Skip to main content
Log in

Small Chvátal Rank

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a variant of the Chvátal-Gomory procedure that will produce a sufficient set of facet normals for the integer hulls of all polyhedra {x : A x ≤ b} as b varies. The number of steps needed is called the small Chvátal rank (SCR) of A. We characterize matrices for which SCR is zero via the notion of supernormality which generalizes unimodularity. SCR is studied in the context of the stable set problem in a graph, and we show that many of the well-known facet normals of the stable set polytope appear in at most two rounds of our procedure. Our results reveal a uniform hypercyclic structure behind the normals of many complicated facet inequalities in the literature for the stable set polytope. Lower bounds for SCR are derived both in general and for polytopes in the unit cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon N., Vu V.: Anti-Hadamard matrices, coin weighing, threshold gates and indecomposable hypergraphs. J. Comb. Theory Ser. A 79(1), 133–160 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bach E., Shallit J.: Algorithmic Number Theory, Vol. 1: Efficient Algorithms, Foundations of Computing Series. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  3. Barvinok A., Woods K.: Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16, 957–979 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)

    Article  Google Scholar 

  5. Bruns, W., Ichim, B.: NORMALIZ. Computing normalizations of affine semigroups. With contributions by C. Söger. Available at http://www.math.uos.de/normaliz

  6. Chvátal V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discret. Math. 4, 305–337 (1973)

    Article  MATH  Google Scholar 

  7. Eisenbrand F., Schulz A.S.: Bounds on the Chvátal rank of polytopes in the 0/1 cube. Combinatorica 23(2), 245–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galluccio A., Sassano A.: The rank facets of the stable set polytope for claw-free graphs. J. Comb. Theory Ser. B 69(1), 1–38 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giles R., Trotter L.E. Jr.: On stable set polyhedra for K 1,3-free graphs. J. Comb. Theory Ser. B 31(3), 313–326 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grötschel M., Lovász L., Schrijver A.: Geometric Algorithms and Combinatorial Optimization. Volume 2 of Algorithms and Combinatorics. 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  11. Hoşten S., Maclagan D., Sturmfels B.: Supernormal vector configurations. J. Algebraic Comb. 19(3), 297–313 (2004)

    Article  MATH  Google Scholar 

  12. Liebling T.M., Oriolo G., Spille B., Stauffer G.: On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs. Math. Methods Oper. Res. 59(1), 25–35 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lipták L., Lovász L.: Facets with fixed defect of the stable set polytope. Math. Program. 88(1, Ser. A), 33–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Maclagan D., Thomas R.R.: The toric Hilbert scheme of a rank two lattice is smooth and irreducible. J. Comb. Theory Ser. A 104, 29–48 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schrijver A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (1986)

    Google Scholar 

  17. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algorithms and Combinatorics. Springer, Berlin (2003) (Paths, flows, matchings, Chapters 1–38)

  18. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algorithms and Combinatorics. Springer, Berlin (2003) (Matroids, trees, stable sets, Chapters 39–69)

  19. Seymour P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28(3), 305–359 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sherali H.D., Adams W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discret. Math. 3(3), 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stephen T., Tunçel L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ziegler G.M.: Lectures on 0/1-polytopes. Polytopes—combinatorics and computation, Oberwolfach, 1997, volume 29 of DMV Sem, pp. 1–41. Birkhäuser, Basel (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristram Bogart.

Additional information

All authors were partially supported by NSF grant DMS-0401047 and the Robert R. and Elaine K. Phelps Endowment at the University of Washington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogart, T., Raymond, A. & Thomas, R. Small Chvátal Rank. Math. Program. 124, 45–68 (2010). https://doi.org/10.1007/s10107-010-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0370-x

Keywords

Mathematics Subject Classification (2000)

Navigation