643 2502.81 36483 15.32
M256-256-12 24 2149.5 2398575 14428.14 104108 42.62
M512-128-12 20 5594.1 3144031 21179.05 90977 45.57
M512-256-12 25 14330 not executed 165638 67.27
M512-512-12 failed not executed 314765 155.80
M768-128-6 22 627.7 161141 139.44 88387 18.52
M768-256-6 29 1436.1 419979 688.32 177854 61.72
tripart1 21 3.99 14679 1.30 4197 1.12
tripart2 25 36.01 216854 111.26 58316 106.97
tripart3 28 138.8 681575 1024.05 104800 382.47
tripart4 29 1323.2 1847046 3037.08 197726 1638.12
gridgen1 64 12288 1469625 51289.02 416875 16467.79
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Table 9 Characteristics of minimum congestion instances

Instance k ∑k
i=1 mi ∑k

i=1 ni l n m f∗

xPDS1 13 1357 8928 1115 10043 2472 1.999629
xM32-32 34 992 32076 1457 33533 2449 0.1157906
xM64-64 66 4032 66430 1532 67962 5564 1.651421
xM128-64 66 8128 152230 3512 155742 11640 1.802644
xM128-128 130 16256 310632 3611 314243 19867 1.9436

For the purpose of comparison, Table8 reports the number of iterations (columns
“it.”) and CPU time (columns “CPU”) with the three options ofCPLEX-11: barrier,
primal and dual simplex. As in previous table, CPU time of thefastest execution is
marked in boldface. It is worth noting that IPM/RIPM are academic codes, whereas
CPLEX-11 is a highly optimized package. In particular, RIPMuses the Ng-Peyton
standard package for Cholesky factorization, and CPLEX-11specialized linear alge-
bra routines. In spite of this, RIPM was always much more efficient than the barrier
method of CPLEX-11. The dual simplex algorithm is known to bevery efficient for
the PDS and Mnetgen instances [11], and it outperforms both RIPM and PIPM. How-
ever, for the difficult Tripart and Gridgen instances IPM wasknown to be the most
efficient solver to date [11]. This still holds for CPLEX-11, RIPM being superior to
IPM.

5.2 Minimum congestion problems

The minimum congestion problem is equivalent to the maximumconcurrent flow
problem. In the literature, both problems are usually seen as one, and denoted as the
maximum concurrent flow problem [7]. These problems arise in practical applica-
tions on telecommunications networks. They have proved to be difficult for simplex
algorithms [6]. The minimum congestion problem, which is defined on an infeasible
nonoriented multicommodity network, finds the minimum of the maximum relative
increments in arc capacities, for each arc of the network, that makes the problem fea-
sible, i.e., all multicommodity flows can be sent from sources to destinations. This
min-max model can be transformed to a linear program by addition of auxiliary vari-
ables and constraints. The formulation considered in this work is described in [14].
The resulting model, which is no longer a nonoriented multicommodity flow prob-
lem, has primal block-angular structure.

Table9 shows the dimensions and objective function of the instances considered.
They were generated from some of the multicommodity instances of Subsection5.1,
increasing the supply and demand by a factor of two. For each instance, Table9
reports number of blocks (k), number of constraints and variables in diagonals blocks
(∑k

i=1mi and∑k
i=1ni), number of linking constraints (l ), overall number of variables

and constraints of the linear problem (n andm), and optimal objective function (f ∗).
Those instances were solved with the PRBLOCKIP code [14], which imple-

ments the specialized algorithm of Section2 for general primal-block angular prob-
lems. Table10 shows the results with that code, and two regularized versions based
on (24) (columns “RPRBLOCKIP”) and (23) (columns “PPRBLOCKIP”). The
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Table 10 Results with PRBLOCKIP, RPRBLOCKIP and PPRBLOCKIP for minimum congestion in-
stances

PRBLOCK IP RPRBLOCKIP PPRBLOCKIP

Instance it. PCG CPU∗ it. PCG CPU∗ it. PCG CPU∗

xPDS1 27 65 1.75 26 72 1.60 25 69 1.63
xM32-32-12 24 156 4.88(2) 24 170 3.53 26 202 5.23
xM64-64-12 27 113 14.43(2) 29 118 4.99 23 98 4.01
xM128-64-12 33 211 50.22 37 179 54.92 27 16540.74
xM128-128-12 31 176 52.82 31 188 58.32 30 14050.44
∗ CPU time spent on external precompiled Cholesky and incompleteCholesky routines
(n) n is the number of interior-point iterations after switching to full Cholesky for normal equations

Table 11 Results with CPLEX-11 for minimum congestion instances

barrier primal simplex dual simplex
Instance it. CPU it. CPU it. CPU
xPDS1 13 20.4 54 0.24 4 0.24
xM32-32-12 11 89.4 21542 3.82 11910 1.71
xM64-64-12 12 233.8 20591 9.57 11463 16.6
xM128-64-12 11 690.3 77528 100.9 29582 186.6
xM128-128-12 11 1421.5 274873 673.5 72217 768.5

meaning of columns “it.”, “PCG” and “CPU” is the same as in previous tables.
For these instances the regularizationQ matrix was heuristically computed asQ =
δ/µ0 · diag(x0

1/z0
1, . . . ,x

0
n/z0

n), δ ∈ R being a small positive scalar with values in
{10−1,10−2,10−3}. Note that in this case, unlike for multicommodity problems, we
adjustedδ as in (41).

CPU time of fastest execution is marked in boldface in Table10. Since MAT-
LAB is an interpreted language, the overall execution time is meaningless. As it
was done in [14], we only consider the execution time spent in the external pre-
compiled Ng-Peyton Cholesky routines (including minimum degree ordering, sym-
bolic factorization, numerical factorization, and numerical solution). This time would
be a significant fraction (e.g., from 40% to 80%) of the overall execution time in
a C implementation [14]. As we approach an optimal point, system (8) becomes
more ill-conditioned, and PCG may provide inaccurate solutions. When this happens,
PRBLOCK IP switches to the solution of normal equations by a Choleskyfactoriza-
tion, significantly increasing the solution time. We observed that, in instances “xM32-
32-12” and “xM64-64-12”, regularization avoided this switching to full Cholesky,
improving the performance when the factorization is expensive. It may also be ob-
served that either RPRBLOCKIP or PPRBLOCKIP always provided slightly better
executions. In general, the proximal point regularizationoutperformed RPRBLOCKIP,
mainly for large instances. The improvement due to regularization was, in general, not
as significant as for the multicommodity instances of Subsection 5.1. This behaviour,
which is instance/problem dependent, can be explained by either: (1) matricesLi

of the minimum congestion problem are no longer diagonal, and thus conditions of
Proposition2 may not be satisfied; (2) even if these conditions are satisfied the re-
duction of bound (12) may be small or it may not significantly affect the real spec-
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tral radius. Finally, Table11 shows the results obtained with the three algorithms of
CPLEX-11. As we see, the specialized algorithm outperformed CPLEX-11 in largest
instances.

6 Conclusions

From both the theoretical and computational results of thiswork it can be stated
that quadratic regularizations significantly improve the performance of the special-
ized interior-point algorithm for some classes of primal block-angular linear prob-
lems. Adding a regularization term, the specialized algorithm was able to outper-
form both simplex and interior-point variants of commercial state-of-the-art solvers
in some significant difficult instances. However, this behaviour can not be general-
ized to any problem, and it depends on the reduction of the spectral radius of matrix
D−1(CTB−1C) due to the particular linking constraints structure. We also observed
that for problems with box constraints the quadratic regularization fits the general
framework of interior-point algorithms. Among the future tasks to be performed we
find the automatic tuning of the regularization matrixQ for particular instances, and
the application to alternative problems. Some work alreadystarted along these lines,
applying the regularized specialized method to the solution of nonoriented convex
multicommodity flow problems for routing in data telecomunications networks.
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