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Abstract

We perform a smoothed analysis of the GCC-condition number C (A)
of the linear programming feasibility problem ∃x ∈ R

m+1 Ax < 0.
Suppose that Ā is any matrix with rows ai of euclidean norm 1 and,
independently for all i, let ai be a random perturbation of ai fol-
lowing the uniform distribution in the spherical disk in Sm of angu-
lar radius arcsinσ and centered at ai. We prove that E(lnC (A)) =
O(mn/σ). A similar result was shown for Renegar’s condition num-
ber and Gaussian perturbations by Dunagan, Spielman, and Teng
[arXiv:cs.DS/0302011]. Our result is robust in the sense that it easily
extends to radially symmetric probability distributions supported on
a spherical disk of radius arcsinσ, whose density may even have a sin-
gularity at the center of the perturbation. Our proofs combine ideas
from a recent paper of Bürgisser, Cucker, and Lotz (Math. Comp. 77,
No. 263, 2008) with techniques of Dunagan et al.
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1 Introduction

A distinctive feature of the computations considered in numerical analysis is
that they are affected by errors. A main character in the understanding of
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the effects of these errors is the condition number of the input at hand. This
is a positive number measuring the sensitivity of the output with respect
to small perturbations of the input. The best known condition number is
that for matrix inversion and linear equation solving, which takes the form
κ(A) = ‖A‖ ‖A−1‖ for a square matrix A. Condition numbers not only occur
in round-off analysis, but also appear as a parameter in complexity bounds
for a variety of iterative algorithms in linear algebra, linear and convex
optimization, and polynomial equation solving. Yet, condition numbers are
not easily computable. As a way out for this situation, Smale suggested to
assume a probability measure on the set of data and to study the condition
number of this data as a random variable. Examples of such results abound
for a variety of condition numbers. For more details and references we refer
to Smale’s survey [25] and the recent survey [4].

Renegar [20, 21, 22] was the first to realize that the computational com-
plexity of linear programming problems can be bounded by a polynomial in
the number of variables and inequalities and a certain condition measure of
the input. This condition measure is given by the inverse distance of the
input to the set of ill-posed systems. More specifically, it is well known that
for a given matrix A ∈ R

n×(m+1), either the system Ax < 0 or its dual sys-
tem AT y = 0, y > 0 have a solution, unless we are in an ill-posed situation.
The (homogeneous) linear programming feasibility problem is to decide this
alternative for given A and to compute a solution of the corresponding sys-
tem. A primal-dual interior point method is used in [12] to solve the linear
programming feasibility problem within

O
(√

m+ n (ln(m+ n) + lnC (A))
)

(1)

iterations, with each step costing at most O((m+n)3) arithmetic operations.
Here, the GCC-condition number C (A) is a variant of Renegar’s condition
number introduced by Goffin [17], and later generalized by Cucker and Che-
ung [8] (see §2.3 for the definition). The advantage of C (A) over Renegar’s
condition number is that this quantity can be neatly characterized in terms
of spherical geometry, which greatly facilitates its probabilistic analysis.

Thus the running time of the primal-dual interior point method used
in [12] is controlled by C (A). Understanding the average-case behaviour
of this algorithm therefore boils down to studying lnC (A) for random in-
puts A. Motivated by this observation, a lot of efforts have been devoted to
the average-case analysis of the random variable C (A), i.e., to compute the
expected value (or the distribution function) of lnC (A) for random matri-
ces A. In most cases, the matrices A are assumed to have random entries
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which are i.i.d. standard normal. We remark that since the condition number
C (A) is multi-homogeneous in the rows ai of A, this is equivalent to con-
sidering C (A) in the case where a1, . . . , an are i.i.d. uniformly distributed in
unit sphere Sm := {x ∈ R

m+1 | ‖x‖ = 1}.
The papers dealing with the average analysis of C (A) are easily sum-

marized. A bound for E(lnC (A)) of the form O(min{n,m lnn}) was shown
in [9]. This bound was improved in [13] to max{lnm, ln lnn} + O(1) as-
suming that n is moderately larger than m. Still, in [10], the asymptotic
behavior of both C (A) and lnC (A) was exhaustively studied and these re-
sults were extended in [18] to matrices A ∈ (Sm)n drawn from distributions
more general than the uniform. Finally, in [5], the exact distribution of
C (A) conditioned to A being feasible was found and asymptotically sharp
tail bounds for the infeasible case were given. In particular, it was shown
that E(lnC (A)) = O(lnm). Our method yields another proof of this re-
sult (Cor. 1.3).

1.1 Smoothed analysis

The problem of average-case analysis is that its results strongly depend on
the distribution of the inputs, which is unknown, and usually assumed to
be Gaussian for rendering the mathematical analysis feasible. Spielman
and Teng [26, 27, 28] suggested in 2001 the concept of smoothed analysis
of algorithms, which is a new form of analysis of algorithms that arguably
blends the best of both worst-case and average-case. They used this new
framework to give a more compelling explanation of the speed of the simplex
method (for the shadow-vertex pivot rule).

The general idea of smoothed analysis is easy to explain. Let T : Rp →
R+∪{∞} be any function (measuring running time, log of condition numbers
etc.). Instead of showing “it is unlikely that T (a) will be large,” one shows
that “for all a ∈ R

p and all slight random perturbations a of a, it is unlikely
that T (a) will be large.” If we assume that a is multivariate normal with
mean a and variance σ2, in short a ∈ N(a, σ2), then the goal of a smoothed
analysis of T is to give good estimates of

sup
a∈Rp

Prob
a∈N(a,σ2)

{T (a) > ε−1}.

In a first approach one may focus on bounds on the expectations.
For many situations of interest, it turns out that in smoothed analysis,

there is only a weak dependence on the chosen model of random perturba-
tions. A first formal evidence of this robustness phenomenon was given by
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Cucker, Hauser, and Lotz [11] for certain conic condition numbers, stated
below as Theorem 1.1.

Dunagan et al. [15] (see also Spielman and Teng [27]) performed a
smoothed analysis of the running time of interior point methods of linear
programming by analyzing Renegar’s condition number C ′, a variant of the
GCC condition number C . Among other things, they proved the following:

sup
Ā

EA∈N(Ā,σ2)(lnC
′(A)) = O

(

ln
mn

σ

)

.

Here the supremum is over all Ā ∈ R
n×(m+1) of Frobenius norm at most

one. Our main result (Theorem 1.2) shows that a similar bound actually
holds for a large class of random perturbation laws.

1.2 A geometric approach to conic condition numbers

Bürgisser et al. [6, 7] recently extended a result of Demmel [14] on conic
condition numbers from average-case analysis to smoothed analysis. There,
the perturbations of the inputs are modelled by uniform instead of Gaussian
distributions. This allows to perform the analysis in a general geometric
framework that we explain next.

The set of ill-posed inputs to a computational problem is modelled as
a lower dimensional subset Σ of the data space D , which is assumed to be
furnished with a metric d, a distance function dist (not necessarily a metric),
and a volume measure. In our cases of interest, D is a Riemannian man-
ifold, d is the corresponding metric, and dist = sin(d). The corresponding
condition number C (a) of an input a ∈ D is then defined as

C (a) =
1

dist(a,Σ)
. (2)

This is an appropriate definition for many applications. In this model, the
set of inputs a with condition C (a) > ε−1 is given by the ε-neighborhood

Tdist(Σ, ε) = {a ∈ D | dist(a,Σ) < ε}.

Let B(a, α) := {a ∈ D | d(a, a) ≤ α} denote the ball centered at a ∈ D of
radius α. The task of a uniform smoothed analysis of C consists of providing
good upper bounds on

sup
a∈D

Prob
a∈B(a,α)

{C (a) > ε−1},
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where a is assumed to be chosen uniformly at random in B(a, α). The
probability occurring here thus has an immediate geometric meaning:

Prob
a∈B(a,α)

{C (a) > ε−1} =
vol (Tdist(Σ, ε) ∩B(a, α))

vol (B(a, α))
. (3)

Thus uniform smoothed analysis means to provide bounds on the volume
of the intersection of ε-neighborhoods of Σ, relative to the distance func-
tion dist, with balls of radius α. We note that for compact data spaces D ,
uniform smoothed analysis interpolates transparently between worst-case
and average-case analysis. Indeed, when α = 0 we get worst-case analysis,
while for α = diam(D) we obtain average-case analysis.

For conic condition numbers, this general concept specializes in the fol-
lowing way. The data space is the unit m-sphere Sm ⊂ R

m+1, Σ is a lower
dimensional subset of Sm such that Σ = −Σ (in many applications it is an
algebraic hypersurface) and the conic condition number C (a) of a ∈ Sm is
defined by (2) with respect to the distance function dist(a, b) := sin d(a, b),
where d refers to the angular (i.e., Riemannian) distance in Sm. (We could
as well consider the data space as the real projective space Pm on which dist

defines a metric.)
For defining the GCC-condition number, one takes as the data space the

nth power (Sm)n = Sm×· · ·×Sm of the sphere Sm with the metric defined as
d(A,B) := max1≤i≤n d(ai, bi), where A = (a1, . . . , an), B = (b1, . . . , bn) and
d(ai, bi) again denotes the angular distance in Sm. The distance function is
defined by dist(A,B) := sin d(A,B) and the GCC-condition number C (A)
is given by C (A) = 1/dist(A,Σn,m), where Σn,m ⊂ (Sm)n denotes the set of
ill-posed inputs, which is a semialgebraic subset of codimension one (cf. §2.3
for details).

1.3 Adversarial distributions

An advantage of the uniform model is that, for conic condition numbers,
results on smoothed analysis easily extend to more general families of prob-
ability distributions. To obtain such robustness results we rely on a general
boosting technique developed in Hauser and Müller [18] and apply it simi-
larly as in Cucker et al. [11]

The framework is the following (cf. §2.4). Consider the spherical cap
B(a, α) := {x ∈ Sm | d(x, a) ≤ α} in the sphere Sm centered at a ∈ Sm and
having angular radius α ∈ (0, π/2]. Let ν denote the uniform measure on
B(a, α) and suppose that µa is a ν-absolutely continuous probability measure
on Sm, say µa(G) =

∫

G fd ν for measurable sets G. We further assume that
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the density f is of the form f(x) = g(sin d(x, a)) with a monotonically
decreasing function g : [0, σ] → [0,∞] of the form

g(r) = Cr−β h(r),

where σ := sinα, β < m, h : [0, σ] → [0,∞) is a continuous function satis-
fying h(0) 6= 0, and C = Im(α)/Im−β(α) is a normalizing constant, where
Ik(α) :=

∫ α
0 (sin t)k−1 dt, cf. §2.2. Thus, the support of µa is contained in

B(a, α) and the density of µa is radially symmetric with a pole of order β
at a. Such distributions were called adversarial in [11]. The exponent β
and the quantity H := sup0≤r≤σ h(r) are the only parameters entering the
bound below. In the special case β = 0, the density of µa does not have a
singularity and the situation considerably simplifies: We have C = 1, g = h
and the estimate µā(B) ≤ H · ν(B) holds for any measurable set G.

To extend this estimate to the general case, the smoothness parameter s
of a ν-absolutely continuous distributions was defined in [18], and in [11,
Lemma 3.2], it was shown that s = 1 − β/m. This means that s is the
largest number s′ > 0 for which the following is true: For every ε > 0
there exists δ(ε) > 0 such that ν(G) ≤ δ(ε) implies µā(G) ≤ ν(B)s

′−ε for
all measurable sets G. This allows to obtain tail bounds for µa from tail
bounds for ν.

Bürgisser et al. [7] provided a general smoothed analysis of conic con-
dition numbers for uniform perturbations. This was recently extended by
Cucker et al. [11] to the model of adversarial perturbations, who obtained
the following robust smoothed analysis estimate.

Theorem 1.1 Let C be a conic condition number with set of ill-posed
inputs Σ ⊆ Sm and assume that Σ is contained in an algebraic hypersurface
of degree d. Then we have for a random perturbation from any adversarial
distribution µa on B(a, α) with center a ∈ Sm, angular radius α ∈ (0, π/2]
and parameters β,H, σ = sinα that

Eµa
(lnC ) ≤ ln

m2d

σ
+

1

1− β/m
ln

2eH2m

ln(πm/2)
+ ln

13π

2
.

It is remarkable that the only problem dependent parameters entering
the above bound are the dimension m and the degree d. The only distribu-
tion dependent parameters entering the bound are σ, β, and H. This result
has a wide range of applications to linear and polynomial equation solving.
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1.4 Main results

The goal of this paper is to prove the following analogue of Theorem 1.1 for
the GCC-condition number of the linear programming feasibility problem.

Theorem 1.2 Let C denote the GCC condition number defined on (Sm)n

and n > m + 1. Suppose that ai is randomly chosen from an adversarial
distribution µai on B(ai, α) with center ai ∈ Sm, angular radius α ∈ (0, π/2],
and parameters β,H, σ = sinα, independently for i = 1, . . . , n. Then the
random matrix A with rows ai satisfies

E
(

lnC (A)
)

= O
(

(

1− β
m

)−2 · ln nH

σ

)

.

In the case β = 0, we have more precisely,

E
(

lnC (A)
)

≤ 12 ln n+ 17 lnm+ 6 ln 1
σ + 8 lnH + 29 = O

(

ln nH
σ

)

.

As an application let T (A) denote the number of iterations of the primal-
dual interior point method of [12] for solving the linear programming fea-
sibility problem ∃x ∈ R

m+1 Ax < 0 (or its dual problem). Theorem 1.2
implies that

E(T (A)) = O
((

1− β
m

)−2 · √n · ln nH

σ

)

,

for a random matrix A with independent rows ai from a adversarial distri-
bution µai with parameters β,H.

For the uniform distribution on Sm, by essentially the same method,
we can improve the estimates of Theorem 1.2 obtaining a result that was
previously shown in [7] by a very different technique.

Corollary 1.3 Suppose that the rows of the matrix A are independently
chosen in Sm according to the uniform distribution and n > m+ 1. Then

E
(

lnC (A)
)

= O
(

lnm
)

.

The paper is organized as follows. Section 2 is devoted to preliminaries on
spherically convex sets, the GCC-condition number, and adversarial proba-
bility distributions. In Section 3 we state and prove probability tail bounds
for the GCC-condition number under adversarial random perturbations and
prove our main results. The proof essentially reduces the adversarial to the
uniform case and then uses geometric arguments for the uniform case. A
principal ingredient of the proof of the uniform case is an upper bound on
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the volume of the neighborhood of spherically convex sets (Theorem 3.3),
that is stated in Section 3.1, but whose proof is deferred to Section 4. The
proof of the latter result proceeds along the lines of [7] and uses some deeper
results from integral and differential geometry (Weyl’s tube formula, kine-
matic formula).

Acknowledgments. We thank Felipe Cucker and Martin Lotz for nu-
merous helpful discussions. We are grateful to an anonymous referee for
constructive criticism that led to more general results and a significantly
better presentation of the paper.

2 Preliminaries

2.1 Convex sets in spheres

A general reference about convex sets is [30]. Glasauer’s thesis [16] is a
useful reference for the integral geometry of spherically convex sets.

A convex cone in R
m+1 is a subset that is closed under addition and

multiplication with nonnegative scalars. We denote by cone(M) the convex
cone generated by a subset M ⊆ R

m+1. More specifically, the convex cone
generated by points a1, . . . , ak ∈ R

m+1 is given by

cone{a1, . . . , ak} := {x ∈ R
m+1 | ∃λ1 ≥ 0, . . . , λk ≥ 0 x =

∑k
i=1 λiai}.

A convex cone C is called pointed iff C ∩ (−C) = {0}. It is known that
C is pointed iff C \ {0} is contained in an open halfspace whose bounding
hyperplane goes through the origin. Clearly, if ai 6= 0 for i = 1, . . . , k,
then cone{a1, . . . , ak} is pointed iff 0 is not contained in the convex hull
conv{a1, . . . , ak}.

We use convex cones to define the notion of convexity for subsets of the
sphere Sm = {x ∈ R

m+1 | ‖x‖ = 1}. Let x, y ∈ Sm be such that x 6= ±y.
We call [x, y] := cone{x, y}∩Sm the great circle segment connecting x and y.

Definition 2.1 A subset K of Sm is called (spherically) convex iff we have
[x, y] ⊆ K for all x, y ∈ K with x 6= ±y. We call K properly convex iff it is
nonempty, convex, and does not contain a pair of antipodal points.

We denote by sconv(M) := cone(M)∩Sm the convex hull of a subset M
of Sm, which is the smallest convex set containing M . Clearly, M is convex
iff M = sconv(M). The closure of a convex set is convex as well. It is easy to
see that a convex subset K of Sm is contained in a closed halfspace, unless
K = Sm. A properly convex set K is always contained in an open halfspace.
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Definition 2.2 The dual set of a subset M ⊆ Sm is defined as

M̆ := {a ∈ Sm | ∀x ∈ M 〈a, x〉 ≤ 0}.

Clearly, M̆ is a closed convex set disjoint to M . The hyperplane sepa-
ration theorem implies that the dual of M̆ equals the closure of sconv(M).
We note that M ⊆ N implies M̆ ⊇ N̆ . Finally, it is important that M̆ has
nonempty interior iff M does not contain a pair of antipodal points, that is,
“nonempty interior” and “properly convex” are dual properties.

By a convex body K in Sm we will understand a closed convex set K such
that both K and K̆ have nonempty interior, i.e., both are properly convex.
The map K 7→ K̆ is an involution of the set of convex bodies in Sm.

2.2 Distances, neighborhoods, and volumes

We denote by d(a, b) ∈ [0, π] the angular distance between two points a, b
on the sphere Sm. Clearly, this defines a metric on Sm. The (closed) ball of
radius α ∈ [0, π] around a ∈ Sm is defined as

B(a, α) := {x ∈ Sm | d(x, a) ≤ α} = {x ∈ Sm | 〈a, x〉 ≥ cosα}.

This is the same as the spherical cap with center a and angular radius α.
B(a, α) is convex iff α ≤ π/2 or α = π. In the case α ≤ π/2, the dual set of
B(a, α) equals B(−a, π/2− α).

For a nonempty subset M of Sm we define the distance of a ∈ Sm to M
as d(a,M) := inf{d(a, x) | x ∈ M}. The dual set of M can be characterized
in terms of distances by: a ∈ M̆ ⇐⇒ d(a,M) ≥ π/2.

Lemma 2.3 Let K be a convex body in Sm and a ∈ Sm \ (K ∪ K̆). Then
d(a,K) + d(a, K̆) = π/2.

Proof. Let b ∈ K such that ϕ := d(a, b) = d(a,K). Since a 6∈ K̆ we have
ϕ < π/2. The point b∗ := 〈a, b〉 b is therefore nonzero and contained in
C := cone(K). Put p∗ := a − b∗. Then 〈p∗, b〉 = 0, 〈p∗, a〉 = sin2 ϕ, and
〈p∗, p∗〉 = sin2 ϕ. In particular p∗ 6= 0.

By construction, b∗ is the point of C closest to a. It follows that {x ∈
R
m+1 | 〈p∗, x〉 = 0} is a supporting hyperplane of C. Hence 〈p∗, x〉 ≤ 0 for

all x ∈ C and the point p := p∗/‖p∗‖ therefore belongs to K̆. Moreover,
〈p, a〉 = sinϕ, which implies d(a, p) = π/2 − ϕ. Hence

d(a,K) + d(a, K̆) ≤ d(a, b) + d(a, p) = π/2.
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To complete the proof it suffices to show that d(a, K̆) = d(a, p). Suppose
there exists p′ ∈ K̆ such that d(a, p′) < d(a, p). Then d(b, p′) ≤ d(b, a) +
d(a, p′) < d(b, a) + d(a, p) = π/2 which contradicts the fact that b ∈ K̆. ✷

Sometimes it will be useful to consider the projective distance between
two points a, b ∈ Sm, which is defined as dP(a, b) := sin d(a, b). It is straight-
forward to check that dP satisfies the triangle inequality. However, it is not
a metric on Sm, as dP(a, b) = 0 iff a = ±b. Hence the ball of radius sinα,
measured with respect to the projective distance, equals B(a, α)∪B(−a, α).
We denote this set suggestively by B(±a, α) and call it the projective ball
with center ±a and radius α.

For 0 ≤ ϕ ≤ π/2, the ϕ-neighborhood of a nonempty subset M of Sm is
defined as T (M,ϕ) := {x ∈ Sm | d(x,M) < ϕ}. If M is the boundary ∂K
of a properly convex set K in Sm, we call

To(∂K,ϕ) := T (∂K,ϕ) \K and Ti(∂K,ϕ) := T (∂K,ϕ) ∩K

the outer ϕ-neighborhood and inner ϕ-neighborhood of ∂K, respectively.
Clearly, we have T (∂K,ϕ) = To(∂K,ϕ) ∪ Ti(∂K,ϕ).

In order to compute the m-dimensional volume of such neighborhoods,
the following functions Jm,k(α) are relevant:

Jm,k(α) :=

∫ α

0
(sin ρ)k−1 (cos ρ)m−k dρ (1 ≤ k ≤ m). (4)

Recall thatOm := volSm = 2π(m+1)/2/Γ((m+1)/2) equals them-dimensional
volume of Sm. It is known that volT (Sm−k, α) = Om−kOk−1Jm,k(α). Some
estimations of these volumes can be found in [7, Lemmas 2.1-2.2].

2.3 The GCC condition number

We study the problem of deciding for a given instance A ∈ R
n×(m+1) whether

there exists a nonzero solution x ∈ R
m+1 \ {0} such that Ax ≤ 0. In the

following we assume that n > m + 1. (The other case is considerably less
interesting.) Without loss of generality we may assume that the row vectors
ai have euclidean length one, and hence interpret A = (a1, . . . , an) as an
element of the product (Sm)n of spheres.

We write sconv(A) := sconv{a1, . . . , an} for the convex hull of the given
points. The set of solutions in Sm of the system of inequalities Ax ≤ 0
equals the dual set of sconv(A).
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Definition 2.4 An instance A ∈ (Sm)n is called feasible iff its set of solu-
tions is nonempty, otherwise A is called infeasible. An instance A is called
strictly feasible iff its set of solutions has nonempty interior. We denote by
Fn,m and F◦

n,m the set of feasible and strictly feasible instances, respectively.
The set of ill-posed instances is defined as Σn,m := Fn,m \ F◦

n,m. The set of
infeasible instances is denoted by In,m.

Remark 2.5 An instance A ∈ (Sm)n is strictly feasible iff sconv(A) is prop-
erly convex, that is, cone(A) is pointed. Furthermore, a feasible instance A
is ill-posed iff 0 is contained in the euclidean convex hull of a1, . . . , an (cf. [5,
Lemma 3.2]).

We remark that Fn,m is a compact subset of (Sm)n with nonempty inte-
rior F◦

n,m and topological boundary Σn,m. Moreover, In,m is nonempty and
Σn,m is also the topological boundary of In,m. (Here we use n > m+ 1.)

We define a metric on (Sm)n by setting for A,B ∈ (Sm)n with compo-
nents ai, bi ∈ Sm

d(A,B) := max
1≤i≤n

d(ai, bi) .

The distance of A to a nonempty subsetM ⊆ (Sm)n is defined as d(A,M) :=
inf{d(A,B) |B ∈ M}. We denote by B(Ā, α) := {A ∈ (Sm)n | d(A, Ā) ≤ α}
the closed ball with center Ā and radius α. Clearly, this is the product of
the balls B(āi, α) for i = 1, . . . , n.

The following definition is due to Goffin [17] and Cheung and Cucker [8].

Definition 2.6 The GCC condition number of A ∈ (Sm)n is defined as
C (A) = 1/ sin d(A,Σn,m).

This condition number can be characterized in a more explicit way.

Definition 2.7 A smallest including cap (SIC) for A ∈ (Sm)n is a spherical
cap of minimal radius containing the points a1, . . . , an.

We remark that by a compactness argument, a SIC always exists. It can
be shown that a SIC is unique if A is strictly feasible. However, for infea-
sible A, there may be several SICs (consider for instance three equidistant
points on the circle). We denote the radius of a SIC of A by ρ(A). An
instance A is strictly feasible iff ρ(A) < π/2. For more information on this
we refer to [10, 5].

The following result is due to Cheung and Cucker [8]. This characteriza-
tion is essential for any probabilistic analysis of the GCC condition number.
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Theorem 2.8 We have

d(A,Σn,m) =

{

π
2 − ρ(A) if A ∈ Fn,m,

ρ(A)− π
2 if A ∈ (Sm)n \ Fn,m.

In particular, d(A,Σn,m) ≤ π
2 and C (A)−1 = | cos ρ(A)|.

2.4 Adversarial probability distributions

The proof of our robustness result relies on a general boosting technique
developed in [18], that allows to extend probability tail bounds obtained
for one fixed distribution to larger classes of distributions. We explain this
technique in our situation of interest.

Let ν := νa,σ denote the uniform distribution on the spherical diskB(a, α),
where α ∈ (0, π2 ] and σ := sinα. We assume that µ is a ν-absolutely con-
tinuous probability measure, i.e., it can be written with a density f as
µ(G) =

∫

G fd ν for Borel measurable sets G. In certain cases, it is possible
to bound µ(G) in terms of ν(G) if the latter is sufficiently small. This is done
with the smoothness parameter s of µ with respect to ν, which is defined
as s := limδ→0 inf δ, where we have set for δ ∈ (0, 1), using the convention
ln 0 := −∞,

inf δ := inf
{ lnµ(G)

ln ν(G)
| 0 < ν(G) ≤ δ

}

.

If s is positive, we say that µ is uniformly ν-absolutely continuous. In this
case, it is easy to see that s is the largest nonnegative real number s′ with
the property that for all ε > 0 there exists a tolerance δ(ε) > 0 such that
ν(G) ≤ δ(ε) implies µ(G) ≤ ν(G)s

′−ε for all G, cf. [18].
We will apply this framework to a specific class of distributions µ. Not

only will it be important to know the smoothness parameter, but also to
explicitly compute bounds for the tolerance δ(ε).

An adversarial probability distribution µa, for a ∈ Sm, was defined in [11]
as a ν-absolutely continuous measure given by µa(G) =

∫

G fd ν, where again
ν denotes the uniform distribution on B(a, α). We further require that the
density f is of the form f(x) = g(sin d(x, a)) with a monotonically decreasing
function g : [0, σ] → [0,∞] given by

g(r) = Cr−β h(r),

where 0 ≤ β < m, and h : [0, σ] → [0,∞) is a continuous function satisfying
h(0) 6= 0. Thus, the support of µa is contained in B(a, α) and the density
of µa is radially symmetric with a pole of order β at a. Clearly, a is the
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mean of a with respect to µa. It is convenient to assume the normalization
C := Im(α)/Im−β(α), where

Ik(α) := Jk,k(α) =

∫ α

0
(sin t)k−1 dt,

compare (4) (we slightly deviate here from the notation in [11]). Then µa is
a probability distribution iff

Im−β(α) =

∫ α

0
(sin t)m−β−1 h(sin t) dt.

The maximum of h is denoted by H := sup0≤r≤σ h(r), which is easily seen to
satisfy H ≥ 1. We note that the uniform distribution on B(a, α) is obtained
by choosing β = 0, C = 1 and for g = h the function identically equal to 1.

The following technical lemma is an immediate consequence of [11, Lem-
mas 3.2-3.3, Equation (3.1)].

Lemma 2.9 1. The smoothness parameter of µ with respect to ν equals
s = 1− β/m.

2. For c := 1
2s =

1
2(1−

β
m) ≤ 1

2 and the tolerance δc defined by

δc :=
2

πm





1

H
·

√

1−
(

2

πm

)
1

m





1/c

we have for all measurable G ⊆ Sm,

ν(G) ≤ δc =⇒ µa(G) ≤ (ν(G))c.

Remark 2.10 In the case β = 0 where the density of µa has no singularity
the situation simplifies. Clearly, µa(G) ≤ Hν(G) for all G. This directly
implies that the smoothness parameter equals 1. Moreover, the tolerance
δ = 1

H2 is sufficient for the implication ν(G) ≤ δ ⇒ µa(G) ≤ ν(G)
1

2 .

Since we will work in the product of spheres (Sm)n we define on it
the adversarial distributions µĀ with center Ā = (a1, . . . , an) ∈ (Sm)n by
taking the product measure µĀ := µa1 × . . . × µan . This is a probability
distribution whose support is contained in the product of caps B(Ā, α) :=
B(a1, α)× . . .×B(an, α).

13



3 Robust smoothed analysis of C (A)

The goal of this section is to provide smoothed analysis estimates for the
condition number C (A) in the model where A = (a1, . . . , an) is chosen at
random according to an adversarial distribution µĀ. The center Ā ∈ (Sm)n

of the perturbation is arbitrary. Recall that Fn,m and In,m denote the sets
of feasible and infeasible instances A ∈ (Sm)n, respectively.

Theorem 3.1 Let α ∈ (0, π/2], σ = sinα, and Ā ∈ (Sm)n, where n > m+ 1.
Assume that A ∈ B(Ā, α) is chosen at random according to an adversarial
distribution µĀ. Let the exponent c = 1

2(1 − β/m) and the tolerance δc be
defined as in Lemma 2.9. Then we have

Prob{A ∈ Fn,m and C (A) ≥ t} ≤ n

(

13m(m+ 1)

2σ

)c

t−c. (F)

provided t ≥ 13m(m+1)
2σδc

. Moreover, we have for t ≥ 1,

Prob{A ∈ In,m and C (A) ≥ t} ≤ n

(

1690m2(m+ 1)

4σ2

)c

t−c(δ−c
c + cn ln t).

(I)

Remark 3.2 For the uniform distribution (β = 0, h ≡ 1) the bounds in (F)
and (I) can easily be improved by avoiding the use of Lemma 2.9. In partic-
ular, on the right-hand side of (F) and (I) one gets t−1 and t−1 ln t instead
of t−1/2 and t−1/2 ln t.

The overall strategy of the proof of Theorem 3.1 is the same as in [15].
However, the crucial component in [15], namely a result due to Ball [2], is
substituted by Corollary 3.4, which is stated in the next section.

3.1 A bound on the volume of convex neighborhoods

We state here an upper bound on the volume of the intersection of neigh-
borhoods of spherically convex sets with spherical caps.

Theorem 3.3 Let K be a properly convex subset of Sm, let a ∈ Sm, and
0 < α,ϕ ≤ π/2. Then, writing σ = sinα and ε = sinϕ, we have the
following upper bound for the volume of the outer neighborhood of ∂K:

vol(To(∂K,ϕ) ∩B(±a, α))

volB(±a, α)
≤

m−1
∑

k=1

(

m

k

)

(

1+
ε

σ

)m−k ( ε

σ

)k
+

mOm

2Om−1

( ε

σ

)m
.
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The same upper bound holds for the volume vol(Ti(∂K,ϕ)∩B(±a,α))
volB(±a,α) of the inner

neighborhood of ∂K.

The main result of [7, Theorem 1.2] gives a bound on the volume of the
intersection of a projective ball B(±a, α) = B(a, α) ∪B(−a, α) with the ϕ-
neighborhood of a real algebraic hypersurface in the sphere Sm, given as the
zero set of polynomial of degree d. The above theorem says that essentially
the same volume bound holds for the boundary of a properly convex set K
in Sm, if we formally replace in this bound the degree d by 1/2.

The proof of Theorem 3.3, which is quite involved, is deferred to Sec-
tion 4. By essentially the same argument as in the proof of [7, Prop. 3.5]
one can derive from Theorem 3.3 the following corollary.

Corollary 3.4 Under the assumptions of Theorem 3.3 we have the follow-
ing upper bound for the volume of the outer neighborhood of ∂K:

vol(To(∂K,ϕ) ∩B(±a, α))

volB(±a, α)
≤ 13m

4

ε

σ
if ε ≤ σ

2m .

The same upper bound holds for the relative volume of the inner neighbor-
hood of ∂K.

3.2 Two auxiliary results

The proofs of the following two results are similar as in Dunagan et al. [15].
We use the notation [n] := {1, 2, . . . , n} for n ∈ N.

Proposition 3.5 Let A = (a1, . . . , an) ∈ F◦
n,m, 0 < ϕ ≤ π/2, and ε = sinϕ.

If C (A) ≥ (m+ 1) ε−1, then there exists i ∈ [n] such that

ai ∈ T (∂Ki, ϕ) \Ki,

where Ki := −sconv{a1, . . . , ai−1, ai+1, . . . , an}.

Proof. There exists q ∈ sconv(A) such that 〈ai, q〉 > 0 for all i ∈ [n].
Indeed, if q is taken as the center of the SIC of A then this follows from [10,
Lemma 4.5] (see also [5, Lemma 3.2]).

We note that ai 6∈ Ki for all i ∈ [n]. Otherwise 0 ∈ conv{a1, . . . , an},
hence A ∈ Σn,m, which contradicts our assumption that A is strictly feasible.
It follows that d(ai, ∂Ki) = d(ai,Ki).

We assume now d(ai,Ki) > ϕ for all i ∈ [n]. Our goal is to show that
sin d(A,Σn,m) > 1

m+1ε. Then we are done, since C (A)−1 = sin d(A,Σn,m)
by Definition 2.6.
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We proceed now similarly as in [15, Lemma 2.3.10]. By continuity we
assume w.l.o.g. that ϕ < π/2. We distinguish two cases. If ai 6∈ K̆i, then
Lemma 2.3 tells us that d(ai,Ki) + d(ai, K̆i) = π/2. Hence d(ai, K̆i) <
π/2 − ϕ. Choose pi ∈ int(K̆i) such that d(ai, pi) < π/2 − ϕ. This implies
〈ai, pi〉 > cos(π/2 − ϕ) = ε. In the case ai ∈ K̆i we take any pi ∈ int(K̆i)
close enough to ai such that 〈ai, pi〉 > ε.

In both cases we have achieved the following

〈ai, pi〉 > ε and ∀j 6= i 〈aj , pi〉 > 0. (5)

This implies for all i that 〈pi, q〉 > 0, as q ∈ cone{a1, . . . , an}.
Consider now for i ∈ [n] the following convex sets in Sm

Ci := {x ∈ Sm | 〈ai, x〉 >
ε

m+ 1
and 〈x, q〉 > 0}

containing pi. We claim that the intersection of any m + 1 of these sets
is nonempty. Indeed, let I ⊆ [n] be of cardinality m + 1 and consider
p∗ := 1

m+1

∑

j∈I pj. Note that ‖p∗‖ ≤ 1. We obtain for any i ∈ I, using (5),

〈ai, p∗〉 =
1

m+ 1

∑

j∈I

〈ai, pj〉 ≥
1

m+ 1
〈ai, pi〉 >

ε

m+ 1
.

Moreover, 〈p∗, q〉 > 0, hence p∗ 6= 0. It follows that p := p∗/‖p∗‖ is contained
in Ci for any i ∈ I, which shows the claim.

Consider the affine hyperplane E := {x ∈ R
m+1 | 〈x, q〉 = 1} of dimen-

sion m and the perspective map

π : {x ∈ Sm | 〈x, q〉 > 0} → E, x 7→ 〈q, x〉−1x.

Then the π(Ci) are convex subsets of E, with the property that any m+ 1
of these have a nonempty intersection. Helly’s theorem [30] implies that
π(C1) ∩ · · · ∩ π(Cn) is nonempty. Hence there is a point a ∈ ⋂n

i=1 Ci. We
have d(ai, a) < α := arccos((m + 1)−1ε) for all i ∈ [n]. Hence the spherical
cap B(a, α) strictly contains all ai. The radius ρ(A) of the SIC of A is
therefore strictly smaller than α. Hence, by Theorem 2.8, sin d(A,Σn,m) =
cos ρ(A) > cosα = (m+ 1)−1ε, as claimed. ✷

The next proposition on the transition from the feasible to the infeasible
case is similar as [15, Lemma 2.3.14].

Proposition 3.6 Let A = (a1, . . . , an) ∈ Fn,m and K := −sconv(A). If
b ∈ K, then (A, b) := (a1, . . . , an, b) is infeasible or ill-posed and we have

C (A, b) sin d(b, ∂K) ≤ 10C (A).
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Proof. W.l.o.g. A is strictly feasible. The set of solutions

C := {x ∈ Sm | 〈a1, x〉 ≤ 0, . . . , 〈an, x〉 ≤ 0}

is the dual of sconv(A). Hence C̆ = sconv(A). This means that a ∈ K iff
〈a, x〉 ≥ 0 for all x ∈ C. Therefore, we have for all a ∈ Sm,

a 6∈ K ⇐⇒ ∃x ∈ C 〈a, x〉 < 0 ⇐⇒ (a1, . . . , an, a) is strictly feasible, (6)

where the second equivalence follows from the assumption that C has non-
empty interior. A similar argument shows that (a1, . . . , an, a) is ill-posed iff
a ∈ ∂K. Therefore, we have

d(b, ∂K) = min{d(b, a) | a ∈ Sm such that (a1, . . . , an, a) ∈ Σn+1,m}.

For proving the proposition we can assume without loss of generality
that b ∈ K \ ∂K. Then (A, b) is not strictly feasible by (6). Moreover,
since b 6∈ ∂K, (A, b) is not ill-posed. Hence (A, b) is infeasible. We put now
ω := sin d(b, ∂K) and claim that

ω ≤ min
x∈C

〈b, x〉. (7)

In order to show this, suppose q ∈ C. The equivalence (6) and b ∈ K
imply that cos θ := 〈b, q〉 ≥ 0. W.l.o.g. we may assume that ‖b− q cos θ‖2 =
1−cos2 θ is positive (otherwise θ = 0, b = q, and 〈b, q〉 = 1 ≥ ω). It therefore
makes sense to define b′ := (b − q cos θ)/‖b − q cos θ‖. Then b′ ∈ Sm and
〈b′, q〉 = 0. Note that d(b, b′) = π/2− θ. Therefore (a1, . . . , an, b

′) is feasible.
It is either strictly feasible, in which case b′ 6∈ K, or ill-posed, in which case
b′ ∈ ∂K (use (6)). Since b ∈ K we conclude that d(b, ∂K) ≤ d(b, b′) =
π/2 − θ. This implies

ω = sin d(b, ∂K) ≤ cos θ = 〈b, q〉

and hence the claimed inequality (7). Moreover note that d(b, ∂K) ≤ π/2
and ω > 0 as b 6∈ ∂K.

Suppose now that B(p, ρ) is the SIC for A. Since we assume A to be
strictly feasible t := cos ρ is positive. By the characterization of the GCC
condition number in Theorem 2.8 we have t = sin d(A,Σn,m) = C (A)−1.

Put ϕ := arcsin( 1
10 tω). For proving the proposition, it is enough to show

the implication

∀(A′, b′) ∈ (Sm)n+1 d((A′, b′), (A, b)) ≤ ϕ =⇒ (A′, b′) infeasible. (8)
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Indeed, this implies (using d((A, b),Σn+1,m) ≤ π/2, cf. Theorem 2.8)

C (A, b)−1 = sin d((A, b),Σn+1,m) ≥ sinϕ =
1

10
t ω =

1

10
C (A)−1ω,

as claimed in the proposition.
We argue by contradiction. Suppose there is a feasible (A′, b′) having

distance at most ϕ from (A, b). Then there exists x′ ∈ Sm such that

〈a′1, x′〉 ≤ 0, . . . , 〈a′n, x′〉 ≤ 0, 〈b′, x′〉 ≤ 0.

Taking into account that d(a′i, ai) ≤ ϕ, we see that d(ai, x
′) ≥ π/2 − ϕ and

hence 〈ai, x′〉 ≤ sinϕ.
We put now x̃ := x′ − λp with λ := t−1 sinϕ. As 〈ai, p〉 ≥ t, we have for

i ∈ [n]
〈ai, x̃〉 = 〈ai, x′〉 − λ〈ai, p〉 ≤ sinϕ− λt = 0.

Note that x̃ 6= 0 (otherwise t = sinϕ, which is impossible). Therefore, x̃/‖x̃‖
is well-defined and lies in C. Inequality (7) implies that ω‖x̃‖ ≤ 〈b, x̃〉.

Put ∆b := b′−b. Then ‖∆b‖ ≤ 2 sin(ϕ/2) by our assumption d(b′, b) ≤ ϕ.
We obtain

〈b, x̃〉 = 〈b′ −∆b, x′ − λp〉 = 〈b′, x′〉 − 〈∆b, x′〉 − 〈b′, λp〉+ 〈∆b, λp〉
≤ 0 + ‖∆b‖+ λ+ ‖∆b‖λ.

To arrive at a contradiction it is enough to verify that

‖∆b‖+ λ+ ‖∆b‖λ < ω‖x̃‖.
Note that ‖x̃‖ ≥ 1 − λ, ‖∆b‖ ≤ 2, and ω ≤ 1. It is therefore sufficient to
check that

‖∆b‖+ λ+ 2λ < ω − λ,

that is,
‖∆b‖+ 4λ < ω.

Using sinϕ = 2 sin(ϕ/2) cos(ϕ/2) we get λ = t−1 sinϕ ≤ 2t−1 sin(ϕ/2). It is
therefore sufficient to show that

2 sin
ϕ

2
+ 8t−1 sin

ϕ

2
< ω,

which is equivalent to

(t+ 4) sin
ϕ

2
<

1

2
tω.

As t ≤ 1, it is enough to show that 5 sin ϕ
2 < 1

2 tω. This is true, since by our
assumption sin ϕ

2 < sinϕ = 1
10 tω. ✷
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3.3 Feasible instances

We provide here the proof of the part of Theorem 3.1 dealing with feasible
instances. That is, we wish to show the claimed bound (F).

Let Ā ∈ (Sm)n, 0 < α ≤ π/2, σ = sinα, and t ≥ 13m(m + 1)(2σδc)
−1.

Put ε := (m+1)t−1 and ϕ := arcsin ε. We suppose that A ∈ (Sm)n is chosen
at random according to a distribution µĀ on (Sm)n as defined in Section 2.4.
Using Proposition 3.5 and the notation introduced there, we have

Prob{A ∈ F◦
n,m and C (A) ≥ t} ≤

n
∑

i=1

Prob{A ∈ F◦
n,m and ai ∈ To(∂Ki, ϕ)}.

We first bound the probability on the right-hand side for i = n by expressing
it as an integral over A′ := (a1, . . . , an−1) of probabilities conditioned on A′.
Note that µĀ = µĀ′ × µan where Ā′ := (ā1, . . . , ān−1). Moroever, A ∈ F◦

n,m

iff A′ ∈ F◦
n−1,m and an 6∈ Kn, where we set now KA′ := Kn = −sconv(A′),

see (6). This implies

Prob
µĀ

{A ∈ F◦
n,m and an ∈ To(∂Kn, ϕ)}

=Prob
µĀ

{A′ ∈ F◦
n−1,m and an ∈ To(∂KA′ , ϕ)}

=

∫

A′∈F◦

n−1,m

Prob
µan

{an ∈ To(∂KA′ , ϕ)} dµĀ′ .

(9)

We fix A′ ∈ F◦
n−1,m and consider the properly convex set Kn = KA′ in Sm.

The bound in Corollary 3.4 on the outer neighborhood of ∂Kn yields

Prob
ν

{an ∈ To(∂Kn, ϕ)} =
vol(To(∂Kn, ϕ) ∩B(ān, α))

volB(ān, α)
≤ 13m

2σ
sinϕ,

where ν denotes the uniform distribution on B(an, α). The reader should
note that ε ≤ 2σδc/(13m) ≤ σ/(2m) by assumption. (We win a factor of
two by considering B(ān, α) instead of B(±ān, α).) Hence, using sinϕ =
ε = (m+ 1)t−1, we conclude

Prob
ν

{an ∈ To(∂Kn, ϕ)} ≤ 13m

2σ
sinϕ =

13m(m+ 1)

2σt
.

We assume that 13m(m+ 1)(2σt)−1 ≤ δc. Hence we can apply Lemma 2.9,
which yields

Prob
µan

{an ∈ To(∂Kn, ϕ)} ≤
(

13m(m+ 1)

2σt

)c

.
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This bound holds for any A′ ∈ F◦
n−1,m. We therefore obtain from (9)

Prob
µĀ

{A ∈ F◦
n,m and an ∈ To(∂Kn, ϕ)}

≤
(

13m(m + 1)

2σt

)c

Prob
µĀ′

{A′ feasible} ≤
(

13m(m+ 1)

2σt

)c

. (10)

The same upper bound holds for any Ki. Altogether, we obtain

Prob
µĀ

{A ∈ F◦
n,m and C (A) ≥ t} ≤ n

(

13m(m+ 1)

2σ

)c

t−c,

which proves Claim (F), since Prob{A ∈ Σn,m} = 0.

3.4 Infeasible instances

We start with a general observation. For A = (a1, . . . , an) ∈ (Sm)n and
1 ≤ k ≤ n we will write Ak := (a1, . . . , ak) and Āk := (ā1, . . . , āk).

Lemma 3.7 Let A ∈ (Sm)n, k < n, such that Ak+1 be infeasible. Then

C (Ak+1) ≥ C (A).

Proof. As Ak+1 is infeasible, A must be infeasible as well. Let A′ =
(a′1, . . . , a

′
n) be feasible such that d(A,A′) = d(A,Σn,m) ≤ π/2. Then

A′
k = (a′1, . . . , a

′
k+1) is feasible and d(Ak, A

′
k) ≤ d(A,A′). Hence we have

d(Ak+1,Σk+1,m) ≤ d(A,Σn,m) and

C (Ak+1)
−1 = sin d(Ak+1,Σk+1,m) ≤ sin d(A,Σn,m) = C (A)−1,

which was to be shown. ✷

We also need the following probabilistic lemma.

Lemma 3.8 Let U and V be random variables taking positive values and
xU ≥ α > 0, xV ≥ β > 0, and c > 0. We assume

Prob{U ≥ x} ≤ α · x−c for x ≥ xU

Prob{V ≥ x | U} ≤ β · x−c for x ≥ xV .

Then we have

Prob{UV ≥ x} ≤ c αβ x−c lnmax
{ x

xUxV
, 1
}

+min{αxcV , β xcU}x−c.
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Proof. [23, Lemma C.1] with the functions f, g defined as

f(x) =

{

1 if x < xU
α · x−c if x ≥ xU

g(x) =

{

1 if x < xV
β · x−c if x ≥ xV

yields

Prob{UV ≥ x} ≤
∫ ∞

0
f
(x

s

)

(−g′(s)) ds. (11)

If x ≥ xUxV we estimate this by

Prob{UV ≥ x} ≤
∫ x/xU

xV

αx−c sc c β s−c−1 ds+

∫ ∞

x/xU

c β s−c−1 ds

= c αβ x−c ln
( x

xUxV

)

+ β xcU x−c.

If x < xUxV one argues similarly.
Finally note that (11) implies Prob{UV ≥ x} ≤

∫∞
0 g

(

x
s

)

(−f ′(s)) ds,
using integration by parts. Estimating this as before, with the roles of f
and g exchanged, completes the proof. ✷

We provide now the proof of the part of Theorem 3.1 dealing with in-
feasible instances, i.e., of the claimed bound (I). Fix Ā ∈ Sm, 0 < α ≤ π/2,
σ = sinα, and t ≥ 1. Assume A = (a1, . . . , an) to be chosen at random ac-
cording to µĀ. Then Am+1 is always feasible. Hence, if A = An is infeasible,
then there exists a smallest index k > m such that Ak is feasible and Ak+1

is infeasible. If we denote by Ek the event

Ak feasible and Ak+1 infeasible and C (Ak+1) ≥ t, (12)

and take into account Lemma 3.7, we obtain

Prob{A ∈ In,m and C (A) ≥ t} ≤
n−1
∑

k=m+1

Prob Ek. (13)

For bounding the probability of Ek, a change of notation is convenient.
We fix k and write from now on

A := (a1, . . . , ak), KA := −sconv{a1, . . . , ak}, b := ak+1,

and similarly Ā := (ā1, . . . , āk), b̄ := āk+1. We note that A and b are chosen
independently and at random according to µĀ and µb̄, respectively.
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Proposition 3.6 implies that

Prob
µĀ

Ek ≤ Prob
µĀ

{

A ∈ Fk,m and b ∈ KA and
C (A)

sin d(b,KA)
≥ t

10

}

.

The first part of Theorem 3.1 tells us that

Prob
µĀ

{

A ∈ Fk,m and C (A) ≥ x
}

≤ k

(

13m(m+ 1)

2σ

)c

x−c (14)

provided x ≥ xU := 13m(m+ 1)/(2σδc). For a fixed strictly feasible A, the
set KA is properly convex in Sm. The bound in Corollary 3.4 on the inner
neighborhood of ∂KA yields for any A ∈ F◦

k,m

Prob
ν

{

b ∈ KA and
1

sin d(b, ∂KA)
≥ x

∣

∣

∣ A
}

≤ 13m

2σ

1

x
, (15)

provided x ≥ 2m/σ (again ν denotes the uniform distribution on B(b̄, α)).
Applying Lemma 2.9 yields

Prob
µb̄

{

b ∈ KA and
1

sin d(b, ∂KA)
≥ x

∣

∣

∣
A
}

≤
(

13m

2σ

)c

x−c, (16)

provided x ≥ xV := 13m/(2σδc).
Let 1M denote the indicator function of a set M . We combine the above

two probability estimates in (14) and (16) with Lemma 3.8, setting

U(A) := 1Fk,m
(A)C (A), V (A, b) := 1KA

(b)
1

sin d(b, ∂KA)
.

Note that
Prob Ek ≤ Prob{U(A) · V (A, b) ≥ t/10}.

We have for t ≥ 1 and x = t/10

max

{

x

xUxV
, 1

}

= max

{

4σ2 δ2c t

1690m2(m+ 1)
, 1

}

≤ t.

Let α := k
(

13m(m+1)
2σ

)c
and β :=

(

13m
2σ

)c
. Note that αβ = k ·

(

169m2(m+1)
4σ2

)c

and min{αxcV , βxcU} =
(

169m2(m+1)
4σ2δc

)c
. Lemma 3.8 implies that

Prob Ek ≤ c k

(

1690m2(m+ 1)

4σ2

)c

t−c ln t+

(

1690m2(m+ 1)

4σ2 δc

)c

t−c. (17)

Plugging in this bound into (13) finishes the proof of Theorem 3.1. ✷
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3.5 Proof of Theorem 1.2

We will now give the proof of Theorem 1.2 by deriving estimates of the ex-
pectation of lnC from the tail bounds given in Theorem 3.1. Let A ∈ (Sm)n

be chosen at random according to an adversarial distribution µĀ. Combin-
ing (F) and (I) from Theorem 3.1 we have for t ≥ 13m(m+ 1)(2σδc)

−1,

Prob{C (A) ≥ t} = Prob{A ∈ Fn,m and C (A) ≥ t}
+Prob{A ∈ In,m and C (A) ≥ t}

≤ n
(

13m(m+1)
2σ

)c
t−c + n

(

1690m2(m+1)
4σ2δc

)c
t−c

+cn2
(

1690m2(m+1)
4σ2

)c
t−c ln t.

Defining D1 := n
(

13m(m+1)
2σ

)c
, D2 := D1 ·

(

130m
2σδc

)c
, D3 := cnD1 ·

(

130m
2σ

)c

we can write shortly

Prob{C (A) ≥ t} ≤ D1 t
−c +D2 t

−c +D3 t
−c ln t.

Note that D2 ≥ D1 and D3 ≥ D1. It is convenient to use tail estimates of
lnC instead of C , so we reformulate

Prob{lnC (A) ≥ s} ≤ D1 e
−cs +D2 e

−cs +D3 e
−css, (18)

which holds for s ≥ ln
(

13m(m+1)
2σδc

)

. We define si := lnD
1/c
i +ln δ−1

c , i.e. δc =

D
1/c
i · e−si , for i = 1, 2, 3. Note that s2 = s1 + ln

(

130m
2σδc

)

≥ s1, s3 =

s1 + c−1 ln(cn) + ln
(

130m
2σ

)

≥ s1, and

s1 =
1
c lnn+ ln

(

13m(m+1)
2σ

)

+ ln δ−1
c ≥ ln

(

13m(m+1)
2σδc

)

.

The definition of δc in Lemma 2.9 and the inequality

(

1−
(

2
πm

)
1

m

)−1/2

≤
√

2m
ln(πm/2) , (19)

which is shown by a small computation, lead to the following estimate of s1

s1 ≤ lnD
1/c
1 + ln πm

2 + 1
2c ln

(

2H2m
ln(πm/2)

)

= c−1 lnn+ ln
(

13m(m+1)
2σ

)

+ ln πm
2 + 1

2c ln
(

2H2m
ln(πm/2)

)

.
(20)
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We distinguish the cases s3 ≥ s2 and s3 < s2. For s3 ≥ s2 we get with (18)

E
(

lnC
)

=

∫ ∞

0
Prob{lnC (A) ≥ s} ds

≤
∫ s3

0
1 ds +

∫ ∞

s3

(

D1 e
−cs +D2 e

−cs +D3 e
−cs s

)

ds

≤ s3 +

∫ ∞

s1

D1 e
−cs ds+

∫ ∞

s2

D2 e
−cs ds+

∫ ∞

s3

D3 e
−cs s ds

= s3 + c−1δcc + c−1δcc + c−2(1 + cs3)δ
c
c

≤ (1 + c−1) s3 + 2c−1 + c−2

= (1 + c−1) s1 + (1 + c−1)c−1 ln(cn) + (1 + c−1) ln
(

130m
2σ

)

+2c−1 + c−2.

With the estimate of s1 in (20) a small computation yields

E
(

lnC
)

≤ (1 + c−1)
(

2c−1 lnn+ 3 lnm+ ln(m+ 1) + 2 ln
1

σ

+(2c)−1 ln

(

2H2m

ln(πm/2)

)

+ c−1 + c−1 ln c+ 6.5
)

+ c−1.

This yields E
(

lnC
)

= O
(

c−2 ln
(

nH
σ

))

. In the case s3 < s2 a similar argu-
ment holds. This shows the first statement of Theorem 1.2. Finally, tracing
the constants in the case β = 0, yields the asserted explicit bound. ✷

3.6 Average-case analysis

We show here that for the uniform distribution on Sm, the probability tail
estimates in Theorem 3.1 on C (A) can be significantly improved by essen-
tially the same method.

Proposition 3.9 For A ∈ (Sm)n chosen uniformly at random we have

Prob{C (A) ≥ t} = O
(

(m+ 1)5
1

t
ln t

)

.

Moreover, E(lnC (A)) = O(lnm) as stated in Corollary 1.3.

Proof (Sketch). A result due to Wendel [31] states that for k > m

p(k,m) :=
volFk,m

(volSm)k
=

1

2k−1

m
∑

i=0

(

k − 1

i

)

. (21)
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We refer to the proof in §3.3 for the uniform distribution on Sm instead
of µĀ (think of σ = 1). We write k instead of n. We do not need to use
Lemma 2.9. Moreover we do not bound p(k,m) = Prob{A ∈ Fk,m} by 1 as
in Equation (10). Taking account of this, the proof in §3.3 shows that

Prob
{

A ∈ Fk,m and C (A) ≥ x
}

≤ k · 13m(m+ 1)

2
p(k,m)

1

x
,

provided x ≥ xU := 2m(m+ 1).
We proceed now as in §3.4, using the same notation. For a fixed strictly

feasible A = (a1, . . . , ak) we have by (15)

Prob

{

b ∈ KA and
1

sin d(b, ∂KA)
≥ x

∣

∣

∣
A
}

≤ 13m

2

1

x

provided x ≥ xV := 2m. Recall the definition of the event Ek from (12).
Similarly as for (17) we conclude with the help of Lemma 3.8 that

Prob Ek ≤ Cm3 k p(k,m)
1

t
ln t for t ≥ e,

where C stands for a universal constant. Using Lemma 3.10 stated below
we get

n−1
∑

k=m+1

k p(k,m) ≤
4m
∑

k=m+1

k p(k,m) +
∞
∑

k=4m+1

k p(k,m) = O(m2).

Hence, by Equation (13),

Prob{A ∈ In,m and C (A) ≥ t} ≤
n−1
∑

k=m+1

Prob Ek ≤ C ′m5 1

t
ln t

for some constant C ′. It is obvious that Prob{A ∈ Fn,m and C (A) ≥ t} can
also be bounded this way. Finally, the claimed bound on the expectation of
lnC (A) follows immediately with the help of [6, Prop. 2.4]. ✷

Lemma 3.10 We have
∑∞

k=4m+1 k p(k,m) = o(1) for m → ∞.

Proof. Let k > 4m. Wendel’s result (21) implies

k p(k,m) ≤ k
(m+ 1)

2k−1

(

k − 1

m

)

≤ 2(m+ 1)

m!

km+1

2k
.
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We have km+12−k ≤ 2−k/2 for k ≥ Cm logm, and sufficiently large m, where
C > 0 is a suitable universal constant. Therefore, we get

∑

k≥Cm logm

k p(k,m) ≤ 2(m+ 1)

m!

∞
∑

k=0

1

2k/2
= o(1) (m → ∞).

The function x 7→ xm+12−x is monotonically decreasing for x ≥ (m+1)/ ln 2.
Hence, as k > 4m, and using m! ≥ (m/e)m we get

1

m!

km+1

2k
≤ 1

m!

(4m)m+1

24m
≤ 4m

(e

4

)m
.

Since e/4 < 1, we conclude

Cm logm
∑

k=4m+1

k p(k,m) ≤ 8m(m+ 1)
(e

4

)m
Cm logm = o(1) (m → ∞),

which completes the proof. ✷

4 Some spherical convex geometry

The goal of this section is to provide the proof of Theorem 3.3, following the
lines of [7, Theorem 1.2]. We proceed in several steps.

4.1 Integrals of curvature and Weyl’s tube formula

For the following material from differential geometry we refer to [29]. A
good reference for the differential geometry of convex sets is [3].

Let V be a smooth hypersurface in Sm with unit normal vector field
ν : V → Sm. The principal curvatures of V at x ∈ V are defined as the
eigenvalues κ1(x), . . . , κm−1(x) of the Weingarten map −Dν(x) : TxV →
TxV . The ith curvature KV,i(x) of V at x is the ith symmetric polynomial
in the principal curvatures:

KV,i(x) :=
∑

|I|=i

∏

j∈I

κj(x) (0 ≤ i < m).

Interesting special cases are KV,0(x) = 1 and

KV,m−1(x) = κ1(x) · · · κm−1(x) = det(−Dν(x)), (22)
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which is called the Gaussian curvature of V at x. Let U be an open subset
of V . In [7] the integral µi(U) of ith curvature and the integral |µi|(U) of
ith absolute curvature were defined as

µi(U) :=

∫

U
KV,i dV, |µi|(U) :=

∫

U
|KV,i| dV.

Two special cases deserve special mention: µ0(U) = volU equals the (m−1)-
dimensional volume of U . Moreover, µm−1(V ) is the integral of the Gaussian
curvature of V .

By a smooth convex body K in Sm we will understand a convex body
such that its boundary ∂K is a smooth hypersurface in Sm (of type C∞)
and its Gaussian curvature does not vanish in any point of ∂K.

Let K be a smooth convex body in Sm with boundary V := ∂K. We
denote by ν : V → Sm the unit normal vector field of the hypersurface V that
points inwards of K. Here all the principal curvatures κj(x) are nonnegative,
cf. [3]. Hence the ith curvatures are nonnegative as well and therefore we
have µi(U) = |µi|(U) for any open subset U of V .

For 0 < ϕ ≤ π/2 we define the ϕ-tube T⊥(U,ϕ) around U as

T⊥(U,ϕ) := {x ∈ Sm | ∃y ∈ U such that d(x, y) < ϕ and

[x, y] intersects U orthogonally at y}.

The outer ϕ-tube T⊥
o (U,ϕ) and inner ϕ-tube T⊥

i (U,ϕ) of U are defined as

T⊥
o (U,ϕ) := T⊥(U,ϕ) \K and T⊥

i (U,ϕ) := T⊥(U,ϕ) ∩K.

In an important paper, Weyl [32] derived a formula for the volume of
tubes around compact submanifolds of euclidean spaces or spheres. His
result can be seen as extension of Steiner’s formula on the volume of “parallel
convex sets” in euclidean space, see also Allendoerfer [1]. Weyl’s formula
only holds for a sufficiently small radius. In [7, Prop. 3.1], it was observed
that when replacing integrals of curvature by absolute integrals of curvature,
one obtains an upper bound on the volume of tubes holding for any radius.
As the above two notions of curvature coincide for boundaries of convex
sets, we get the following result. (An inspection of the proof of [7, Prop. 3.1]
reveals that separate bounds on the inner and outer tube hold.)

Proposition 4.1 Let K be a smooth convex body in Sm and U be an open
subset of ∂K. Then we have for all 0 < ϕ ≤ π/2

max{volT⊥
o (U,ϕ), volT⊥

i (U,ϕ)} ≤
m−1
∑

i=0

Jm,i+1(ϕ)µi(U),
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where Jm,i+1 denotes the function defined in (4). Moreover, this upper
bound is sharp for sufficiently small ϕ, cf. [32].

4.2 Some integral geometry

We will need a special case of the principal kinematic formula of integral
geometry for spheres. We denote by G the orthogonal group O(m+1), that
operates on Sm in the natural way, and denote by dG its volume element
normalized such that the volume of G equals one. The following result is
Theorem 2.7. in [7]. (For related information see [19] and [16].)

Theorem 4.2 Let U be an open subset of a compact oriented smooth hy-
persurface M of Sm and 0 ≤ i < m− 1. Then we have

µi(U) = C(m, i)

∫

g∈G
µi(gU ∩ Si+1) dG(g),

where C(m, i) = (m− i− 1)
(m−1

i

) Om−1Om

OiOi+1Om−i−2
.

The special case i = 0 yields an effective tool for estimating volumes,
usually referred to as Poincaré’s formula:

volm−1U =
Om−1

2

∫

g∈G
#(U ∩ gS1) dG(g), (23)

where #(U ∩gS1) denotes the number of elements in U ∩gS1 (note that this
is a finite set for almost all g ∈ G). Here is an application of (23). Clearly,
the given bound is sharp (consider spherical caps with radius almost π/2).

Corollary 4.3 Any smooth convex body K in Sm satisfies vol ∂K ≤ Om−1.

Proof. Almost surely, the intersection ∂K ∩ gS1 is finite. Then it consists
of at most two points by convexity. ✷

4.3 Integrals of curvature for boundaries of convex sets

In this section we assume that K is a smooth convex body in Sm and ν is
the unit normal vector field on ∂K pointing inwards of K. This means that
for x ∈ V , the unit vector ν(x) is uniquely characterized by the conditions
〈v, x〉 = 0 and 〈v, y〉 ≥ 0 for all y ∈ K.

Lemma 4.4 We have −ν(∂K) = ∂K̆.
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Proof. The characterization of ν(x) implies that −ν(x) ∈ ∂K̆ for x ∈ ∂K.
For the other inclusion, let v be a unit vector satisfying −v ∈ ∂K̆. Then
〈v, y〉 ≥ 0 for all y ∈ K. Moreover, there exists x ∈ K such that 〈v, x〉 = 0.
This implies x ∈ ∂K. It follows that v = ν(x). ✷

The following bound is crucial for all what follows. Again, considering
spherical caps with radius almost π/2, shows the optimality of the bound.

Proposition 4.5 The integral of Gaussian curvature of ∂K is bounded as
µm−1(∂K) ≤ Om−1.

Proof. Put V := ∂K. By Lemma 4.4, ν : V → ∂K̆ is surjective. By (22)
we have KV,m−1(x) = det(−Dν(x)) for x ∈ V . Since we assume that the
Gaussian curvature does not vanish, the map ν has no singular values.

We claim that ν is injective. Otherwise, we had ν(x) = ν(y) for distinct
x, y ∈ V . Since 〈ν(x), x〉 = 0 and 〈ν(y), y〉 = 0 we had 〈ν(x), z〉 = 0 for all
z ∈ [x, y]. Hence ν would be constant along this segment and therefore x
would be a critical point, contradicting our asumption.

We conclude that −ν : V → ν(V ) is a diffeomorphism onto the smooth
hypersurface ∂K̆. The transformation theorem yields

µm−1(V ) =

∫

V
KV,m−1 dV =

∫

V
det(−Dν) dV = vol ∂K̆.

Corollary 4.3 implies now the assertion. ✷

Lemma 4.6 For a ∈ Sm, 0 < α ≤ π/2, σ = sinα, and 0 ≤ i < m we have

µi(∂K ∩B(a, α)) ≤
(

m− 1

i

)

Om−1 σ
m−i−1.

Proof. This is similar, but somewhat simpler than the proof of [7, Prop. 3.2].
The case i = m− 1 is already established by Proposition 4.5. Hence we as-
sume i < m − 1. Let g ∈ G = O(m + 1) be such that V := ∂K intersects
gSi+1 transversally with nonempty intersection. We apply Proposition 4.5
to the convex body K ∩ gSi+1 in the sphere gSi+1, which has the smooth
boundary V ∩ gSi+1. Hence µi(V ∩ gSi+1) ≤ Oi. The kinematic formula of
Theorem 4.2 applied to the open subset U := V ∩ int(B(a, α)) of V yields

µi(U) = C(m, i)

∫

g∈G
µi(gU ∩ Si+1) dG(g)

≤ C(m, i)Oi Prob
g∈G

{gU ∩ Si+1 6= ∅}.
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Using gU ⊆ B(ga, α), this probability may be estimated as follows

Prob
g∈G

{gU ∩ Si+1 6= ∅} ≤ Prob
g∈G

{B(ga, α) ∩ Si+1 6= ∅}

= Prob
a′∈Sm

{B(a′, α) ∩ Si+1 6= ∅} = O−1
m volT (Si+1, α).

Lemma 2.1 in [7] implies volT (Si+1, α) = Oi+1Om−i−2 Jm,m−i−1(α). Mo-
roever, Lemma 2.2 in [7] says that

Jm,k(α) ≤
σk

k
for 1 ≤ k < m. (24)

By combining these estimates and plugging in the formula for C(m, i) from
Theorem 4.2, the resulting expression considerably simplifies and we get
µi(U) ≤

(m−1
i

)

Om−1 σm−i−1 as claimed. ✷

4.4 Proof of Theorem 3.3

We can finally provide the proof of Theorem 3.3. We assume first that K is
a smooth convex body in Sm. Let a ∈ Sm, 0 < α,ϕ ≤ π/2, put σ = sinα,
ε = sinϕ, and let U = ∂K ∩ B(a, α). By combining Proposition 4.1 with
Lemma 4.6 we get

volT⊥
o (U,ϕ) ≤

m−1
∑

i=0

(

m− 1

i

)

Om−1σ
m−i−1Jm,i+1(ϕ).

Using the estimate (24) we obtain after a short calculation (put k = i + 1,
use

(

m−1
k−1

)

= k
m

(

m
k

)

and consider separately the term for k = m)

volT⊥
o (∂K ∩B(a, α), ϕ) ≤ Om−1

m

m−1
∑

k=1

(

m

k

)

εk σm−k +
1

2
Om εm. (25)

The same upper bound holds for the volume of T⊥
i (∂K ∩B(a, α), ϕ).

We claim that

To(∂K,ϕ) ∩B(±a, α) ⊆ T⊥
o (∂K ∩B(±a, β), ϕ) (26)

where β = arcsinmin{1, σ + ε}. Indeed, suppose x ∈ To(∂K,ϕ) ∩B(±a, α)
and let y ∈ ∂K be a closest point to x. Then d(x, y) ≤ ϕ and [x, y] in-
tersects ∂K orthogonally (as ∂K is smooth without boundary). The tri-
angle inequality for projective distance (cf. §2.2) implies that sin d(a, y) <
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sin d(a, x) + sin d(x, y) ≤ σ + ε. Hence sin d(a, y) ≤ sinβ and therefore
y ∈ B(±a, β) which shows the claim.

By combining (26) with (25) we get

vol(To(∂K,ϕ) ∩B(±a, α)) ≤ 2Om−1

m

m−1
∑

k=1

(

m

k

)

εk (σ + ε)m−k + Om εm.

We have volB(±a, α) ≥ 2Om−1
σm

m , cf. [7, Lemmas 2.1-2.2]. Using this, we
obtain

vol(To(∂K,ϕ) ∩B(±a, α))

volB(±a, α)
≤

m−1
∑

k=1

(

m

k

)

(

1+
ε

σ

)m−k ( ε

σ

)k
+

mOm

2Om−1

( ε

σ

)m
.

(27)
This shows the assertion of Theorem 3.3 for the outer neighborhood in the
case where K is a smooth convex body. The bound for the inner neighbor-
hood is shown similarly.

The general case where K is any properly convex set in Sm will follow
by a pertubation argument. We define the Hausdorff distance d(K,K ′) of
two convex sets K and K ′ in Sm as the infimum of the real numbers δ ≥ 0
satisfying K ⊆ T (K ′, δ) and K ′ ⊆ T (K, δ). This defines a metric and allows
to speak about the convergence of convex sets. (For compact convex sets in
euclidean space the Hausdorff distance is a well known notion.)

Lemma 4.7 Any properly convex set K in Sm is the limit of a sequence of
smooth convex bodies.

Proof. The euclidean version of the claim is a well known result due to
Minkowski, see [3, §6] (or [24]) for more information.

A properly convex set K ⊂ Sm is contained in an open halfspace. For
fixed p ∈ Sm consider now the open halfsphere Sm

+ := {x ∈ Sm | 〈x, p〉 >
0} with center p and the affine space E := {x ∈ R

m+1 | 〈x, p〉 = 1}.
The “perspective map” π : Sm

+ → E, x 7→ 〈p, x〉−1x maps an intersection
of a linear space with Sm to an affine linear subspace of E and vice versa.
Moreover, π maps convex sets to convex sets and vice versa. Moreover, one
sees that π induces a homeomorphism between the set of convex subsets of
Sm
+ and the set of compact convex subsets of E. It is easily checked that

if K̃ ⊂ E smooth compact convex has nonvanishing Gaussian curvature on
the boundary, then this also holds for π(K̃). The assertion follows from the
euclidean version of our claim. ✷
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To finish the proof of Theorem 3.3 let now K ⊂ Sm be a properly
convex set and δ > 0. By Lemma 4.7 there exists a smooth convex body K ′

such that K and K ′ have Hausdorff distance at most δ, which means that
K ⊆ T (K ′, δ) and K ′ ⊆ T (K, δ). This implies K ′ \K ⊆ T (∂K, δ) and

To(∂K,ϕ) ⊆ To(∂K
′, ϕ+ δ) ∪ (K ′ \K).

By applying (27) to To(∂K
′, ϕ+δ), letting δ → 0, and noting that volT (∂K, δ)

goes to zero, the desired assertion follows. For the inner neighborhood one
argues similarly. ✷
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